Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

In silico and In vivo Evaluation of Oxidative Stress Inhibitors Against Parkinson's Disease using the C. elegans Model

Author(s): Pradeep Hanumanthappa, Arpitha Ashok, Inderjit Prakash, Carmel I. Priya, Julie Zinzala, Vidya V. Marigowda and Aparna H. Sosalegowda*

Volume 23, Issue 8, 2020

Page: [814 - 826] Pages: 13

DOI: 10.2174/1386207323666200514074128

Price: $65

Abstract

Background: Parkinson’s disease ranks second, after Alzheimer’s as the major neurodegenerative disorder, for which no cure or disease-modifying therapies exist. Ample evidence indicate that PD manifests as a result of impaired anti-oxidative machinery leading to neuronal death wherein Cullin-3 has ascended as a potential therapeutic target for diseases involving damaged anti-oxidative machinery.

Objective: The design of target specific inhibitors for the Cullin-3 protein might be a promising strategy to increase the Nrf2 levels and to decrease the possibility of “off-target” toxic properties.

Methods: In the present study, an integrated computational and wet lab approach was adopted to identify small molecule inhibitors for Cullin-3. The rational drug designing process comprised homology modeling and derivation of the pharmacophore for Cullin-3, virtual screening of Zinc natural compound database, molecular docking and Molecular dynamics based screening of ligand molecules. In vivo validations of an identified lead compound were conducted in the PD model of C. elegans.

Results and Discussion: Our strategy yielded a potential inhibitor; (Glide score = -12.31), which was evaluated for its neuroprotective efficacy in the PD model of C. elegans. The inhibitor was able to efficiently defend against neuronal death in PD model of C. elegans and the neuroprotective effects were attributed to its anti-oxidant activities, supported by the increase in superoxide dismutase, catalase and the diminution of acetylcholinesterase and reactive oxygen species levels. In addition, the Cullin-3 inhibitor significantly restored the behavioral deficits in the transgenic C. elegans.

Conclusion: Taken together, these findings highlight the potential utility of Cullin-3 inhibition to block the persistent neuronal death in PD. Further studies focusing on Cullin-3 and its mechanism of action would be interesting.

Keywords: Oxidative stress, Parkinson’s disease, Cullin-3, molecular dynamics, rosmarinic acid, C. elegans.

[1]
Ghatak, S.; Trudler, D.; Dolatabadi, N.; Ambasudhan, R. Parkinson’s disease: what the model systems have taught us so far. J. Genet., 2018, 97(3), 729-751.
[http://dx.doi.org/10.1007/s12041-018-0960-6 ] [PMID: 30027906]
[2]
You, H.; Mariani, L.L.; Mangone, G.; Le Febvre de Nailly, D.; Charbonnier-Beaupel, F.; Corvol, J.C. Molecular basis of dopamine replacement therapy and its side effects in Parkinson’s disease. Cell Tissue Res., 2018, 373(1), 111-135.
[http://dx.doi.org/10.1007/s00441-018-2813-2 ] [PMID: 29516217]
[3]
Dragašević-Mišković, N.; Petrović, I.; Stanković, I.; Kostić, V.S. Chemical management of levodopa-induced dyskinesia in Parkinson’s disease patients. Expert Opin. Pharmacother., 2019, 20(2), 219-230.
[http://dx.doi.org/10.1080/14656566.2018.1543407 ] [PMID: 30411647]
[4]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513 ] [PMID: 29731617]
[5]
Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci., 2017, 38(7), 592-607.
[http://dx.doi.org/10.1016/j.tips.2017.04.005 ] [PMID: 28551354]
[6]
Islam, M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res., 2017, 39(1), 73-82.
[http://dx.doi.org/10.1080/01616412.2016.1251711 ] [PMID: 27809706]
[7]
Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013, 3(4), 461-491.
[http://dx.doi.org/10.3233/JPD-130230 ] [PMID: 24252804]
[8]
Cookson, M.R. Parkinsonism due to mutations in PINK1, parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb. Perspect. Med., 2012, 2(9)a009415
[http://dx.doi.org/10.1101/cshperspect.a009415 ] [PMID: 22951446]
[9]
Kumar, H.; Lim, H.W.; More, S.V.; Kim, B.W.; Koppula, S.; Kim, I.S.; Choi, D.K. The role of free radicals in the aging brain and Parkinson’s Disease: convergence and parallelism. Int. J. Mol. Sci., 2012, 13(8), 10478-10504.
[http://dx.doi.org/10.3390/ijms130810478 ] [PMID: 22949875]
[10]
Yamano, K.; Matsuda, N.; Tanaka, K. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep., 2016, 17(3), 300-316.
[http://dx.doi.org/10.15252/embr.201541486 ] [PMID: 26882551]
[11]
Büeler, H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp. Neurol., 2009, 218(2), 235-246.
[http://dx.doi.org/10.1016/j.expneurol.2009.03.006 ] [PMID: 19303005]
[12]
Dubiel, W.; Dubiel, D.; Wolf, D.A.; Naumann, M. Cullin 3-based ubiquitin ligases as master regulators of mammalian cell differentiation. Trends Biochem. Sci., 2018, 43(2), 95-107.
[http://dx.doi.org/10.1016/j.tibs.2017.11.010 ] [PMID: 29249570]
[13]
Wimuttisuk, W.; West, M.; Davidge, B.; Yu, K.; Salomon, A.; Singer, J.D. Novel Cul3 binding proteins function to remodel E3 ligase complexes. BMC Cell Biol., 2014, 15(1), 28.
[http://dx.doi.org/10.1186/1471-2121-15-28 ] [PMID: 25011449]
[14]
Jiang, C.S.; Zhuang, C.L.; Zhu, K.; Zhang, J.; Muehlmann, L.A.; Figueiró Longo, J.P.; Azevedo, R.B.; Zhang, W.; Meng, N.; Zhang, H. Identification of a novel small-molecule Keap1-Nrf2 PPI inhibitor with cytoprotective effects on LPS-induced cardiomyopathy. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 833-841.
[http://dx.doi.org/10.1080/14756366.2018.1461856 ] [PMID: 29693453]
[15]
Furukawa, M.; Xiong, Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell. Biol., 2005, 25(1), 162-171.
[http://dx.doi.org/10.1128/MCB.25.1.162-171.2005 ] [PMID: 15601839]
[16]
Peng, J.; Xu, J. RaptorX: exploiting structure information for protein alignment by statistical inference. Proteins, 2011, 79(Suppl. 10), 161-171.
[http://dx.doi.org/10.1002/prot.23175 ] [PMID: 21987485]
[17]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[18]
Halgren, T.A. Merck Molecular force field. I. basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem., 1996, 17(5-6), 490-519.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490:AID-JCC1>3.0.CO;2-P]
[19]
Colovos, C.; Yeates, T.O. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci., 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916 ] [PMID: 8401235]
[20]
Halgren, T.A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model., 2009, 49(2), 377-389.
[http://dx.doi.org/10.1021/ci800324m ] [PMID: 19434839]
[21]
Sterling, T.; Irwin, J.J. ZINC 15--ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337.
[http://dx.doi.org/10.1021/acs.jcim.5b00559 ] [PMID: 26479676]
[22]
Macalino, S.J.Y.; Gosu, V.; Hong, S.; Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res., 2015, 38(9), 1686-1701.
[http://dx.doi.org/10.1007/s12272-015-0640-5 ] [PMID: 26208641]
[23]
Schrödinger , Release 2016-4: Jaguar; Schrödinger, LLC: New York, NY, 2016.
[24]
Schrödinger , Release 2019-2: LigPrep; Schrödinger, LLC: New York, NY, 2019.
[25]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o ] [PMID: 17034125]
[26]
Alogheli, H.; Olanders, G.; Schaal, W.; Brandt, P.; Karlén, A. Docking of macrocycles: comparing rigid and flexible docking in glide. J. Chem. Inf. Model., 2017, 57(2), 190-202.
[http://dx.doi.org/10.1021/acs.jcim.6b00443 ] [PMID: 28079375]
[27]
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447.
[http://dx.doi.org/10.1021/ct700301q ] [PMID: 26620784]
[28]
Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679 ] [PMID: 15272157]
[29]
Oostenbrink, C.; Villa, A.; Mark, A.E.; van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem., 2004, 25(13), 1656-1676.
[http://dx.doi.org/10.1002/jcc.20090 ] [PMID: 15264259]
[30]
Coleman, T.G.; Mesick, H.C.; Darby, R.L. Numerical integration: a method for improving solution stability in models of the circulation. Ann. Biomed. Eng., 1977, 5(4), 322-328.
[http://dx.doi.org/10.1007/BF02367312 ] [PMID: 607820]
[31]
Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[32]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38-27-28.
[33]
Pradeep, H.; Shashikumar, S.; Rajini, P.S.; Rajanikant, G.K. Anti-parkinsonian efficacy of target-specific GSK3β inhibitors demonstrated in Caenorhabditis elegans. Med. Chem. Res., 2014, 23(12), 5263-5268.
[http://dx.doi.org/10.1007/s00044-014-1078-x]
[34]
Zhang, Y.; Han, C.Y.; Duan, F.G.; Fan, X-X.; Yao, X-J.; Parks, R.J.; Tang, Y-J.; Wang, M-F.; Liu, L.; Tsang, B.K.; Leung, E.L. p53 sensitizes chemoresistant non-small cell lung cancer via elevation of reactive oxygen species and suppression of EGFR/PI3K/AKT signaling. Cancer Cell Int., 2019, 19(1), 188.
[http://dx.doi.org/10.1186/s12935-019-0910-2 ] [PMID: 31360122]
[35]
Oparka, M.; Walczak, J.; Malinska, D.; van Oppen, L.M.P.E.; Szczepanowska, J.; Koopman, W.J.H.; Wieckowski, M.R. Quantifying ROS levels using CM-H2DCFDA and HyPer. Methods, 2016, 109, 3-11.
[http://dx.doi.org/10.1016/j.ymeth.2016.06.008 ] [PMID: 27302663]
[36]
Chandrashekar, K.N. Muralidhara, D-Aspartic acid induced oxidative stress and mitochondrial dysfunctions in testis of prepubertal rats. Amino Acids, 2010, 38(3), 817-827.
[http://dx.doi.org/10.1007/s00726-009-0288-x ] [PMID: 19381779]
[37]
Kostyuk, V.A.; Potapovich, A.I. Superoxide--driven oxidation of quercetin and a simple sensitive assay for determination of superoxide dismutase. Biochem. Int., 1989, 19(5), 1117-1124.
[PMID: 2561443]
[38]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105(C), 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3 ] [PMID: 6727660]
[39]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9 ] [PMID: 13726518]
[40]
Zhou, K.; Cherra, S.J., III; Goncharov, A.; Jin, Y. Asynchronous cholinergic drive correlates with excitation-inhibition imbalance via a neuronal Ca2+ sensor protein. Cell Rep., 2017, 19(6), 1117-1129.
[http://dx.doi.org/10.1016/j.celrep.2017.04.043 ] [PMID: 28494862]
[41]
Jospin, M.; Qi, Y.B.; Stawicki, T.M.; Boulin, T.; Schuske, K.R.; Horvitz, H.R.; Bessereau, J.L.; Jorgensen, E.M.; Jin, Y. A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans. PLoS Biol., 2009, 7(12)e1000265
[http://dx.doi.org/10.1371/journal.pbio.1000265 ] [PMID: 20027209]
[42]
Krajacic, P.; Shen, X.; Purohit, P.K.; Arratia, P.; Lamitina, T. Biomechanical profiling of Caenorhabditis elegans motility. Genetics, 2012, 191(3), 1015-1021.
[http://dx.doi.org/10.1534/genetics.112.141176 ] [PMID: 22554893]
[43]
Trojanowski, N.F.; Raizen, D.M.; Fang-Yen, C. Pharyngeal pumping in Caenorhabditis elegans depends on tonic and phasic signaling from the nervous system. Sci. Rep., 2016, 6, 22940.
[http://dx.doi.org/10.1038/srep22940 ] [PMID: 26976078]
[44]
Childers, M.C.; Daggett, V. Insights from molecular dynamics simulations for computational protein design. Mol. Syst. Des. Eng., 2017, 2(1), 9-33.
[http://dx.doi.org/10.1039/C6ME00083E ] [PMID: 28239489]
[45]
Adcock, S.A.; McCammon, J.A. Molecular dynamics: survey of methods for simulating the activity of proteins. Chem. Rev., 2006, 106(5), 1589-1615.
[http://dx.doi.org/10.1021/cr040426m ] [PMID: 16683746]
[46]
Franceschi, C.; Garagnani, P.; Morsiani, C.; Conte, M.; Santoro, A.; Grignolio, A.; Monti, D.; Capri, M.; Salvioli, S. The continuum of aging and age-related diseases: common mechanisms but different rates. Front. Med. (Lausanne), 2018, 5(MAR), 61.
[http://dx.doi.org/10.3389/fmed.2018.00061 ] [PMID: 29662881]
[47]
Franco, R.; Vargas, M.R. Redox biology in neurological function, dysfunction, and aging. Antioxid. Redox Signal., 2018, 28(18), 1583-1586.
[http://dx.doi.org/10.1089/ars.2018.7509 ] [PMID: 29634346]
[48]
de Farias, C.C.; Maes, M.; Bonifácio, K.L.; Bortolasci, C.C.; de Souza Nogueira, A.; Brinholi, F.F.; Matsumoto, A.K.; do Nascimento, M.A.; de Melo, L.B.; Nixdorf, S.L.; Lavado, E.L.; Moreira, E.G.; Barbosa, D.S. Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson’s disease and its progression: Disease and staging biomarkers and new drug targets. Neurosci. Lett., 2016, 617, 66-71.
[http://dx.doi.org/10.1016/j.neulet.2016.02.011 ] [PMID: 26861200]
[49]
Espinosa-Diez, C.; Miguel, V.; Mennerich, D.; Kietzmann, T.; Sánchez-Pérez, P.; Cadenas, S.; Lamas, S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol., 2015, 6, 183-197.
[http://dx.doi.org/10.1016/j.redox.2015.07.008 ] [PMID: 26233704]
[50]
Canning, P.; Sorrell, F.J.; Bullock, A.N. Structural basis of keap1 interactions with Nrf2., Free Radical Biol. Med., 2015, 88(Part B), 101-107.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.034]
[51]
Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev., 2016, 20161245049
[http://dx.doi.org/10.1155/2016/1245049 ] [PMID: 27478531]
[52]
Cooper, J.F.; Van Raamsdonk, J.M. Modeling parkinson’s disease in C. elegans. J. Parkinsons Dis., 2018, 8(1), 17-32.
[http://dx.doi.org/10.3233/JPD-171258 ] [PMID: 29480229]
[53]
Puspita, L.; Chung, S.Y.; Shim, J.W. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain, 2017, 10(1), 53.
[http://dx.doi.org/10.1186/s13041-017-0340-9 ] [PMID: 29183391]
[54]
Tsai, C.F.; Wu, J.Y.; Hsu, Y.W. Protective effects of rosmarinic acid against selenite-induced cataract and oxidative damage in rats. Int. J. Med. Sci., 2019, 16(5), 729-740.
[http://dx.doi.org/10.7150/ijms.32222 ] [PMID: 31217741]
[55]
Meng, F.; Wang, J.; Ding, F.; Xie, Y.; Zhang, Y.; Zhu, J. Neuroprotective effect of matrine on MPTP-induced Parkinson’s disease and on Nrf2 expression. Oncol. Lett., 2017, 13(1), 296-300.
[http://dx.doi.org/10.3892/ol.2016.5383 ] [PMID: 28123558]
[56]
Perez-Lloret, S.; Barrantes, F.J. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. NPJ Parkinsons Dis., 2016, 2(1), 16001.
[http://dx.doi.org/10.1038/npjparkd.2016.1 ] [PMID: 28725692]
[57]
Noufi, P.; Khoury, R.; Jeyakumar, S.; Grossberg, G.T. Use of cholinesterase inhibitors in non-alzheimer’s dementias. Drugs Aging, 2019, 36(8), 719-731.
[http://dx.doi.org/10.1007/s40266-019-00685-6 ] [PMID: 31201687]
[58]
Hasanein, P.; Mahtaj, A.K. Ameliorative effect of rosmarinic acid on scopolamine-induced memory impairment in rats. Neurosci. Lett., 2015, 585, 23-27.
[http://dx.doi.org/10.1016/j.neulet.2014.11.027 ] [PMID: 25445372]
[59]
Marcelo, F.; Dias, C.; Martins, A.; Madeira, P.J.; Jorge, T.; Florêncio, M.H.; Cañada, F.J.; Cabrita, E.J.; Jiménez-Barbero, J.; Rauter, A.P. Molecular recognition of rosmarinic acid from Salvia sclareoides extracts by acetylcholinesterase: a new binding site detected by NMR spectroscopy. Chemistry, 2013, 19(21), 6641-6649.
[http://dx.doi.org/10.1002/chem.201203966 ] [PMID: 23536497]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy