Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Insights into the Effects of Dietary Omega-6/Omega-3 Polyunsaturated Fatty Acid (PUFA) Ratio on Oxidative Metabolic Pathways of Oncological Bone Disease and Global Health

Author(s): Geir Bjørklund*, Maryam Dadar, Monica Daniela Doşa*, Salvatore Chirumbolo and Joeri J. Pen

Volume 28, Issue 9, 2021

Published on: 27 April, 2020

Page: [1672 - 1682] Pages: 11

DOI: 10.2174/0929867327666200427095331

Price: $65

Abstract

Various nutrients have been designated as antioxidants, with a possible effect on diseases like cancer. This is partly due to their effect on prostaglandins, thereby affecting local pathological metabolic acidosis. This paper aims to summarize the culprit pathophysiological mechanisms involved, with a focus on the bone microenvironment. The omega- 6/omega-3 PUFA ratio is particularly investigated for its antioxidative effects, countering these pathways to fight the disease. This feature is looked at concerning its impact on health in general, with a particular focus on malignant bone metastasis.

Keywords: Antioxidants, Omega-6/omega-3 PUFA ratio, Prostaglandins, Cancer, Bone metastasis, Omega-3 fatty acids, Omega-6 fatty acids.

[1]
Han, S.Y.; Lee, N.K.; Kim, K.H.; Jang, I.W.; Yim, M.; Kim, J.H.; Lee, W.J.; Lee, S.Y. Transcriptional induction of cyclooxygenase-2 in osteoclast precursors is involved in RANKL-induced osteoclastogenesis. Blood, 2005, 106(4), 1240-1245.
[http://dx.doi.org/10.1182/blood-2004-12-4975] [PMID: 15860667]
[2]
Liu, X.H.; Kirschenbaum, A.; Yao, S.; Levine, A.C. Cross-talk between the interleukin-6 and prostaglandin E2 signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa}B (RANK) ligand/RANK system. Endocrinology, 2005, 146(4), 1991-1998.
[http://dx.doi.org/10.1210/en.2004-1167] [PMID: 15618359]
[3]
Liu, X.H.; Kirschenbaum, A.; Yao, S.; Levine, A.C. Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system. Ann. N. Y. Acad. Sci., 2006, 1068, 225-233.
[http://dx.doi.org/10.1196/annals.1346.047] [PMID: 16831922]
[4]
Chen, L.; Zheng, T.; Park, H.; Noh, A.L.; Lee, J.M.; Lee, D.S.; Yim, M. PDE4 inhibitor suppresses PGE2-induced osteoclast formation via COX-2-mediated p27(KIP1) expression in RAW264.7 cells. Pharmazie, 2011, 66(3), 201-206.
[PMID: 21553651]
[5]
Geng, D.; Mao, H.; Wang, J.; Zhu, X.; Huang, C.; Chen, L.; Yang, H.; Xu, Y. Protective effects of COX-2 inhibitor on titanium-particle-induced inflammatory osteolysis via the down-regulation of RANK/RANKL. Acta Biomater., 2011, 7(8), 3216-3221.
[http://dx.doi.org/10.1016/j.actbio.2011.05.007] [PMID: 21601661]
[6]
Geng, D.C.; Zhu, X.S.; Mao, H.Q.; Meng, B.; Chen, L.; Yang, H.L.; Xu, Y.Z. Protection against titanium particle-induced osteoclastogenesis by cyclooxygenase-2 selective inhibitor. J. Biomed. Mater. Res. A, 2011, 99(4), 516-522.
[http://dx.doi.org/10.1002/jbm.a.33197] [PMID: 21913318]
[7]
Harada, S.; Tominari, T.; Matsumoto, C.; Hirata, M.; Takita, M.; Inada, M.; Miyaura, C. Nobiletin, a polymethoxy flavonoid, suppresses bone resorption by inhibiting NFκB-dependent prostaglandin E synthesis in osteoblasts and prevents bone loss due to estrogen deficiency. J. Pharmacol. Sci., 2011, 115(1), 89-93.
[http://dx.doi.org/10.1254/jphs.10193SC] [PMID: 21258168]
[8]
Hsieh, T.P.; Sheu, S.Y.; Sun, J.S.; Chen, M.H. Icariin inhibits osteoclast differentiation and bone resorption by suppression of MAPKs/NF-κB regulated HIF-1α and PGE2 synthesis. Phytomedicine, 2011, 18(2-3), 176-185.
[http://dx.doi.org/10.1016/j.phymed.2010.04.003] [PMID: 20554188]
[9]
Zhang, F.; Tanaka, H.; Kawato, T.; Kitami, S.; Nakai, K.; Motohashi, M.; Suzuki, N.; Wang, C.L.; Ochiai, K.; Isokawa, K.; Maeno, M. Interleukin-17A induces cathepsin K and MMP-9 expression in osteoclasts via celecoxib-blocked prostaglandin E2 in osteoblasts. Biochimie, 2011, 93(2), 296-305.
[http://dx.doi.org/10.1016/j.biochi.2010.10.001] [PMID: 20937352]
[10]
Johansen, L.K.; Iburg, T.M.; Nielsen, O.L.; Leifsson, P.S.; Dahl-Petersen, K.; Koch, J.; Frees, D.; Aalbæk, B.; Heegaard, P.M.; Jensen, H.E. Local osteogenic expression of cyclooxygenase-2 and systemic response in porcine models of osteomyelitis. Prostaglandins Other Lipid Mediat., 2012, 97(3-4), 103-108.
[http://dx.doi.org/10.1016/j.prostaglandins.2012.01.002] [PMID: 22266364]
[11]
Mayahara, K.; Yamaguchi, A.; Takenouchi, H.; Kariya, T.; Taguchi, H.; Shimizu, N. Osteoblasts stimulate osteoclastogenesis via RANKL expression more strongly than periodontal ligament cells do in response to PGE(2). Arch. Oral Biol., 2012, 57(10), 1377-1384.
[http://dx.doi.org/10.1016/j.archoralbio.2012.07.009] [PMID: 22884709]
[12]
Yoon, W.J.; Lee, H.J.; Kang, G.J.; Kang, H.K.; Yoo, E.S. Inhibitory effects of Ficus erecta leaves on osteoporotic factors in vitro. Arch. Pharm. Res., 2007, 30(1), 43-49.
[http://dx.doi.org/10.1007/BF02977777] [PMID: 17328241]
[13]
Akatsu, T.; Ono, K.; Katayama, Y.; Tamura, T.; Nishikawa, M.; Kugai, N.; Yamamoto, M.; Nagata, N. The mouse mammary tumor cell line, MMT060562, produces prostaglandin E2 and leukemia inhibitory factor and supports osteoclast formation in vitro via a stromal cell-dependent pathway. J. Bone Miner. Res., 1998, 13(3), 400-408.
[http://dx.doi.org/10.1359/jbmr.1998.13.3.400] [PMID: 9525340]
[14]
Ono, K.; Akatsu, T.; Murakami, T.; Kitamura, R.; Yamamoto, M.; Shinomiya, N.; Rokutanda, M.; Sasaki, T.; Amizuka, N.; Ozawa, H.; Nagata, N.; Kugai, N. Involvement of cyclo-oxygenase-2 in osteoclast formation and bone destruction in bone metastasis of mammary carcinoma cell lines. J. Bone Miner. Res., 2002, 17(5), 774-781.
[http://dx.doi.org/10.1359/jbmr.2002.17.5.774] [PMID: 12009007]
[15]
Ono, K.; Akatsu, T.; Kugai, N.; Pilbeam, C.C.; Raisz, L.G. The effect of deletion of cyclooxygenase-2, prostaglandin receptor EP2, or EP4 in bone marrow cells on osteoclasts induced by mouse mammary cancer cell lines. Bone, 2003, 33(5), 798-804.
[http://dx.doi.org/10.1016/S8756-3282(03)00264-3] [PMID: 14623055]
[16]
Sabino, M.A.; Ghilardi, J.R.; Jongen, J.L.; Keyser, C.P.; Luger, N.M.; Mach, D.B.; Peters, C.M.; Rogers, S.D.; Schwei, M.J.; de Felipe, C.; Mantyh, P.W. Simultaneous reduction in cancer pain, bone destruction and tumor growth by selective inhibition of cyclooxygenase-2. Cancer Res., 2002, 62(24), 7343-7349.
[PMID: 12499278]
[17]
Takita, M.; Inada, M.; Maruyama, T.; Miyaura, C. Prostaglandin E receptor EP4 antagonist suppresses osteolysis due to bone metastasis of mouse malignant melanoma cells. FEBS Lett., 2007, 581(3), 565-571.
[http://dx.doi.org/10.1016/j.febslet.2007.01.005] [PMID: 17254571]
[18]
Inada, M.; Miyaura, C. [Role of PGE2 in bone metastatic cancer] Clin. Calcium, 2008, 18(4), 466-472.
[PMID: 18379028]
[19]
Li, Z.; Schem, C.; Shi, Y.H.; Medina, D.; Zhang, M. Increased COX2 expression enhances tumor-induced osteoclastic lesions in breast cancer bone metastasis. Clin. Exp. Metastasis, 2008, 25(4), 389-400.
[http://dx.doi.org/10.1007/s10585-007-9117-3] [PMID: 17965942]
[20]
Takahashi, T.; Uehara, H.; Bando, Y.; Izumi, K. Soluble EP2 neutralizes prostaglandin E2-induced cell signaling and inhibits osteolytic tumor growth. Mol. Cancer Ther., 2008, 7(9), 2807-2816.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0153] [PMID: 18790761]
[21]
Xiong, Z.; Luo, P.; Zhou, J.; Tan, M. 15-Deoxy-Δ12,14-prostaglandin J2 as a potential regulator of bone metabolism via PPARγ-dependent and independent pathways: a review. Drug Des. Devel. Ther., 2019, 13, 1879-1888.
[http://dx.doi.org/10.2147/DDDT.S206695] [PMID: 31213775]
[22]
Watanabe, K.; Tominari, T.; Hirata, M.; Matsumoto, C.; Maruyama, T.; Murphy, G.; Nagase, H.; Miyaura, C.; Inada, M. Abrogation of prostaglandin E-EP4 signaling in osteoblasts prevents the bone destruction induced by human prostate cancer metastasis. Biochem. Biophys. Res. Commun., 2016, 478(1), 154-161.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.075] [PMID: 27450806]
[23]
Singh, A.V.; Dad Ansari, M.H.; Dayan, C.B.; Giltinan, J.; Wang, S.; Yu, Y.; Kishore, V.; Laux, P.; Luch, A.; Sitti, M. Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials, 2019, 219, 119394.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119394] [PMID: 31382208]
[24]
Ansari, M.H.; Lavhale, S.; Kalunke, R.M.; Srivastava, P.L.; Pandit, V.; Gade, S.; Yadav, S.; Laux, P.; Luch, A.; Gemmati, D. Recent advances in plant nanobionics and nanobiosensors for toxicology applications. Curr. Nanosci., 2020, 16(1), 27-41.
[http://dx.doi.org/10.2174/1573413715666190409101305]
[25]
Chen, Y.C.; Sosnoski, D.M.; Gandhi, U.H.; Novinger, L.J.; Prabhu, K.S.; Mastro, A.M. Selenium modifies the osteoblast inflammatory stress response to bone metastatic breast cancer. Carcinogenesis, 2009, 30(11), 1941-1948.
[http://dx.doi.org/10.1093/carcin/bgp227] [PMID: 19759193]
[26]
Li, B.H.; Garstka, M.A.; Li, Z.F. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol. Immunol., 2020, 117, 201-215.
[http://dx.doi.org/10.1016/j.molimm.2019.11.014] [PMID: 31835202]
[27]
Irelli, A.; Sirufo, M.M.; Scipioni, T.; De Pietro, F.; Pancotti, A.; Ginaldi, L.; De Martinis, M. mTOR links tumor immunity and bone metabolism: what are the clinical implications? Int. J. Mol. Sci., 2019, 20(23), E5841.
[http://dx.doi.org/10.3390/ijms20235841] [PMID: 31766386]
[28]
Ardura, J.A.; Rackov, G.; Izquierdo, E.; Alonso, V.; Gortazar, A.R.; Escribese, M.M. Targeting macrophages: friends or foes in disease? Front. Pharmacol., 2019, 10, 1255.
[http://dx.doi.org/10.3389/fphar.2019.01255] [PMID: 31708781]
[29]
Wu, J.; Omene, C.; Karkoszka, J.; Bosland, M.; Eckard, J.; Klein, C.B.; Frenkel, K. Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer. Cancer Lett., 2011, 308(1), 43-53.
[http://dx.doi.org/10.1016/j.canlet.2011.04.012] [PMID: 21570765]
[30]
Chuu, C.P.; Lin, H.P.; Ciaccio, M.F.; Kokontis, J.M.; Hause, R.J., Jr; Hiipakka, R.A.; Liao, S.; Jones, R.B. Caffeic acid phenethyl ester suppresses the proliferation of human prostate cancer cells through inhibition of p70S6K and Akt signaling networks. Cancer Prev. Res. (Phila.), 2012, 5(5), 788-797.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0004-T] [PMID: 22562408]
[31]
Tolba, M.F.; Azab, S.S.; Khalifa, A.E.; Abdel-Rahman, S.Z.; Abdel-Naim, A.B. Caffeic acid phenethyl ester, a promising component of propolis with a plethora of biological activities: a review on its anti-inflammatory, neuroprotective, hepatoprotective and cardioprotective effects. IUBMB Life, 2013, 65(8), 699-709.
[http://dx.doi.org/10.1002/iub.1189] [PMID: 23847089]
[32]
Fitzpatrick, L.R.; Wang, J.; Le, T. Caffeic acid phenethyl ester, an inhibitor of nuclear factor-kappaB, attenuates bacterial peptidoglycan polysaccharide-induced colitis in rats. J. Pharmacol. Exp. Ther., 2001, 299(3), 915-920.
[PMID: 11714876]
[33]
Ozturk, G.; Ginis, Z.; Akyol, S.; Erden, G.; Gurel, A.; Akyol, O. The anticancer mechanism of caffeic acid phenethyl ester (CAPE): review of melanomas, lung and prostate cancers. Eur. Rev. Med. Pharmacol. Sci., 2012, 16(15), 2064-2068.
[PMID: 23280020]
[34]
Kieliszek, M. Selenium-fascinating microelement, properties and sources in food. Molecules, 2019, 24(7), E1298.
[http://dx.doi.org/10.3390/molecules24071298] [PMID: 30987088]
[35]
Pang, K.L.; Chin, K.Y. Emerging anticancer potentials of selenium on osteosarcoma. Int. J. Mol. Sci., 2019, 20(21), E5318.
[http://dx.doi.org/10.3390/ijms20215318] [PMID: 31731474]
[36]
Hiraoka, K.; Komiya, S.; Hamada, T.; Zenmyo, M.; Inoue, A. Osteosarcoma cell apoptosis induced by selenium. J. Orthop. Res., 2001, 19(5), 809-814.
[http://dx.doi.org/10.1016/S0736-0266(00)00079-6] [PMID: 11562125]
[37]
Moon, H.J.; Ko, W.K.; Han, S.W.; Kim, D.S.; Hwang, Y.S.; Park, H.K.; Kwon, I.K. Antioxidants, like coenzyme Q10, selenite and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation. Biochem. Biophys. Res. Commun., 2012, 418(2), 247-253.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.005] [PMID: 22252298]
[38]
Maiyo, F.; Singh, M. Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine (Lond.), 2017, 12(9), 1075-1089.
[http://dx.doi.org/10.2217/nnm-2017-0024] [PMID: 28440710]
[39]
Sun, J.Y.; Hou, Y.J.; Fu, X.Y.; Fu, X.T.; Ma, J.K.; Yang, M.F.; Sun, B.L.; Fan, C.D.; Oh, J. Selenium-containing protein from selenium-enriched Spirulina platensis attenuates cisplatin-induced apoptosis in mc3t3-e1 mouse preosteoblast by inhibiting mitochondrial dysfunction and ros-mediated oxidative damage. Front. Physiol., 2019, 9, 1907.
[http://dx.doi.org/10.3389/fphys.2018.01907] [PMID: 30687122]
[40]
Gaffney-Stomberg, E. The impact of trace minerals on bone metabolism. Biol. Trace Elem. Res., 2019, 188(1), 26-34.
[http://dx.doi.org/10.1007/s12011-018-1583-8] [PMID: 30467628]
[41]
Reiter, R.; Tang, L.; Garcia, J.J.; Muñoz-Hoyos, A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci., 1997, 60(25), 2255-2271.
[http://dx.doi.org/10.1016/S0024-3205(97)00030-1] [PMID: 9194681]
[42]
Reiter, R.J.; Cabrera, J.; Sainz, R.M.; Mayo, J.C.; Manchester, L.C.; Tan, D.X. Melatonin as a pharmacological agent against neuronal loss in experimental models of Huntington’s disease, Alzheimer’s disease and parkinsonism. Ann. N. Y. Acad. Sci., 1999, 890, 471-485.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb08028.x] [PMID: 10668453]
[43]
Reiter, R.J.; Acuña-Castroviejo, D.; Tan, D.X.; Burkhardt, S. Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann. N. Y. Acad. Sci., 2001, 939, 200-215.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03627.x] [PMID: 11462772]
[44]
Reiter, R.J. Oxidative damage in the central nervous system: protection by melatonin. Prog. Neurobiol., 1998, 56(3), 359-384.
[http://dx.doi.org/10.1016/S0301-0082(98)00052-5] [PMID: 9770244]
[45]
Reiter, R.J.; Garcia, J.J.; Pie, J. Oxidative toxicity in models of neurodegeneration: responses to melatonin. Restor. Neurol. Neurosci., 1998, 12(2-3), 135-142.
[PMID: 12671308]
[46]
Reiter, R.J.; Tan, D.X.; Qi, W.B. Suppression of oxygen toxicity by melatonin. Zhongguo Yao Li Xue Bao, 1998, 19(6), 575-581.
[PMID: 10437151]
[47]
Srinivasan, V. Melatonin oxidative stress and neurodegenerative diseases. Indian J. Exp. Biol., 2002, 40(6), 668-679.
[PMID: 12587715]
[48]
Gupta, Y.K.; Gupta, M.; Kohli, K. Neuroprotective role of melatonin in oxidative stress vulnerable brain. Indian J. Physiol. Pharmacol., 2003, 47(4), 373-386.
[PMID: 15266948]
[49]
Esparza, J.L.; Gómez, M.; Rosa Nogués, M.; Paternain, J.L.; Mallol, J.; Domingo, J.L. Melatonin reduces oxidative stress and increases gene expression in the cerebral cortex and cerebellum of aluminum-exposed rats. J. Pineal Res., 2005, 39(2), 129-136.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00225.x] [PMID: 16098089]
[50]
Hung, M.W.; Tipoe, G.L.; Poon, A.M.; Reiter, R.J.; Fung, M.L. Protective effect of melatonin against hippocampal injury of rats with intermittent hypoxia. J. Pineal Res., 2008, 44(2), 214-221.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00514.x] [PMID: 18289174]
[51]
Limón-Pacheco, J.H.; Gonsebatt, M.E. The glutathione system and its regulation by neurohormone melatonin in the central nervous system. Cent. Nerv. Syst. Agents Med. Chem., 2010, 10(4), 287-297.
[http://dx.doi.org/10.2174/187152410793429683] [PMID: 20868358]
[52]
Fischer, T.W.; Kleszczyński, K.; Hardkop, L.H.; Kruse, N.; Zillikens, D. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion and protects against the formation of DNA damage (8-hydroxy-2′-deoxyguanosine) in ex vivo human skin. J. Pineal Res., 2013, 54(3), 303-312.
[http://dx.doi.org/10.1111/jpi.12018] [PMID: 23110400]
[53]
Wang, F.; Tian, X.; Zhang, L.; Tan, D.; Reiter, R.J.; Liu, G. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J. Pineal Res., 2013, 55(3), 267-274.
[http://dx.doi.org/10.1111/jpi.12069] [PMID: 23772689]
[54]
Yang, Y.; Duan, W.; Jin, Z.; Yi, W.; Yan, J.; Zhang, S.; Wang, N.; Liang, Z.; Li, Y.; Chen, W.; Yi, D.; Yu, S. JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J. Pineal Res., 2013, 55(3), 275-286.
[http://dx.doi.org/10.1111/jpi.12070] [PMID: 23796350]
[55]
Gómez, M.; Esparza, J.L.; Nogués, M.R.; Giralt, M.; Cabré, M.; Domingo, J.L. Pro-oxidant activity of aluminum in the rat hippocampus: gene expression of antioxidant enzymes after melatonin administration. Free Radic. Biol. Med., 2005, 38(1), 104-111.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.10.009] [PMID: 15589378]
[56]
Jong, C.J.; Azuma, J.; Schaffer, S. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids, 2012, 42(6), 2223-2232.
[http://dx.doi.org/10.1007/s00726-011-0962-7] [PMID: 21691752]
[57]
Nagae, M.; Hiraga, T.; Yoneda, T. Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization. J. Bone Miner. Metab., 2007, 25(2), 99-104.
[http://dx.doi.org/10.1007/s00774-006-0734-8] [PMID: 17323179]
[58]
Fernandes, G.; Lawrence, R.; Sun, D. Protective role of n-3 lipids and soy protein in osteoporosis. Prostaglandins Leukot. Essent. Fatty Acids, 2003, 68(6), 361-372.
[http://dx.doi.org/10.1016/S0952-3278(03)00060-7] [PMID: 12798656]
[59]
Lands, W.E. Biochemistry and physiology of n-3 fatty acids. FASEB J., 1992, 6(8), 2530-2536.
[http://dx.doi.org/10.1096/fasebj.6.8.1592205] [PMID: 1592205]
[60]
Simopoulos, A.P. Evolutionary aspects of omega-3 fatty acids in the food supply. Prostaglandins Leukot. Essent. Fatty Acids, 1999, 60(5-6), 421-429.
[http://dx.doi.org/10.1016/S0952-3278(99)80023-4] [PMID: 10471132]
[61]
Cordain, L.; Eaton, S.B.; Miller, J.B.; Mann, N.; Hill, K. The paradoxical nature of hunter-gatherer diets: meat-based, yet non-atherogenic. Eur. J. Clin. Nutr., 2002, 56(Suppl. 1), S42-S52.
[http://dx.doi.org/10.1038/sj.ejcn.1601353] [PMID: 11965522]
[62]
Daikoku, T.; Tranguch, S.; Trofimova, I.N.; Dinulescu, D.M.; Jacks, T.; Nikitin, A.Y.; Connolly, D.C.; Dey, S.K. Cyclooxygenase-1 is overexpressed in multiple genetically engineered mouse models of epithelial ovarian cancer. Cancer Res., 2006, 66(5), 2527-2531.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4063] [PMID: 16510568]
[63]
Frick, K.K.; Bushinsky, D.A. Metabolic acidosis stimulates RANKL RNA expression in bone through a cyclo-oxygenase-dependent mechanism. J. Bone Miner. Res., 2003, 18(7), 1317-1325.
[http://dx.doi.org/10.1359/jbmr.2003.18.7.1317] [PMID: 12854843]
[64]
Krieger, N.S.; Bushinsky, D.A.; Frick, K.K. Cellular mechanisms of bone resorption induced by metabolic acidosis. Semin. Dial., 2003, 16(6), 463-466.
[http://dx.doi.org/10.1046/j.1525-139X.2003.16100.x] [PMID: 14629607]
[65]
Krieger, N.S.; Frick, K.K.; LaPlante Strutz, K.; Michalenka, A.; Bushinsky, D.A. Regulation of COX-2 mediates acid-induced bone calcium efflux in vitro. J. Bone Miner. Res., 2007, 22(6), 907-917.
[http://dx.doi.org/10.1359/jbmr.070316] [PMID: 17352658]
[66]
Tomura, H.; Wang, J.Q.; Liu, J.P.; Komachi, M.; Damirin, A.; Mogi, C.; Tobo, M.; Nochi, H.; Tamoto, K. Im, D.S.; Sato, K.; Okajima, F. Cyclooxygenase-2 expression and prostaglandin E2 production in response to acidic pH through OGR1 in a human osteoblastic cell line. J. Bone Miner. Res., 2008, 23(7), 1129-1139.
[http://dx.doi.org/10.1359/jbmr.080236] [PMID: 18302504]
[67]
Liu, Q.; Russell, M.R.; Shahriari, K.; Jernigan, D.L.; Lioni, M.I.; Garcia, F.U.; Fatatis, A. Interleukin-1β promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features. Cancer Res., 2013, 73(11), 3297-3305.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3970] [PMID: 23536554]
[68]
Kajiya, H.; Okamoto, F.; Fukushima, H.; Okabe, K. Calcitonin inhibits proton extrusion in resorbing rat osteoclasts via protein kinase A. Pflugers Arch., 2003, 445(6), 651-658.
[http://dx.doi.org/10.1007/s00424-002-0989-4] [PMID: 12632184]
[69]
Sørensen, M.G.; Karsdal, M.A.; Dziegiel, M.H.; Boutin, J.A.; Nosjean, O.; Henriksen, K. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption. BMC Musculoskelet. Disord., 2010, 11, 250.
[http://dx.doi.org/10.1186/1471-2474-11-250] [PMID: 20977756]
[70]
Thudium, C.S.; Jensen, V.K.; Karsdal, M.A.; Henriksen, K. Disruption of the V-ATPase functionality as a way to uncouple bone formation and resorption - a novel target for treatment of osteoporosis. Curr. Protein Pept. Sci., 2012, 13(2), 141-151.
[http://dx.doi.org/10.2174/138920312800493133] [PMID: 22044152]
[71]
De Milito, A.; Fais, S. Tumor acidity, chemoresistance and proton pump inhibitors. Future Oncol., 2005, 1(6), 779-786.
[http://dx.doi.org/10.2217/14796694.1.6.779] [PMID: 16556057]
[72]
Sheraly, A.R.; Lickorish, D.; Sarraf, F.; Davies, J.E. Use of gastrointestinal proton pump inhibitors to regulate osteoclast-mediated resorption of calcium phosphate cements in vivo. Curr. Drug Deliv., 2009, 6(2), 192-198.
[http://dx.doi.org/10.2174/156720109787846225] [PMID: 19450226]
[73]
Huber, V.; De Milito, A.; Harguindey, S.; Reshkin, S.J.; Wahl, M.L.; Rauch, C.; Chiesi, A.; Pouysségur, J.; Gatenby, R.A.; Rivoltini, L.; Fais, S. Proton dynamics in cancer. J. Transl. Med., 2010, 8, 57.
[http://dx.doi.org/10.1186/1479-5876-8-57] [PMID: 20550689]
[74]
McCarty, M.F.; Whitaker, J. Manipulating tumor acidification as a cancer treatment strategy. Altern. Med. Rev., 2010, 15(3), 264-272.
[PMID: 21155627]
[75]
Calorini, L.; Peppicelli, S.; Bianchini, F. Extracellular acidity as favouring factor of tumor progression and metastatic dissemination. Exp. Oncol., 2012, 34(2), 79-84.
[PMID: 23013757]
[76]
Gatenby, R.A.; Gawlinski, E.T. The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res., 2003, 63(14), 3847-3854.
[PMID: 12873971]
[77]
Ibrahim Hashim, A.; Cornnell, H.H. Coelho Ribeiro, Mde.L.; Abrahams, D.; Cunningham, J.; Lloyd, M.; Martinez, G.V.; Gatenby, R.A.; Gillies, R.J. Reduction of metastasis using a non-volatile buffer. Clin. Exp. Metastasis, 2011, 28(8), 841-849.
[http://dx.doi.org/10.1007/s10585-011-9415-7] [PMID: 21861189]
[78]
Gatenby, R.A.; Gawlinski, E.T.; Gmitro, A.F.; Kaylor, B.; Gillies, R.J. Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res., 2006, 66(10), 5216-5223.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4193] [PMID: 16707446]
[79]
Robey, I.F.; Baggett, B.K.; Kirkpatrick, N.D.; Roe, D.J.; Dosescu, J.; Sloane, B.F.; Hashim, A.I.; Morse, D.L.; Raghunand, N.; Gatenby, R.A.; Gillies, R.J. Bicarbonate increases tumor pH and inhibits spontaneous metastasis. Cancer Res., 2009, 69(6), 2260-2268.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5575] [PMID: 19276390]
[80]
Estrella, V.; Chen, T.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H.H.; Ibrahim-Hashim, A.; Bailey, K.; Balagurunathan, Y.; Rothberg, J.M.; Sloane, B.F.; Johnson, J.; Gatenby, R.A.; Gillies, R.J. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res., 2013, 73(5), 1524-1535.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2796] [PMID: 23288510]
[81]
Krieger, N.S.; Frick, K.K.; Bushinsky, D.A. Mechanism of acid-induced bone resorption. Curr. Opin. Nephrol. Hypertens., 2004, 13(4), 423-436.
[http://dx.doi.org/10.1097/01.mnh.0000133975.32559.6b] [PMID: 15199293]
[82]
Arnett, T.R. Extracellular pH regulates bone cell function. J. Nutr., 2008, 138(2), 415S-418S.
[http://dx.doi.org/10.1093/jn/138.2.415S] [PMID: 18203913]
[83]
Pereverzev, A.; Komarova, S.V.; Korcok, J.; Armstrong, S.; Tremblay, G.B.; Dixon, S.J.; Sims, S.M. Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway. Bone, 2008, 42(1), 150-161.
[http://dx.doi.org/10.1016/j.bone.2007.08.044] [PMID: 17964236]
[84]
Geng, W.; Hill, K.; Zerwekh, J.E.; Kohler, T.; Müller, R.; Moe, O.W. Inhibition of osteoclast formation and function by bicarbonate: role of soluble adenylyl cyclase. J. Cell. Physiol., 2009, 220(2), 332-340.
[http://dx.doi.org/10.1002/jcp.21767] [PMID: 19360717]
[85]
Arnett, T.R. Acidosis, hypoxia and bone. Arch. Biochem. Biophys., 2010, 503(1), 103-109.
[http://dx.doi.org/10.1016/j.abb.2010.07.021] [PMID: 20655868]
[86]
Kato, K.; Morita, I. Acidosis environment promotes osteoclast formation by acting on the last phase of preosteoclast differentiation: a study to elucidate the action points of acidosis and search for putative target molecules. Eur. J. Pharmacol., 2011, 663(1-3), 27-39.
[http://dx.doi.org/10.1016/j.ejphar.2011.04.062] [PMID: 21575626]
[87]
Ahn, H.; Kim, J.M.; Lee, K.; Kim, H.; Jeong, D. Extracellular acidosis accelerates bone resorption by enhancing osteoclast survival, adhesion and migration. Biochem. Biophys. Res. Commun., 2012, 418(1), 144-148.
[http://dx.doi.org/10.1016/j.bbrc.2011.12.149] [PMID: 22244876]
[88]
Kato, K.; Morita, I. Promotion of osteoclast differentiation and activation in spite of impeded osteoblast-lineage differentiation under acidosis: effects of acidosis on bone metabolism. Biosci. Trends, 2013, 7(1), 33-41.
[http://dx.doi.org/10.5582/bst.2013.v7.1.33] [PMID: 23524891]
[89]
Kogawa, M.; Wijenayaka, A.R.; Ormsby, R.T.; Thomas, G.P.; Anderson, P.H.; Bonewald, L.F.; Findlay, D.M.; Atkins, G.J. Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2. J. Bone Miner. Res., 2013, 28(12), 2436-2448.
[http://dx.doi.org/10.1002/jbmr.2003] [PMID: 23737439]
[90]
Brandao-Burch, A.; Utting, J.C.; Orriss, I.R.; Arnett, T.R. Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcif. Tissue Int., 2005, 77(3), 167-174.
[http://dx.doi.org/10.1007/s00223-004-0285-8] [PMID: 16075362]
[91]
Takeuchi, S.; Hirukawa, K.; Togari, A. Acidosis inhibits mineralization in human osteoblasts. Calcif. Tissue Int., 2013, 93(3), 233-240.
[http://dx.doi.org/10.1007/s00223-013-9746-2] [PMID: 23754489]
[92]
Tominaga, M.; Tominaga, T. Structure and function of TRPV1. Pflugers Arch., 2005, 451(1), 143-150.
[http://dx.doi.org/10.1007/s00424-005-1457-8] [PMID: 15971082]
[93]
O’Rielly, D.D.; Loomis, C.W. Spinal prostaglandins facilitate exaggerated A- and C-fiber-mediated reflex responses and are critical to the development of allodynia early after L5-L6 spinal nerve ligation. Anesthesiology, 2007, 106(4), 795-805.
[http://dx.doi.org/10.1097/01.anes.0000264777.94662.d6] [PMID: 17413918]
[94]
Fischer, B.; Müller, B.; Fisch, P.; Kreutz, W. An acidic microenvironment inhibits antitumoral non-major histocompatibility complex-restricted cytotoxicity: implications for cancer immunotherapy. J. Immunother., 2000, 23(2), 196-207.
[http://dx.doi.org/10.1097/00002371-200003000-00004] [PMID: 10746546]
[95]
Fischer, B.; Müller, B.; Fischer, K.G.; Baur, N.; Kreutz, W. Acidic pH inhibits non-MHC-restricted killer cell functions. Clin. Immunol., 2000, 96(3), 252-263.
[http://dx.doi.org/10.1006/clim.2000.4904] [PMID: 10964544]
[96]
Müller, B.; Fischer, B.; Kreutz, W. An acidic microenvironment impairs the generation of non-major histocompatibility complex-restricted killer cells. Immunology, 2000, 99(3), 375-384.
[http://dx.doi.org/10.1046/j.1365-2567.2000.00975.x] [PMID: 10712667]
[97]
Severin, T.; Müller, B.; Giese, G.; Uhl, B.; Wolf, B.; Hauschildt, S.; Kreutz, W. pH-dependent LAK cell cytotoxicity. Tumour Biol., 1994, 15(5), 304-310.
[http://dx.doi.org/10.1159/000217905] [PMID: 7991991]
[98]
Aquilano, K.; Baldelli, S.; Ciriolo, M.R. Glutathione: new roles in redox signaling for an old antioxidant. Front. Pharmacol., 2014, 5, 196.
[http://dx.doi.org/10.3389/fphar.2014.00196] [PMID: 25206336]
[99]
d’Audigier, C.; Cochain, C.; Rossi, E.; Guérin, C.L.; Bièche, I.; Blandinières, A.; Marsac, B.; Silvestre, J.S.; Gaussem, P.; Smadja, D.M. Thrombin receptor PAR-1 activation on endothelial progenitor cells enhances chemotaxis-associated genes expression and leukocyte recruitment by a COX-2-dependent mechanism. Angiogenesis, 2015, 18(3), 347-359.
[http://dx.doi.org/10.1007/s10456-015-9471-8] [PMID: 26026674]
[100]
Koupenova, M.; Kehrel, B.E.; Corkrey, H.A.; Freedman, J.E. Thrombosis and platelets: an update. Eur. Heart J., 2017, 38(11), 785-791.
[http://dx.doi.org/10.1093/eurheartj/ehw550] [PMID: 28039338]
[101]
Simopoulos, A.P. Evolutionary aspects of the dietary omega-6:omega-3 fatty acid ratio: medical implications. World Rev. Nutr. Diet., 2009, 100, 1-21.
[http://dx.doi.org/10.1159/000235706] [PMID: 19696523]
[102]
Średnicka-Tober, D.; Barański, M.; Seal, C.J.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; Cozzi, G.; Larsen, M.K.; Jordon, T.; Niggli, U.; Sakowski, T.; Calder, P.C.; Burdge, G.C.; Sotiraki, S.; Stefanakis, A.; Stergiadis, S.; Yolcu, H.; Chatzidimitriou, E.; Butler, G.; Stewart, G.; Leifert, C. Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: a systematic literature review and meta- and redundancy analyses. Br. J. Nutr., 2016, 115(6), 1043-1060.
[http://dx.doi.org/10.1017/S0007114516000349] [PMID: 26878105]
[103]
Stevenson, J.L.; Miller, M.K.; Skillman, H.E.; Paton, C.M.; Cooper, J.A. A PUFA-rich diet improves fat oxidation following saturated fat-rich meal. Eur. J. Nutr., 2017, 56(5), 1845-1857.
[http://dx.doi.org/10.1007/s00394-016-1226-9] [PMID: 27193583]
[104]
Burns, J.W.; Quartana, P.J.; Bruehl, S.; Janssen, I.; Dugan, S.A.; Appelhans, B.; Matthews, K.A.; Kravitz, H.M. Chronic pain, body mass index and cardiovascular disease risk factors: tests of moderation, unique and shared relationships in the Study of Women’s Health Across the Nation (SWAN). J. Behav. Med., 2015, 38(2), 372-383.
[http://dx.doi.org/10.1007/s10865-014-9608-z] [PMID: 25427423]
[105]
Hugo, H.J.; Saunders, C.; Ramsay, R.G.; Thompson, E.W. New Insights on COX-2 in Chronic Inflammation Driving Breast Cancer Growth and Metastasis. J. Mammary Gland Biol. Neoplasia, 2015, 20(3-4), 109-119.
[http://dx.doi.org/10.1007/s10911-015-9333-4] [PMID: 26193871]
[106]
Migliore, M.; Habrant, D.; Sasso, O.; Albani, C.; Bertozzi, S.M.; Armirotti, A.; Piomelli, D.; Scarpelli, R. Potent multitarget FAAH-COX inhibitors: Design and structure-activity relationship studies. Eur. J. Med. Chem., 2016, 109, 216-237.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.036] [PMID: 26774927]
[107]
Ibrahim, T.; Farolfi, A.; Mercatali, L.; Ricci, M.; Amadori, D. Metastatic bone disease in the era of bone-targeted therapy: clinical impact. Tumori, 2013, 99(1), 1-9.
[http://dx.doi.org/10.1177/030089161309900101] [PMID: 23548992]
[108]
Delea, T.; Langer, C.; McKiernan, J.; Liss, M.; Edelsberg, J.; Brandman, J.; Sung, J.; Raut, M.; Oster, G. The cost of treatment of skeletal-related events in patients with bone metastasis from lung cancer. Oncology, 2004, 67(5-6), 390-396.
[http://dx.doi.org/10.1159/000082923] [PMID: 15713995]
[109]
Serini, S.; Cassano, R.; Trombino, S.; Calviello, G. Nanomedicine-based formulations containing ω-3 polyunsaturated fatty acids: potential application in cardiovascular and neoplastic diseases. Int. J. Nanomedicine, 2019, 14, 2809-2828.
[http://dx.doi.org/10.2147/IJN.S197499] [PMID: 31114196]
[110]
Dwivedi, C.; Pandey, I.; Misra, V.; Giulbudagian, M.; Jungnickel, H.; Laux, P.; Luch, A.; Ramteke, P.W.; Singh, A.V. The prospective role of nanobiotechnology in food and food packaging products. Integr. Food Nutr. Metab., 2018, 5(6), 1-5.
[http://dx.doi.org/10.15761/IFNM.1000237 ]
[111]
Singh, A.V.; Laux, P.; Luch, A.; Sudrik, C.; Wiehr, S.; Wild, A-M.; Santomauro, G.; Bill, J.; Sitti, M. Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design. Toxicol. Mech. Methods, 2019, 29(5), 378-387.
[http://dx.doi.org/10.1080/15376516.2019.1566425] [PMID: 30636497]
[112]
Mandal, C.C.; Ghosh-Choudhury, T.; Yoneda, T.; Choudhury, G.G.; Ghosh-Choudhury, N. Fish oil prevents breast cancer cell metastasis to bone. Biochem. Biophys. Res. Commun., 2010, 402(4), 602-607.
[http://dx.doi.org/10.1016/j.bbrc.2010.10.063] [PMID: 20971068]
[113]
Rahman, M.M.; Veigas, J.M.; Williams, P.J.; Fernandes, G. DHA is a more potent inhibitor of breast cancer metastasis to bone and related osteolysis than EPA. Breast Cancer Res. Treat., 2013, 141(3), 341-352.
[http://dx.doi.org/10.1007/s10549-013-2703-y] [PMID: 24062211]
[114]
Zu, Y.; Hu, Y.; Yu, X.; Jiang, S. Docetaxel-loaded bovine serum albumin nanoparticles conjugated docosahexaenoic acid for inhibiting lung cancer metastasis to bone. Anticancer. Agents Med. Chem., 2017, 17(4), 542-551.
[http://dx.doi.org/10.2174/1871520616666160817143656] [PMID: 27539313]
[115]
Freitas, R.D.S.; Campos, M.M. Protective effects of omega-3 fatty acids in cancer-related complications. Nutrients, 2019, 11(5), 945.
[http://dx.doi.org/10.3390/nu11050945] [PMID: 31035457]
[116]
Bjørklund, G.; Dadar, M.; Aaseth, J.; Chirumbolo, S.; Pen, J.J. Cancer-associated cachexia, reactive oxygen species and nutrition therapy. Curr. Med. Chem., 2019, 26(31), 5728-5744.
[http://dx.doi.org/10.2174/0929867325666180629123817] [PMID: 29956613]
[117]
Berger, M.M.; Reintam-Blaser, A.; Calder, P.C.; Casaer, M.; Hiesmayr, M.J.; Mayer, K.; Montejo, J.C.; Pichard, C.; Preiser, J.C.; van Zanten, A.R.H.; Bischoff, S.C.; Singer, P. Monitoring nutrition in the ICU. Clin. Nutr., 2019, 38(2), 584-593.
[http://dx.doi.org/10.1016/j.clnu.2018.07.009] [PMID: 30077342]
[118]
Tamarindo, G.H.; Ribeiro, D.L.; Gobbo, M.G.; Guerra, L.H.; Rahal, P.; Taboga, S.R.; Gadelha, F.R.; Góes, R.M. Melatonin and docosahexaenoic acid decrease proliferation of PNT1A prostate benign cells via modulation of mitochondrial bioenergetics and ROS production. Oxid. Med. Cell. Longev., 2019, 2019, 5080798.
[http://dx.doi.org/10.1155/2019/5080798] [PMID: 30728886]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy