Review Article

探讨膳食中多不饱和脂肪酸(PUFA)比对肿瘤骨骼病和全球健康氧化代谢途径的影响

卷 28, 期 9, 2021

发表于: 27 April, 2020

页: [1672 - 1682] 页: 11

弟呕挨: 10.2174/0929867327666200427095331

价格: $65

摘要

各种营养素已被指定为抗氧化剂,可能对癌症等疾病产生影响。 这部分是由于它们对前列腺素的作用,从而影响局部病理性代谢性酸中毒。 本文旨在总结所涉及的罪魁祸首病理生理机制,重点是骨骼微环境。 专门研究了omega-6 / omega-3 PUFA的抗氧化作用,以对抗这些与疾病作斗争的途径。 着眼于其对健康的总体影响,特别是恶性骨转移。

关键词: 抗氧化剂,Omega-6 / omega-3 PUFA比,前列腺素,癌症,骨转移,Omega-3脂肪酸,Omega-6脂肪酸。

[1]
Han, S.Y.; Lee, N.K.; Kim, K.H.; Jang, I.W.; Yim, M.; Kim, J.H.; Lee, W.J.; Lee, S.Y. Transcriptional induction of cyclooxygenase-2 in osteoclast precursors is involved in RANKL-induced osteoclastogenesis. Blood, 2005, 106(4), 1240-1245.
[http://dx.doi.org/10.1182/blood-2004-12-4975] [PMID: 15860667]
[2]
Liu, X.H.; Kirschenbaum, A.; Yao, S.; Levine, A.C. Cross-talk between the interleukin-6 and prostaglandin E2 signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa}B (RANK) ligand/RANK system. Endocrinology, 2005, 146(4), 1991-1998.
[http://dx.doi.org/10.1210/en.2004-1167] [PMID: 15618359]
[3]
Liu, X.H.; Kirschenbaum, A.; Yao, S.; Levine, A.C. Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system. Ann. N. Y. Acad. Sci., 2006, 1068, 225-233.
[http://dx.doi.org/10.1196/annals.1346.047] [PMID: 16831922]
[4]
Chen, L.; Zheng, T.; Park, H.; Noh, A.L.; Lee, J.M.; Lee, D.S.; Yim, M. PDE4 inhibitor suppresses PGE2-induced osteoclast formation via COX-2-mediated p27(KIP1) expression in RAW264.7 cells. Pharmazie, 2011, 66(3), 201-206.
[PMID: 21553651]
[5]
Geng, D.; Mao, H.; Wang, J.; Zhu, X.; Huang, C.; Chen, L.; Yang, H.; Xu, Y. Protective effects of COX-2 inhibitor on titanium-particle-induced inflammatory osteolysis via the down-regulation of RANK/RANKL. Acta Biomater., 2011, 7(8), 3216-3221.
[http://dx.doi.org/10.1016/j.actbio.2011.05.007] [PMID: 21601661]
[6]
Geng, D.C.; Zhu, X.S.; Mao, H.Q.; Meng, B.; Chen, L.; Yang, H.L.; Xu, Y.Z. Protection against titanium particle-induced osteoclastogenesis by cyclooxygenase-2 selective inhibitor. J. Biomed. Mater. Res. A, 2011, 99(4), 516-522.
[http://dx.doi.org/10.1002/jbm.a.33197] [PMID: 21913318]
[7]
Harada, S.; Tominari, T.; Matsumoto, C.; Hirata, M.; Takita, M.; Inada, M.; Miyaura, C. Nobiletin, a polymethoxy flavonoid, suppresses bone resorption by inhibiting NFκB-dependent prostaglandin E synthesis in osteoblasts and prevents bone loss due to estrogen deficiency. J. Pharmacol. Sci., 2011, 115(1), 89-93.
[http://dx.doi.org/10.1254/jphs.10193SC] [PMID: 21258168]
[8]
Hsieh, T.P.; Sheu, S.Y.; Sun, J.S.; Chen, M.H. Icariin inhibits osteoclast differentiation and bone resorption by suppression of MAPKs/NF-κB regulated HIF-1α and PGE2 synthesis. Phytomedicine, 2011, 18(2-3), 176-185.
[http://dx.doi.org/10.1016/j.phymed.2010.04.003] [PMID: 20554188]
[9]
Zhang, F.; Tanaka, H.; Kawato, T.; Kitami, S.; Nakai, K.; Motohashi, M.; Suzuki, N.; Wang, C.L.; Ochiai, K.; Isokawa, K.; Maeno, M. Interleukin-17A induces cathepsin K and MMP-9 expression in osteoclasts via celecoxib-blocked prostaglandin E2 in osteoblasts. Biochimie, 2011, 93(2), 296-305.
[http://dx.doi.org/10.1016/j.biochi.2010.10.001] [PMID: 20937352]
[10]
Johansen, L.K.; Iburg, T.M.; Nielsen, O.L.; Leifsson, P.S.; Dahl-Petersen, K.; Koch, J.; Frees, D.; Aalbæk, B.; Heegaard, P.M.; Jensen, H.E. Local osteogenic expression of cyclooxygenase-2 and systemic response in porcine models of osteomyelitis. Prostaglandins Other Lipid Mediat., 2012, 97(3-4), 103-108.
[http://dx.doi.org/10.1016/j.prostaglandins.2012.01.002] [PMID: 22266364]
[11]
Mayahara, K.; Yamaguchi, A.; Takenouchi, H.; Kariya, T.; Taguchi, H.; Shimizu, N. Osteoblasts stimulate osteoclastogenesis via RANKL expression more strongly than periodontal ligament cells do in response to PGE(2). Arch. Oral Biol., 2012, 57(10), 1377-1384.
[http://dx.doi.org/10.1016/j.archoralbio.2012.07.009] [PMID: 22884709]
[12]
Yoon, W.J.; Lee, H.J.; Kang, G.J.; Kang, H.K.; Yoo, E.S. Inhibitory effects of Ficus erecta leaves on osteoporotic factors in vitro. Arch. Pharm. Res., 2007, 30(1), 43-49.
[http://dx.doi.org/10.1007/BF02977777] [PMID: 17328241]
[13]
Akatsu, T.; Ono, K.; Katayama, Y.; Tamura, T.; Nishikawa, M.; Kugai, N.; Yamamoto, M.; Nagata, N. The mouse mammary tumor cell line, MMT060562, produces prostaglandin E2 and leukemia inhibitory factor and supports osteoclast formation in vitro via a stromal cell-dependent pathway. J. Bone Miner. Res., 1998, 13(3), 400-408.
[http://dx.doi.org/10.1359/jbmr.1998.13.3.400] [PMID: 9525340]
[14]
Ono, K.; Akatsu, T.; Murakami, T.; Kitamura, R.; Yamamoto, M.; Shinomiya, N.; Rokutanda, M.; Sasaki, T.; Amizuka, N.; Ozawa, H.; Nagata, N.; Kugai, N. Involvement of cyclo-oxygenase-2 in osteoclast formation and bone destruction in bone metastasis of mammary carcinoma cell lines. J. Bone Miner. Res., 2002, 17(5), 774-781.
[http://dx.doi.org/10.1359/jbmr.2002.17.5.774] [PMID: 12009007]
[15]
Ono, K.; Akatsu, T.; Kugai, N.; Pilbeam, C.C.; Raisz, L.G. The effect of deletion of cyclooxygenase-2, prostaglandin receptor EP2, or EP4 in bone marrow cells on osteoclasts induced by mouse mammary cancer cell lines. Bone, 2003, 33(5), 798-804.
[http://dx.doi.org/10.1016/S8756-3282(03)00264-3] [PMID: 14623055]
[16]
Sabino, M.A.; Ghilardi, J.R.; Jongen, J.L.; Keyser, C.P.; Luger, N.M.; Mach, D.B.; Peters, C.M.; Rogers, S.D.; Schwei, M.J.; de Felipe, C.; Mantyh, P.W. Simultaneous reduction in cancer pain, bone destruction and tumor growth by selective inhibition of cyclooxygenase-2. Cancer Res., 2002, 62(24), 7343-7349.
[PMID: 12499278]
[17]
Takita, M.; Inada, M.; Maruyama, T.; Miyaura, C. Prostaglandin E receptor EP4 antagonist suppresses osteolysis due to bone metastasis of mouse malignant melanoma cells. FEBS Lett., 2007, 581(3), 565-571.
[http://dx.doi.org/10.1016/j.febslet.2007.01.005] [PMID: 17254571]
[18]
Inada, M.; Miyaura, C. [Role of PGE2 in bone metastatic cancer] Clin. Calcium, 2008, 18(4), 466-472.
[PMID: 18379028]
[19]
Li, Z.; Schem, C.; Shi, Y.H.; Medina, D.; Zhang, M. Increased COX2 expression enhances tumor-induced osteoclastic lesions in breast cancer bone metastasis. Clin. Exp. Metastasis, 2008, 25(4), 389-400.
[http://dx.doi.org/10.1007/s10585-007-9117-3] [PMID: 17965942]
[20]
Takahashi, T.; Uehara, H.; Bando, Y.; Izumi, K. Soluble EP2 neutralizes prostaglandin E2-induced cell signaling and inhibits osteolytic tumor growth. Mol. Cancer Ther., 2008, 7(9), 2807-2816.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0153] [PMID: 18790761]
[21]
Xiong, Z.; Luo, P.; Zhou, J.; Tan, M. 15-Deoxy-Δ12,14-prostaglandin J2 as a potential regulator of bone metabolism via PPARγ-dependent and independent pathways: a review. Drug Des. Devel. Ther., 2019, 13, 1879-1888.
[http://dx.doi.org/10.2147/DDDT.S206695] [PMID: 31213775]
[22]
Watanabe, K.; Tominari, T.; Hirata, M.; Matsumoto, C.; Maruyama, T.; Murphy, G.; Nagase, H.; Miyaura, C.; Inada, M. Abrogation of prostaglandin E-EP4 signaling in osteoblasts prevents the bone destruction induced by human prostate cancer metastasis. Biochem. Biophys. Res. Commun., 2016, 478(1), 154-161.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.075] [PMID: 27450806]
[23]
Singh, A.V.; Dad Ansari, M.H.; Dayan, C.B.; Giltinan, J.; Wang, S.; Yu, Y.; Kishore, V.; Laux, P.; Luch, A.; Sitti, M. Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials, 2019, 219, 119394.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119394] [PMID: 31382208]
[24]
Ansari, M.H.; Lavhale, S.; Kalunke, R.M.; Srivastava, P.L.; Pandit, V.; Gade, S.; Yadav, S.; Laux, P.; Luch, A.; Gemmati, D. Recent advances in plant nanobionics and nanobiosensors for toxicology applications. Curr. Nanosci., 2020, 16(1), 27-41.
[http://dx.doi.org/10.2174/1573413715666190409101305]
[25]
Chen, Y.C.; Sosnoski, D.M.; Gandhi, U.H.; Novinger, L.J.; Prabhu, K.S.; Mastro, A.M. Selenium modifies the osteoblast inflammatory stress response to bone metastatic breast cancer. Carcinogenesis, 2009, 30(11), 1941-1948.
[http://dx.doi.org/10.1093/carcin/bgp227] [PMID: 19759193]
[26]
Li, B.H.; Garstka, M.A.; Li, Z.F. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol. Immunol., 2020, 117, 201-215.
[http://dx.doi.org/10.1016/j.molimm.2019.11.014] [PMID: 31835202]
[27]
Irelli, A.; Sirufo, M.M.; Scipioni, T.; De Pietro, F.; Pancotti, A.; Ginaldi, L.; De Martinis, M. mTOR links tumor immunity and bone metabolism: what are the clinical implications? Int. J. Mol. Sci., 2019, 20(23), E5841.
[http://dx.doi.org/10.3390/ijms20235841] [PMID: 31766386]
[28]
Ardura, J.A.; Rackov, G.; Izquierdo, E.; Alonso, V.; Gortazar, A.R.; Escribese, M.M. Targeting macrophages: friends or foes in disease? Front. Pharmacol., 2019, 10, 1255.
[http://dx.doi.org/10.3389/fphar.2019.01255] [PMID: 31708781]
[29]
Wu, J.; Omene, C.; Karkoszka, J.; Bosland, M.; Eckard, J.; Klein, C.B.; Frenkel, K. Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer. Cancer Lett., 2011, 308(1), 43-53.
[http://dx.doi.org/10.1016/j.canlet.2011.04.012] [PMID: 21570765]
[30]
Chuu, C.P.; Lin, H.P.; Ciaccio, M.F.; Kokontis, J.M.; Hause, R.J., Jr; Hiipakka, R.A.; Liao, S.; Jones, R.B. Caffeic acid phenethyl ester suppresses the proliferation of human prostate cancer cells through inhibition of p70S6K and Akt signaling networks. Cancer Prev. Res. (Phila.), 2012, 5(5), 788-797.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0004-T] [PMID: 22562408]
[31]
Tolba, M.F.; Azab, S.S.; Khalifa, A.E.; Abdel-Rahman, S.Z.; Abdel-Naim, A.B. Caffeic acid phenethyl ester, a promising component of propolis with a plethora of biological activities: a review on its anti-inflammatory, neuroprotective, hepatoprotective and cardioprotective effects. IUBMB Life, 2013, 65(8), 699-709.
[http://dx.doi.org/10.1002/iub.1189] [PMID: 23847089]
[32]
Fitzpatrick, L.R.; Wang, J.; Le, T. Caffeic acid phenethyl ester, an inhibitor of nuclear factor-kappaB, attenuates bacterial peptidoglycan polysaccharide-induced colitis in rats. J. Pharmacol. Exp. Ther., 2001, 299(3), 915-920.
[PMID: 11714876]
[33]
Ozturk, G.; Ginis, Z.; Akyol, S.; Erden, G.; Gurel, A.; Akyol, O. The anticancer mechanism of caffeic acid phenethyl ester (CAPE): review of melanomas, lung and prostate cancers. Eur. Rev. Med. Pharmacol. Sci., 2012, 16(15), 2064-2068.
[PMID: 23280020]
[34]
Kieliszek, M. Selenium-fascinating microelement, properties and sources in food. Molecules, 2019, 24(7), E1298.
[http://dx.doi.org/10.3390/molecules24071298] [PMID: 30987088]
[35]
Pang, K.L.; Chin, K.Y. Emerging anticancer potentials of selenium on osteosarcoma. Int. J. Mol. Sci., 2019, 20(21), E5318.
[http://dx.doi.org/10.3390/ijms20215318] [PMID: 31731474]
[36]
Hiraoka, K.; Komiya, S.; Hamada, T.; Zenmyo, M.; Inoue, A. Osteosarcoma cell apoptosis induced by selenium. J. Orthop. Res., 2001, 19(5), 809-814.
[http://dx.doi.org/10.1016/S0736-0266(00)00079-6] [PMID: 11562125]
[37]
Moon, H.J.; Ko, W.K.; Han, S.W.; Kim, D.S.; Hwang, Y.S.; Park, H.K.; Kwon, I.K. Antioxidants, like coenzyme Q10, selenite and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation. Biochem. Biophys. Res. Commun., 2012, 418(2), 247-253.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.005] [PMID: 22252298]
[38]
Maiyo, F.; Singh, M. Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine (Lond.), 2017, 12(9), 1075-1089.
[http://dx.doi.org/10.2217/nnm-2017-0024] [PMID: 28440710]
[39]
Sun, J.Y.; Hou, Y.J.; Fu, X.Y.; Fu, X.T.; Ma, J.K.; Yang, M.F.; Sun, B.L.; Fan, C.D.; Oh, J. Selenium-containing protein from selenium-enriched Spirulina platensis attenuates cisplatin-induced apoptosis in mc3t3-e1 mouse preosteoblast by inhibiting mitochondrial dysfunction and ros-mediated oxidative damage. Front. Physiol., 2019, 9, 1907.
[http://dx.doi.org/10.3389/fphys.2018.01907] [PMID: 30687122]
[40]
Gaffney-Stomberg, E. The impact of trace minerals on bone metabolism. Biol. Trace Elem. Res., 2019, 188(1), 26-34.
[http://dx.doi.org/10.1007/s12011-018-1583-8] [PMID: 30467628]
[41]
Reiter, R.; Tang, L.; Garcia, J.J.; Muñoz-Hoyos, A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci., 1997, 60(25), 2255-2271.
[http://dx.doi.org/10.1016/S0024-3205(97)00030-1] [PMID: 9194681]
[42]
Reiter, R.J.; Cabrera, J.; Sainz, R.M.; Mayo, J.C.; Manchester, L.C.; Tan, D.X. Melatonin as a pharmacological agent against neuronal loss in experimental models of Huntington’s disease, Alzheimer’s disease and parkinsonism. Ann. N. Y. Acad. Sci., 1999, 890, 471-485.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb08028.x] [PMID: 10668453]
[43]
Reiter, R.J.; Acuña-Castroviejo, D.; Tan, D.X.; Burkhardt, S. Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann. N. Y. Acad. Sci., 2001, 939, 200-215.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03627.x] [PMID: 11462772]
[44]
Reiter, R.J. Oxidative damage in the central nervous system: protection by melatonin. Prog. Neurobiol., 1998, 56(3), 359-384.
[http://dx.doi.org/10.1016/S0301-0082(98)00052-5] [PMID: 9770244]
[45]
Reiter, R.J.; Garcia, J.J.; Pie, J. Oxidative toxicity in models of neurodegeneration: responses to melatonin. Restor. Neurol. Neurosci., 1998, 12(2-3), 135-142.
[PMID: 12671308]
[46]
Reiter, R.J.; Tan, D.X.; Qi, W.B. Suppression of oxygen toxicity by melatonin. Zhongguo Yao Li Xue Bao, 1998, 19(6), 575-581.
[PMID: 10437151]
[47]
Srinivasan, V. Melatonin oxidative stress and neurodegenerative diseases. Indian J. Exp. Biol., 2002, 40(6), 668-679.
[PMID: 12587715]
[48]
Gupta, Y.K.; Gupta, M.; Kohli, K. Neuroprotective role of melatonin in oxidative stress vulnerable brain. Indian J. Physiol. Pharmacol., 2003, 47(4), 373-386.
[PMID: 15266948]
[49]
Esparza, J.L.; Gómez, M.; Rosa Nogués, M.; Paternain, J.L.; Mallol, J.; Domingo, J.L. Melatonin reduces oxidative stress and increases gene expression in the cerebral cortex and cerebellum of aluminum-exposed rats. J. Pineal Res., 2005, 39(2), 129-136.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00225.x] [PMID: 16098089]
[50]
Hung, M.W.; Tipoe, G.L.; Poon, A.M.; Reiter, R.J.; Fung, M.L. Protective effect of melatonin against hippocampal injury of rats with intermittent hypoxia. J. Pineal Res., 2008, 44(2), 214-221.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00514.x] [PMID: 18289174]
[51]
Limón-Pacheco, J.H.; Gonsebatt, M.E. The glutathione system and its regulation by neurohormone melatonin in the central nervous system. Cent. Nerv. Syst. Agents Med. Chem., 2010, 10(4), 287-297.
[http://dx.doi.org/10.2174/187152410793429683] [PMID: 20868358]
[52]
Fischer, T.W.; Kleszczyński, K.; Hardkop, L.H.; Kruse, N.; Zillikens, D. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion and protects against the formation of DNA damage (8-hydroxy-2′-deoxyguanosine) in ex vivo human skin. J. Pineal Res., 2013, 54(3), 303-312.
[http://dx.doi.org/10.1111/jpi.12018] [PMID: 23110400]
[53]
Wang, F.; Tian, X.; Zhang, L.; Tan, D.; Reiter, R.J.; Liu, G. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J. Pineal Res., 2013, 55(3), 267-274.
[http://dx.doi.org/10.1111/jpi.12069] [PMID: 23772689]
[54]
Yang, Y.; Duan, W.; Jin, Z.; Yi, W.; Yan, J.; Zhang, S.; Wang, N.; Liang, Z.; Li, Y.; Chen, W.; Yi, D.; Yu, S. JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J. Pineal Res., 2013, 55(3), 275-286.
[http://dx.doi.org/10.1111/jpi.12070] [PMID: 23796350]
[55]
Gómez, M.; Esparza, J.L.; Nogués, M.R.; Giralt, M.; Cabré, M.; Domingo, J.L. Pro-oxidant activity of aluminum in the rat hippocampus: gene expression of antioxidant enzymes after melatonin administration. Free Radic. Biol. Med., 2005, 38(1), 104-111.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.10.009] [PMID: 15589378]
[56]
Jong, C.J.; Azuma, J.; Schaffer, S. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids, 2012, 42(6), 2223-2232.
[http://dx.doi.org/10.1007/s00726-011-0962-7] [PMID: 21691752]
[57]
Nagae, M.; Hiraga, T.; Yoneda, T. Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization. J. Bone Miner. Metab., 2007, 25(2), 99-104.
[http://dx.doi.org/10.1007/s00774-006-0734-8] [PMID: 17323179]
[58]
Fernandes, G.; Lawrence, R.; Sun, D. Protective role of n-3 lipids and soy protein in osteoporosis. Prostaglandins Leukot. Essent. Fatty Acids, 2003, 68(6), 361-372.
[http://dx.doi.org/10.1016/S0952-3278(03)00060-7] [PMID: 12798656]
[59]
Lands, W.E. Biochemistry and physiology of n-3 fatty acids. FASEB J., 1992, 6(8), 2530-2536.
[http://dx.doi.org/10.1096/fasebj.6.8.1592205] [PMID: 1592205]
[60]
Simopoulos, A.P. Evolutionary aspects of omega-3 fatty acids in the food supply. Prostaglandins Leukot. Essent. Fatty Acids, 1999, 60(5-6), 421-429.
[http://dx.doi.org/10.1016/S0952-3278(99)80023-4] [PMID: 10471132]
[61]
Cordain, L.; Eaton, S.B.; Miller, J.B.; Mann, N.; Hill, K. The paradoxical nature of hunter-gatherer diets: meat-based, yet non-atherogenic. Eur. J. Clin. Nutr., 2002, 56(Suppl. 1), S42-S52.
[http://dx.doi.org/10.1038/sj.ejcn.1601353] [PMID: 11965522]
[62]
Daikoku, T.; Tranguch, S.; Trofimova, I.N.; Dinulescu, D.M.; Jacks, T.; Nikitin, A.Y.; Connolly, D.C.; Dey, S.K. Cyclooxygenase-1 is overexpressed in multiple genetically engineered mouse models of epithelial ovarian cancer. Cancer Res., 2006, 66(5), 2527-2531.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4063] [PMID: 16510568]
[63]
Frick, K.K.; Bushinsky, D.A. Metabolic acidosis stimulates RANKL RNA expression in bone through a cyclo-oxygenase-dependent mechanism. J. Bone Miner. Res., 2003, 18(7), 1317-1325.
[http://dx.doi.org/10.1359/jbmr.2003.18.7.1317] [PMID: 12854843]
[64]
Krieger, N.S.; Bushinsky, D.A.; Frick, K.K. Cellular mechanisms of bone resorption induced by metabolic acidosis. Semin. Dial., 2003, 16(6), 463-466.
[http://dx.doi.org/10.1046/j.1525-139X.2003.16100.x] [PMID: 14629607]
[65]
Krieger, N.S.; Frick, K.K.; LaPlante Strutz, K.; Michalenka, A.; Bushinsky, D.A. Regulation of COX-2 mediates acid-induced bone calcium efflux in vitro. J. Bone Miner. Res., 2007, 22(6), 907-917.
[http://dx.doi.org/10.1359/jbmr.070316] [PMID: 17352658]
[66]
Tomura, H.; Wang, J.Q.; Liu, J.P.; Komachi, M.; Damirin, A.; Mogi, C.; Tobo, M.; Nochi, H.; Tamoto, K. Im, D.S.; Sato, K.; Okajima, F. Cyclooxygenase-2 expression and prostaglandin E2 production in response to acidic pH through OGR1 in a human osteoblastic cell line. J. Bone Miner. Res., 2008, 23(7), 1129-1139.
[http://dx.doi.org/10.1359/jbmr.080236] [PMID: 18302504]
[67]
Liu, Q.; Russell, M.R.; Shahriari, K.; Jernigan, D.L.; Lioni, M.I.; Garcia, F.U.; Fatatis, A. Interleukin-1β promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features. Cancer Res., 2013, 73(11), 3297-3305.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3970] [PMID: 23536554]
[68]
Kajiya, H.; Okamoto, F.; Fukushima, H.; Okabe, K. Calcitonin inhibits proton extrusion in resorbing rat osteoclasts via protein kinase A. Pflugers Arch., 2003, 445(6), 651-658.
[http://dx.doi.org/10.1007/s00424-002-0989-4] [PMID: 12632184]
[69]
Sørensen, M.G.; Karsdal, M.A.; Dziegiel, M.H.; Boutin, J.A.; Nosjean, O.; Henriksen, K. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption. BMC Musculoskelet. Disord., 2010, 11, 250.
[http://dx.doi.org/10.1186/1471-2474-11-250] [PMID: 20977756]
[70]
Thudium, C.S.; Jensen, V.K.; Karsdal, M.A.; Henriksen, K. Disruption of the V-ATPase functionality as a way to uncouple bone formation and resorption - a novel target for treatment of osteoporosis. Curr. Protein Pept. Sci., 2012, 13(2), 141-151.
[http://dx.doi.org/10.2174/138920312800493133] [PMID: 22044152]
[71]
De Milito, A.; Fais, S. Tumor acidity, chemoresistance and proton pump inhibitors. Future Oncol., 2005, 1(6), 779-786.
[http://dx.doi.org/10.2217/14796694.1.6.779] [PMID: 16556057]
[72]
Sheraly, A.R.; Lickorish, D.; Sarraf, F.; Davies, J.E. Use of gastrointestinal proton pump inhibitors to regulate osteoclast-mediated resorption of calcium phosphate cements in vivo. Curr. Drug Deliv., 2009, 6(2), 192-198.
[http://dx.doi.org/10.2174/156720109787846225] [PMID: 19450226]
[73]
Huber, V.; De Milito, A.; Harguindey, S.; Reshkin, S.J.; Wahl, M.L.; Rauch, C.; Chiesi, A.; Pouysségur, J.; Gatenby, R.A.; Rivoltini, L.; Fais, S. Proton dynamics in cancer. J. Transl. Med., 2010, 8, 57.
[http://dx.doi.org/10.1186/1479-5876-8-57] [PMID: 20550689]
[74]
McCarty, M.F.; Whitaker, J. Manipulating tumor acidification as a cancer treatment strategy. Altern. Med. Rev., 2010, 15(3), 264-272.
[PMID: 21155627]
[75]
Calorini, L.; Peppicelli, S.; Bianchini, F. Extracellular acidity as favouring factor of tumor progression and metastatic dissemination. Exp. Oncol., 2012, 34(2), 79-84.
[PMID: 23013757]
[76]
Gatenby, R.A.; Gawlinski, E.T. The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res., 2003, 63(14), 3847-3854.
[PMID: 12873971]
[77]
Ibrahim Hashim, A.; Cornnell, H.H. Coelho Ribeiro, Mde.L.; Abrahams, D.; Cunningham, J.; Lloyd, M.; Martinez, G.V.; Gatenby, R.A.; Gillies, R.J. Reduction of metastasis using a non-volatile buffer. Clin. Exp. Metastasis, 2011, 28(8), 841-849.
[http://dx.doi.org/10.1007/s10585-011-9415-7] [PMID: 21861189]
[78]
Gatenby, R.A.; Gawlinski, E.T.; Gmitro, A.F.; Kaylor, B.; Gillies, R.J. Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res., 2006, 66(10), 5216-5223.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4193] [PMID: 16707446]
[79]
Robey, I.F.; Baggett, B.K.; Kirkpatrick, N.D.; Roe, D.J.; Dosescu, J.; Sloane, B.F.; Hashim, A.I.; Morse, D.L.; Raghunand, N.; Gatenby, R.A.; Gillies, R.J. Bicarbonate increases tumor pH and inhibits spontaneous metastasis. Cancer Res., 2009, 69(6), 2260-2268.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5575] [PMID: 19276390]
[80]
Estrella, V.; Chen, T.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H.H.; Ibrahim-Hashim, A.; Bailey, K.; Balagurunathan, Y.; Rothberg, J.M.; Sloane, B.F.; Johnson, J.; Gatenby, R.A.; Gillies, R.J. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res., 2013, 73(5), 1524-1535.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2796] [PMID: 23288510]
[81]
Krieger, N.S.; Frick, K.K.; Bushinsky, D.A. Mechanism of acid-induced bone resorption. Curr. Opin. Nephrol. Hypertens., 2004, 13(4), 423-436.
[http://dx.doi.org/10.1097/01.mnh.0000133975.32559.6b] [PMID: 15199293]
[82]
Arnett, T.R. Extracellular pH regulates bone cell function. J. Nutr., 2008, 138(2), 415S-418S.
[http://dx.doi.org/10.1093/jn/138.2.415S] [PMID: 18203913]
[83]
Pereverzev, A.; Komarova, S.V.; Korcok, J.; Armstrong, S.; Tremblay, G.B.; Dixon, S.J.; Sims, S.M. Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway. Bone, 2008, 42(1), 150-161.
[http://dx.doi.org/10.1016/j.bone.2007.08.044] [PMID: 17964236]
[84]
Geng, W.; Hill, K.; Zerwekh, J.E.; Kohler, T.; Müller, R.; Moe, O.W. Inhibition of osteoclast formation and function by bicarbonate: role of soluble adenylyl cyclase. J. Cell. Physiol., 2009, 220(2), 332-340.
[http://dx.doi.org/10.1002/jcp.21767] [PMID: 19360717]
[85]
Arnett, T.R. Acidosis, hypoxia and bone. Arch. Biochem. Biophys., 2010, 503(1), 103-109.
[http://dx.doi.org/10.1016/j.abb.2010.07.021] [PMID: 20655868]
[86]
Kato, K.; Morita, I. Acidosis environment promotes osteoclast formation by acting on the last phase of preosteoclast differentiation: a study to elucidate the action points of acidosis and search for putative target molecules. Eur. J. Pharmacol., 2011, 663(1-3), 27-39.
[http://dx.doi.org/10.1016/j.ejphar.2011.04.062] [PMID: 21575626]
[87]
Ahn, H.; Kim, J.M.; Lee, K.; Kim, H.; Jeong, D. Extracellular acidosis accelerates bone resorption by enhancing osteoclast survival, adhesion and migration. Biochem. Biophys. Res. Commun., 2012, 418(1), 144-148.
[http://dx.doi.org/10.1016/j.bbrc.2011.12.149] [PMID: 22244876]
[88]
Kato, K.; Morita, I. Promotion of osteoclast differentiation and activation in spite of impeded osteoblast-lineage differentiation under acidosis: effects of acidosis on bone metabolism. Biosci. Trends, 2013, 7(1), 33-41.
[http://dx.doi.org/10.5582/bst.2013.v7.1.33] [PMID: 23524891]
[89]
Kogawa, M.; Wijenayaka, A.R.; Ormsby, R.T.; Thomas, G.P.; Anderson, P.H.; Bonewald, L.F.; Findlay, D.M.; Atkins, G.J. Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2. J. Bone Miner. Res., 2013, 28(12), 2436-2448.
[http://dx.doi.org/10.1002/jbmr.2003] [PMID: 23737439]
[90]
Brandao-Burch, A.; Utting, J.C.; Orriss, I.R.; Arnett, T.R. Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcif. Tissue Int., 2005, 77(3), 167-174.
[http://dx.doi.org/10.1007/s00223-004-0285-8] [PMID: 16075362]
[91]
Takeuchi, S.; Hirukawa, K.; Togari, A. Acidosis inhibits mineralization in human osteoblasts. Calcif. Tissue Int., 2013, 93(3), 233-240.
[http://dx.doi.org/10.1007/s00223-013-9746-2] [PMID: 23754489]
[92]
Tominaga, M.; Tominaga, T. Structure and function of TRPV1. Pflugers Arch., 2005, 451(1), 143-150.
[http://dx.doi.org/10.1007/s00424-005-1457-8] [PMID: 15971082]
[93]
O’Rielly, D.D.; Loomis, C.W. Spinal prostaglandins facilitate exaggerated A- and C-fiber-mediated reflex responses and are critical to the development of allodynia early after L5-L6 spinal nerve ligation. Anesthesiology, 2007, 106(4), 795-805.
[http://dx.doi.org/10.1097/01.anes.0000264777.94662.d6] [PMID: 17413918]
[94]
Fischer, B.; Müller, B.; Fisch, P.; Kreutz, W. An acidic microenvironment inhibits antitumoral non-major histocompatibility complex-restricted cytotoxicity: implications for cancer immunotherapy. J. Immunother., 2000, 23(2), 196-207.
[http://dx.doi.org/10.1097/00002371-200003000-00004] [PMID: 10746546]
[95]
Fischer, B.; Müller, B.; Fischer, K.G.; Baur, N.; Kreutz, W. Acidic pH inhibits non-MHC-restricted killer cell functions. Clin. Immunol., 2000, 96(3), 252-263.
[http://dx.doi.org/10.1006/clim.2000.4904] [PMID: 10964544]
[96]
Müller, B.; Fischer, B.; Kreutz, W. An acidic microenvironment impairs the generation of non-major histocompatibility complex-restricted killer cells. Immunology, 2000, 99(3), 375-384.
[http://dx.doi.org/10.1046/j.1365-2567.2000.00975.x] [PMID: 10712667]
[97]
Severin, T.; Müller, B.; Giese, G.; Uhl, B.; Wolf, B.; Hauschildt, S.; Kreutz, W. pH-dependent LAK cell cytotoxicity. Tumour Biol., 1994, 15(5), 304-310.
[http://dx.doi.org/10.1159/000217905] [PMID: 7991991]
[98]
Aquilano, K.; Baldelli, S.; Ciriolo, M.R. Glutathione: new roles in redox signaling for an old antioxidant. Front. Pharmacol., 2014, 5, 196.
[http://dx.doi.org/10.3389/fphar.2014.00196] [PMID: 25206336]
[99]
d’Audigier, C.; Cochain, C.; Rossi, E.; Guérin, C.L.; Bièche, I.; Blandinières, A.; Marsac, B.; Silvestre, J.S.; Gaussem, P.; Smadja, D.M. Thrombin receptor PAR-1 activation on endothelial progenitor cells enhances chemotaxis-associated genes expression and leukocyte recruitment by a COX-2-dependent mechanism. Angiogenesis, 2015, 18(3), 347-359.
[http://dx.doi.org/10.1007/s10456-015-9471-8] [PMID: 26026674]
[100]
Koupenova, M.; Kehrel, B.E.; Corkrey, H.A.; Freedman, J.E. Thrombosis and platelets: an update. Eur. Heart J., 2017, 38(11), 785-791.
[http://dx.doi.org/10.1093/eurheartj/ehw550] [PMID: 28039338]
[101]
Simopoulos, A.P. Evolutionary aspects of the dietary omega-6:omega-3 fatty acid ratio: medical implications. World Rev. Nutr. Diet., 2009, 100, 1-21.
[http://dx.doi.org/10.1159/000235706] [PMID: 19696523]
[102]
Średnicka-Tober, D.; Barański, M.; Seal, C.J.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; Cozzi, G.; Larsen, M.K.; Jordon, T.; Niggli, U.; Sakowski, T.; Calder, P.C.; Burdge, G.C.; Sotiraki, S.; Stefanakis, A.; Stergiadis, S.; Yolcu, H.; Chatzidimitriou, E.; Butler, G.; Stewart, G.; Leifert, C. Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: a systematic literature review and meta- and redundancy analyses. Br. J. Nutr., 2016, 115(6), 1043-1060.
[http://dx.doi.org/10.1017/S0007114516000349] [PMID: 26878105]
[103]
Stevenson, J.L.; Miller, M.K.; Skillman, H.E.; Paton, C.M.; Cooper, J.A. A PUFA-rich diet improves fat oxidation following saturated fat-rich meal. Eur. J. Nutr., 2017, 56(5), 1845-1857.
[http://dx.doi.org/10.1007/s00394-016-1226-9] [PMID: 27193583]
[104]
Burns, J.W.; Quartana, P.J.; Bruehl, S.; Janssen, I.; Dugan, S.A.; Appelhans, B.; Matthews, K.A.; Kravitz, H.M. Chronic pain, body mass index and cardiovascular disease risk factors: tests of moderation, unique and shared relationships in the Study of Women’s Health Across the Nation (SWAN). J. Behav. Med., 2015, 38(2), 372-383.
[http://dx.doi.org/10.1007/s10865-014-9608-z] [PMID: 25427423]
[105]
Hugo, H.J.; Saunders, C.; Ramsay, R.G.; Thompson, E.W. New Insights on COX-2 in Chronic Inflammation Driving Breast Cancer Growth and Metastasis. J. Mammary Gland Biol. Neoplasia, 2015, 20(3-4), 109-119.
[http://dx.doi.org/10.1007/s10911-015-9333-4] [PMID: 26193871]
[106]
Migliore, M.; Habrant, D.; Sasso, O.; Albani, C.; Bertozzi, S.M.; Armirotti, A.; Piomelli, D.; Scarpelli, R. Potent multitarget FAAH-COX inhibitors: Design and structure-activity relationship studies. Eur. J. Med. Chem., 2016, 109, 216-237.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.036] [PMID: 26774927]
[107]
Ibrahim, T.; Farolfi, A.; Mercatali, L.; Ricci, M.; Amadori, D. Metastatic bone disease in the era of bone-targeted therapy: clinical impact. Tumori, 2013, 99(1), 1-9.
[http://dx.doi.org/10.1177/030089161309900101] [PMID: 23548992]
[108]
Delea, T.; Langer, C.; McKiernan, J.; Liss, M.; Edelsberg, J.; Brandman, J.; Sung, J.; Raut, M.; Oster, G. The cost of treatment of skeletal-related events in patients with bone metastasis from lung cancer. Oncology, 2004, 67(5-6), 390-396.
[http://dx.doi.org/10.1159/000082923] [PMID: 15713995]
[109]
Serini, S.; Cassano, R.; Trombino, S.; Calviello, G. Nanomedicine-based formulations containing ω-3 polyunsaturated fatty acids: potential application in cardiovascular and neoplastic diseases. Int. J. Nanomedicine, 2019, 14, 2809-2828.
[http://dx.doi.org/10.2147/IJN.S197499] [PMID: 31114196]
[110]
Dwivedi, C.; Pandey, I.; Misra, V.; Giulbudagian, M.; Jungnickel, H.; Laux, P.; Luch, A.; Ramteke, P.W.; Singh, A.V. The prospective role of nanobiotechnology in food and food packaging products. Integr. Food Nutr. Metab., 2018, 5(6), 1-5.
[http://dx.doi.org/10.15761/IFNM.1000237 ]
[111]
Singh, A.V.; Laux, P.; Luch, A.; Sudrik, C.; Wiehr, S.; Wild, A-M.; Santomauro, G.; Bill, J.; Sitti, M. Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design. Toxicol. Mech. Methods, 2019, 29(5), 378-387.
[http://dx.doi.org/10.1080/15376516.2019.1566425] [PMID: 30636497]
[112]
Mandal, C.C.; Ghosh-Choudhury, T.; Yoneda, T.; Choudhury, G.G.; Ghosh-Choudhury, N. Fish oil prevents breast cancer cell metastasis to bone. Biochem. Biophys. Res. Commun., 2010, 402(4), 602-607.
[http://dx.doi.org/10.1016/j.bbrc.2010.10.063] [PMID: 20971068]
[113]
Rahman, M.M.; Veigas, J.M.; Williams, P.J.; Fernandes, G. DHA is a more potent inhibitor of breast cancer metastasis to bone and related osteolysis than EPA. Breast Cancer Res. Treat., 2013, 141(3), 341-352.
[http://dx.doi.org/10.1007/s10549-013-2703-y] [PMID: 24062211]
[114]
Zu, Y.; Hu, Y.; Yu, X.; Jiang, S. Docetaxel-loaded bovine serum albumin nanoparticles conjugated docosahexaenoic acid for inhibiting lung cancer metastasis to bone. Anticancer. Agents Med. Chem., 2017, 17(4), 542-551.
[http://dx.doi.org/10.2174/1871520616666160817143656] [PMID: 27539313]
[115]
Freitas, R.D.S.; Campos, M.M. Protective effects of omega-3 fatty acids in cancer-related complications. Nutrients, 2019, 11(5), 945.
[http://dx.doi.org/10.3390/nu11050945] [PMID: 31035457]
[116]
Bjørklund, G.; Dadar, M.; Aaseth, J.; Chirumbolo, S.; Pen, J.J. Cancer-associated cachexia, reactive oxygen species and nutrition therapy. Curr. Med. Chem., 2019, 26(31), 5728-5744.
[http://dx.doi.org/10.2174/0929867325666180629123817] [PMID: 29956613]
[117]
Berger, M.M.; Reintam-Blaser, A.; Calder, P.C.; Casaer, M.; Hiesmayr, M.J.; Mayer, K.; Montejo, J.C.; Pichard, C.; Preiser, J.C.; van Zanten, A.R.H.; Bischoff, S.C.; Singer, P. Monitoring nutrition in the ICU. Clin. Nutr., 2019, 38(2), 584-593.
[http://dx.doi.org/10.1016/j.clnu.2018.07.009] [PMID: 30077342]
[118]
Tamarindo, G.H.; Ribeiro, D.L.; Gobbo, M.G.; Guerra, L.H.; Rahal, P.; Taboga, S.R.; Gadelha, F.R.; Góes, R.M. Melatonin and docosahexaenoic acid decrease proliferation of PNT1A prostate benign cells via modulation of mitochondrial bioenergetics and ROS production. Oxid. Med. Cell. Longev., 2019, 2019, 5080798.
[http://dx.doi.org/10.1155/2019/5080798] [PMID: 30728886]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy