Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Meta-Analysis

A Meta-Analysis of Proteomic Blood Markers of Colorectal Cancer

Author(s): Xiang Chen, Jiayu Sun, Xue Wang, Yumeng Yuan, Leshan Cai, Yanxuan Xie, Zhiqiang Fan, Kaixi Liu and Xiaoyang Jiao*

Volume 28, Issue 6, 2021

Published on: 27 April, 2020

Page: [1176 - 1196] Pages: 21

DOI: 10.2174/0929867327666200427094054

Price: $65

Abstract

Background: Early diagnosis will significantly improve the survival rate of colorectal cancer (CRC); however, the existing methods for CRC screening were either invasive or inefficient. There is an emergency need for novel markers in CRC’s early diagnosis. Serum proteomics has gained great potential in discovering novel markers, providing markers that reflect the early stage of cancer and prognosis prediction of CRC. In this paper, the results of proteomics of CRC studies were summarized through a meta-analysis in order to obtain the diagnostic efficiency of novel markers.

Methods: A systematic search on bibliographic databases was performed to collect the studies that explore blood-based markers for CRC applying proteomics. The detection and validation methods, as well as the specificity and sensitivity of the biomarkers in these studies, were evaluated. Newcastle- Ottawa Scale (NOS) case-control studies version was used for quality assessment of included studies.

Results: Thirty-four studies were selected from 751 studies, in which markers detected by proteomics were summarized. In total, fifty-nine proteins were classified according to their biological function. The sensitivity, specificity, or AUC varied among these markers. Among them, Mammalian STE20-like protein kinase 1/ Serine threonine kinase 4 (MST1/STK4), S100 calcium-binding protein A9 (S100A9), and Tissue inhibitor of metalloproteinases 1 (TIMP1) were suitable for effect sizes merging, and their diagnostic efficiencies were recalculated after merging. MST1/STK4 obtained a sensitivity of 68% and a specificity of 78%. S100A9 achieved a sensitivity of 72%, a specificity of 83%, and an AUC of 0.88. TIMP1 obtained a sensitivity of 42%, a specificity of 88%, and an AUC of 0.71.

Conclusion: MST1/STK4, S100A9, and TIMP1 showed excellent performance for CRC detection. Several other markers also presented optimized diagnostic efficacy for CRC early detection, but further verification is still needed before they are suitable for clinical use. The discovering of more efficient markers will benefit CRC treatment.

Keywords: CRC, proteomics, early diagnosis, blood-based marker, diagnostics, early detections.

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin., 2013, 63(1), 11-30.
[http://dx.doi.org/10.3322/caac.21166] [PMID: 23335087]
[3]
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Murray, T.; Thun, M. J. Cancer statistics, 2008. CA Cancer J. Clin., 2008, 58(2), 71-96.
[http://dx.doi.org/10.3322/CA.2007.0010] [PMID: 18287387]
[4]
Booth, R.A. Minimally invasive biomarkers for detection and staging of colorectal cancer. Cancer Lett., 2007, 249(1), 87-96.
[http://dx.doi.org/10.1016/j.canlet.2006.12.021] [PMID: 17275174]
[5]
Provenzale, D. Cost-effectiveness of screening the average-risk population for colorectal cancer. Gastrointest. Endosc. Clin. N. Am., 2002, 12(1), 93-109.
[http://dx.doi.org/10.1016/S1052-5157(03)00061-8] [PMID: 11916165]
[6]
Lee, C.S.; Ronan, L.; O’Morain, C.; McNamara, D. Screening for colorectal cancer: what fits best? Exp Rev. Gastroenterol. Hepatol., 2012, 6(3), 301-312.
[http://dx.doi.org/10.1586/egh.12.12] [PMID: 22646253]
[7]
Schoen, R.E.; Pinsky, P.F.; Weissfeld, J.L.; Yokochi, L.A.; Church, T.; Laiyemo, A.O.; Bresalier, R.; Andriole, G.L.; Buys, S.S.; Crawford, E.D.; Fouad, M.N.; Isaacs, C.; Johnson, C.C.; Reding, D.J.; O’Brien, B.; Carrick, D.M.; Wright, P.; Riley, T.L.; Purdue, M.P.; Izmirlian, G.; Kramer, B.S.; Miller, A.B.; Gohagan, J.K.; Prorok, P.C.; Berg, C.D. PLCO Project Team. Colorectal-cancer incidence and mortality with screening flexible sigmoidoscopy. N. Engl. J. Med., 2012, 366(25), 2345-2357.
[http://dx.doi.org/10.1056/NEJMoa1114635] [PMID: 22612596]
[8]
Atkin, W.S.; Edwards, R.; Kralj-Hans, I.; Wooldrage, K.; Hart, A.R.; Northover, J.M.; Parkin, D.M.; Wardle, J.; Duffy, S.W.; Cuzick, J. UK Flexible Sigmoidoscopy Trial Investigators. Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: a multicentre randomised controlled trial. Lancet, 2010, 375(9726), 1624-1633.
[http://dx.doi.org/10.1016/S0140-6736(10)60551-X] [PMID: 20430429]
[9]
Hewitson, P.; Glasziou, P.; Watson, E.; Towler, B.; Irwig, L. Cochrane systematic review of colorectal cancer screening using the fecal occult blood test (hemoccult): an update. Am. J. Gastroenterol., 2008, 103(6), 1541-1549.
[http://dx.doi.org/10.1111/j.1572-0241.2008.01875.x] [PMID: 18479499]
[10]
Smith, R.A.; Cokkinides, V.; Brooks, D.; Saslow, D.; Shah, M.; Brawley, O.W. Cancer screening in the United States, 2011: A review of current American Cancer Society guidelines and issues in cancer screening. CA Cancer J. Clin., 2011, 61(1), 8-30.
[http://dx.doi.org/10.3322/caac.20096] [PMID: 21205832]
[11]
Ang, C.S.; Phung, J.; Nice, E.C. The discovery and validation of colorectal cancer biomarkers. Biomed. Chromatogr., 2011, 25(1-2), 82-99.
[http://dx.doi.org/10.1002/bmc.1528] [PMID: 21058408]
[12]
Adler, A.; Geiger, S.; Keil, A.; Bias, H.; Schatz, P.; deVos, T.; Dhein, J.; Zimmermann, M.; Tauber, R.; Wiedenmann, B. Improving compliance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in Germany. BMC Gastroenterol., 2014, 14, 183.
[http://dx.doi.org/10.1186/1471-230X-14-183] [PMID: 25326034]
[13]
Jones, J.J.; Wilcox, B.E.; Benz, R.W.; Babbar, N.; Boragine, G.; Burrell, T.; Christie, E.B.; Croner, L.J.; Cun, P.; Dillon, R.; Kairs, S.N.; Kao, A.; Preston, R.; Schreckengaust, S.R.; Skor, H.; Smith, W.F.; You, J.; Hillis, W.D.; Agus, D.B.; Blume, J.E. A plasma-based protein marker panel for colorectal cancer detection identified by multiplex targeted mass spectrometry. Clin. Colorectal Cancer, 2016, 15(2), 186-194.e13.
[http://dx.doi.org/10.1016/j.clcc.2016.02.004] [PMID: 27237338]
[14]
Jin, P.; Wang, K.; Huang, C.; Nice, E.C. Mining the fecal proteome: from biomarkers to personalised medicine. Expert Rev. Proteomics, 2017, 14(5), 445-459.
[http://dx.doi.org/10.1080/14789450.2017.1314786] [PMID: 28361558]
[15]
Faivre, J.; Dancourt, V.; Lejeune, C.; Tazi, M.A.; Lamour, J.; Gerard, D.; Dassonville, F.; Bonithon-Kopp, C. Reduction in colorectal cancer mortality by fecal occult blood screening in a French controlled study. Gastroenterology, 2004, 126(7), 1674-1680.
[http://dx.doi.org/10.1053/j.gastro.2004.02.018] [PMID: 15188160]
[16]
Hardcastle, J.D.; Chamberlain, J.O.; Robinson, M.H.; Moss, S.M.; Amar, S.S.; Balfour, T.W.; James, P.D.; Mangham, C.M. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. Lancet, 1996, 348(9040), 1472-1477.
[http://dx.doi.org/10.1016/S0140-6736(96)03386-7] [PMID: 8942775]
[17]
Peltier, J.; Roperch, J.P.; Audebert, S.; Borg, J.P.; Camoin, L. Quantitative proteomic analysis exploring progression of colorectal cancer: modulation of the serpin family. J. Proteomics, 2016, 148, 139-148.
[http://dx.doi.org/10.1016/j.jprot.2016.07.031] [PMID: 27492143]
[18]
Adelstein, B.A.; Macaskill, P.; Chan, S.F.; Katelaris, P.H.; Irwig, L. Most bowel cancer symptoms do not indicate colorectal cancer and polyps: a systematic review. BMC Gastroenterol., 2011, 11, 65.
[http://dx.doi.org/10.1186/1471-230X-11-65] [PMID: 21624112]
[19]
Winawer, S.; Fletcher, R.; Rex, D.; Bond, J.; Burt, R.; Ferrucci, J.; Ganiats, T.; Levin, T.; Woolf, S.; Johnson, D.; Kirk, L.; Litin, S.; Simmang, C. Gastrointestinal Consortium Panel. Colorectal cancer screening and surveillance: clinical guidelines and rationale-update based on new evidence. Gastroenterology, 2003, 124(2), 544-560.
[http://dx.doi.org/10.1053/gast.2003.50044] [PMID: 12557158]
[20]
Singh, H.; Turner, D.; Xue, L.; Targownik, L.E.; Bernstein, C.N. Risk of developing colorectal cancer following a negative colonoscopy examination: evidence for a 10-year interval between colonoscopies. JAMA, 2006, 295(20), 2366-2373.
[http://dx.doi.org/10.1001/jama.295.20.2366] [PMID: 16720822]
[21]
Selby, J.V.; Friedman, G.D.; Quesenberry, C.P. Jr.; Weiss, N.S. A case-control study of screening sigmoidoscopy and mortality from colorectal cancer. N. Engl. J. Med., 1992, 326(10), 653-657.
[http://dx.doi.org/10.1056/NEJM199203053261001] [PMID: 1736103]
[22]
Newcomb, P.A.; Storer, B.E.; Morimoto, L.M.; Templeton, A.; Potter, J.D. Long-term efficacy of sigmoidoscopy in the reduction of colorectal cancer incidence. J. Natl. Cancer Inst., 2003, 95(8), 622-625.
[http://dx.doi.org/10.1093/jnci/95.8.622] [PMID: 12697855]
[23]
Baxter, N.N.; Goldwasser, M.A.; Paszat, L.F.; Saskin, R.; Urbach, D.R.; Rabeneck, L. Association of colonoscopy and death from colorectal cancer. Ann. Intern. Med., 2009, 150(1), 1-8.
[http://dx.doi.org/10.7326/0003-4819-150-1-200901060-00306] [PMID: 19075198]
[24]
Rabeneck, L.; Paszat, L.F.; Hilsden, R.J.; Saskin, R.; Leddin, D.; Grunfeld, E.; Wai, E.; Goldwasser, M.; Sutradhar, R.; Stukel, T.A. Bleeding and perforation after outpatient colonoscopy and their risk factors in usual clinical practice. Gastroenterology, 2008, 135(6), 1899-1906 1906.e1..
[http://dx.doi.org/10.1053/j.gastro.2008.08.058] [PMID: 18938166]
[25]
Rex, D.K.; Boland, C.R.; Dominitz, J.A.; Giardiello, F.M.; Johnson, D.A.; Kaltenbach, T.; Levin, T.R.; Lieberman, D.; Robertson, D.J. Colorectal cancer screening: recommendations for physicians and patients from the U.S. multi-society task force on colorectal cancer. Gastroenterology, 2017, 153(1), 307-323.
[http://dx.doi.org/10.1053/j.gastro.2017.05.013] [PMID: 28600072]
[26]
Gimeno García, A.Z. Factors influencing colorectal cancer screening participation. Gastroenterol. Res. Pract., 2012, 2012483417
[http://dx.doi.org/10.1155/2012/483417] [PMID: 22190913]
[27]
Seeff, L.C.; Manninen, D.L.; Dong, F.B.; Chattopadhyay, S.K.; Nadel, M.R.; Tangka, F.K.; Molinari, N.A. Is there endoscopic capacity to provide colorectal cancer screening to the unscreened population in the United States? Gastroenterology, 2004, 127(6), 1661-1669.
[http://dx.doi.org/10.1053/j.gastro.2004.09.052] [PMID: 15578502]
[28]
Wee, C.C.; McCarthy, E.P.; Phillips, R.S. Factors associated with colon cancer screening: the role of patient factors and physician counseling. Prev. Med., 2005, 41(1), 23-29.
[http://dx.doi.org/10.1016/j.ypmed.2004.11.004] [PMID: 15916989]
[29]
Denberg, T.D.; Melhado, T.V.; Coombes, J.M.; Beaty, B.L.; Berman, K.; Byers, T.E.; Marcus, A.C.; Steiner, J.F.; Ahnen, D.J. Predictors of nonadherence to screening colonoscopy. J. Gen. Intern. Med., 2005, 20(11), 989-995.
[http://dx.doi.org/10.1111/j.1525-1497.2005.00164.x] [PMID: 16307622]
[30]
Surinova, S.; Choi, M.; Tao, S.; Schüffler, P.J.; Chang, C.Y.; Clough, T.; Vysloužil, K.; Khoylou, M.; Srovnal, J.; Liu, Y.; Matondo, M.; Hüttenhain, R.; Weisser, H.; Buhmann, J.M.; Hajdúch, M.; Brenner, H.; Vitek, O.; Aebersold, R. Prediction of colorectal cancer diagnosis based on circulating plasma proteins. EMBO Mol. Med., 2015, 7(9), 1166-1178.
[http://dx.doi.org/10.15252/emmm.201404873] [PMID: 26253081]
[31]
Ahlquist, D.A. Molecular detection of colorectal neoplasia. Gastroenterology, 2010, 138(6), 2127-2139.
[http://dx.doi.org/10.1053/j.gastro.2010.01.055] [PMID: 20420950]
[32]
Negm, O.H.; Hamed, M.R.; Schoen, R.E.; Whelan, R.L.; Steele, R.J.; Scholefield, J.; Dilnot, E.M.; Shantha-Kumara, H.M.; Robertson, J.F.; Sewell, H.F. Human blood autoantibodies in the detection of colorectal cancer. PLoS One, 2016, 11(7)e0156971
[http://dx.doi.org/10.1371/journal.pone.0156971] [PMID: 27383396]
[33]
Yu, J.; Zhai, X.; Li, X.; Zhong, C.; Guo, C.; Yang, F.; Yuan, Y.; Zheng, S. Identification of MST1 as a potential early detection biomarker for colorectal cancer through a proteomic approach. Sci. Rep., 2017, 7(1), 14265.
[http://dx.doi.org/10.1038/s41598-017-14539-x] [PMID: 29079854]
[34]
Herszényi, L.; Farinati, F.; Cardin, R.; István, G.; Molnár, L.D.; Hritz, I.; De Paoli, M.; Plebani, M.; Tulassay, Z. Tumor marker utility and prognostic relevance of cathepsin B, cathepsin L, urokinase-type plasminogen activator, plasminogen activator inhibitor type-1, CEA and CA 19-9 in colorectal cancer. BMC Cancer, 2008, 8, 194.
[http://dx.doi.org/10.1186/1471-2407-8-194] [PMID: 18616803]
[35]
Palmqvist, R.; Engarås, B.; Lindmark, G.; Hallmans, G.; Tavelin, B.; Nilsson, O.; Hammarström, S.; Hafström, L. Prediagnostic levels of carcinoembryonic antigen and CA 242 in colorectal cancer: a matched case-control study. Dis. Colon Rectum, 2003, 46(11), 1538-1544.
[http://dx.doi.org/10.1007/s10350-004-6810-z] [PMID: 14605576]
[36]
Louhimo, J.; Carpelan-Holmström, M.; Alfthan, H.; Stenman, U.H.; Järvinen, H.J.; Haglund, C. Serum HCG beta, CA 72-4 and CEA are independent prognostic factors in colorectal cancer. Int. J. Cancer, 2002, 101(6), 545-548.
[http://dx.doi.org/10.1002/ijc.90009] [PMID: 12237895]
[37]
Duffy, M.J.; van Dalen, A.; Haglund, C.; Hansson, L.; Holinski-Feder, E.; Klapdor, R.; Lamerz, R.; Peltomaki, P.; Sturgeon, C.; Topolcan, O. Tumour markers in colorectal cancer: European group on tumour markers (EGTM) guidelines for clinical use. Eur. J. Cancer, 2007, 43(9), 1348-1360.
[http://dx.doi.org/10.1016/j.ejca.2007.03.021]] [PMID: 27383396 ]
[38]
Edwards, B.K.; Ward, E.; Kohler, B.A.; Eheman, C.; Zauber, A.G.; Anderson, R.N.; Jemal, A.; Schymura, M.J.; Lansdorp-Vogelaar, I.; Seeff, L.C.; van Ballegooijen, M.; Goede, S.L.; Ries, L.A. Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer, 2010, 116(3), 544-573.
[http://dx.doi.org/10.1002/cncr.24760] [PMID: 19998273]
[39]
Zhang, X.; Xiao, Z.; Liu, X.; Du, L.; Wang, L.; Wang, S.; Zheng, N.; Zheng, G.; Li, W.; Zhang, X.; Dong, Z.; Zhuang, X.; Wang, C. The potential role of ORM2 in the development of colorectal cancer. PLoS One, 2012, 7(2)e31868
[http://dx.doi.org/10.1371/journal.pone.0031868] [PMID: 22363757]
[40]
Nomura, D.K.; Dix, M.M.; Cravatt, B.F. Activity-based protein profiling for biochemical pathway discovery in cancer. Nat. Rev. Cancer, 2010, 10(9), 630-638.
[http://dx.doi.org/10.1038/nrc2901] [PMID: 20703252]
[41]
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature, 2012, 487(7407), 330-337.
[http://dx.doi.org/10.1038/nature11252] [PMID: 22810696]
[42]
Chen, H.; Werner, S.; Tao, S.; Zörnig, I.; Brenner, H. Blood autoantibodies against tumor-associated antigens as biomarkers in early detection of colorectal cancer. Cancer Lett., 2014, 346(2), 178-187.
[http://dx.doi.org/10.1016/j.canlet.2014.01.007] [PMID: 24462820]
[43]
Boyle, P.; Chapman, C.J.; Holdenrieder, S.; Murray, A.; Robertson, C.; Wood, W.C.; Maddison, P.; Healey, G.; Fairley, G.H.; Barnes, A.C.; Robertson, J.F. Clinical validation of an autoantibody test for lung cancer. Ann. Oncol., 2011, 22(2), 383-389.
[http://dx.doi.org/10.1093/annonc/mdq361] [PMID: 20675559]
[44]
Hosono, Y.; Goto, M.; Kobayashi, D.; Kuribayashi, K.; Tanaka, M.; Watanabe, N. Diagnostic relevance of autoantibody detection against inhibitors of apoptosis proteins in colon cancer and colon adenoma. Mol. Clin. Oncol., 2015, 3(3), 595-600.
[http://dx.doi.org/10.3892/mco.2015.502] [PMID: 26137273]
[45]
Cho, W.C.S. Contribution of oncoproteomics to cancer biomarker discovery. Mol. Cancer, 2007, 6, 25.
[http://dx.doi.org/10.1186/1476-4598-6-25] [PMID: 17407558]
[46]
Wulfkuhle, J.D.; Liotta, L.A.; Petricoin, E.F. Proteomic applications for the early detection of cancer. Nat. Rev. Cancer, 2003, 3(4), 267-275.
[http://dx.doi.org/10.1038/nrc1043] [PMID: 12671665]
[47]
Liu, C.; Shen, J.; Pan, C.; Yang, L.; Mou, S.; Wang, H.; Liang, Y. MALDI-TOF MS combined with magnetic beads for detecting serum protein biomarkers and establishment of boosting decision tree model for diagnosis of hepatocellular carcinoma. Am. J. Clin. Pathol., 2010, 134(2), 235-241.
[http://dx.doi.org/10.1309/AJCPA6C6NOGFLYIR] [PMID: 20660326]
[48]
Swiatly, A.; Horala, A.; Hajduk, J.; Matysiak, J.; Nowak-Markwitz, E.; Kokot, Z.J. MALDI-TOF-MS analysis in discovery and identification of serum proteomic patterns of ovarian cancer. BMC Cancer, 2017, 17(1), 472.
[http://dx.doi.org/10.1186/s12885-017-3467-2] [PMID: 28683725]
[49]
Cho, Y.T.; Su, H.; Wu, W.J.; Wu, D.C.; Hou, M.F.; Kuo, C.H.; Shiea, J. Biomarker Characterization by MALDI-TOF/MS. Adv. Clin. Chem., 2015, 69, 209-254.
[http://dx.doi.org/10.1016/bs.acc.2015.01.001] [PMID: 25934363]
[50]
Shi, C.; Meng, J.; Deng, C. Enrichment and detection of small molecules using magnetic graphene as an adsorbent and a novel matrix of MALDI-TOF-MS. Chem. Commun. (Camb.), 2012, 48(18), 2418-2420.
[http://dx.doi.org/10.1039/c2cc17696c] [PMID: 22274859]
[51]
Xu, J.; Xu, B.; Tang, C.; Li, X.; Qin, H.; Wang, W.; Wang, H.; Wang, Z.; Li, L.; Li, Z.; Gao, H.; He, K.; Liu, X. The exploration of peptide biomarkers in malignant pleural effusion of lung cancer using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Dis. Markers, 2017, 20173160426
[http://dx.doi.org/10.1155/2017/3160426] [PMID: 28386154]
[52]
Yang, J.; Zhu, J.; He, K.; Zhao, L.Y.; Liu, L.Y.; Song, T.S.; Huang, C. Proteomic profiling of invasive ductal carcinoma (IDC) using magnetic beads-based serum fractionation and MALDI-TOF MS. J. Clin. Lab. Anal., 2015, 29(4), 321-327.
[http://dx.doi.org/10.1002/jcla.21773] [PMID: 25130542]
[53]
Fan, N.J.; Chen, H.M.; Song, W.; Zhang, Z.Y.; Zhang, M.D.; Feng, L.Y.; Gao, C.F. Macrophage mannose receptor 1 and S100A9 were identified as serum diagnostic biomarkers for colorectal cancer through a label-free quantitative proteomic analysis. Cancer Biomark., 2016, 16(2), 235-243.
[http://dx.doi.org/10.3233/CBM-150560] [PMID: 26682511]
[54]
Dunn, M. J. Proteomics reviews 2013. Proteomics, 2013, 13(3-4), 399-403.
[http://dx.doi.org/10.1002/pmic.201370033] [PMID: 23417839]
[55]
Anderson, L.; Hunter, C.L. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell. Proteomics, 2006, 5(4), 573-588.
[http://dx.doi.org/10.1074/mcp.M500331-MCP200] [PMID: 16332733]
[56]
Whiteaker, J.R.; Zhao, L.; Anderson, L.; Paulovich, A.G. An automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry-based quantification of protein biomarkers. Mol. Cell. Proteomics, 2010, 9(1), 184-196.
[http://dx.doi.org/10.1074/mcp.M900254-MCP200] [PMID: 19843560]
[57]
Kuzyk, M.A.; Parker, C.E.; Domanski, D.; Borchers, C.H. Development of MRM-based assays for the absolute quantitation of plasma proteins. Meth Mol. Biol., 2013, 1023, 53-82.
[http://dx.doi.org/10.1007/978-1-4614-7209-4_4] [PMID: 23765619]
[58]
Gillette, M.A.; Carr, S.A. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat. Methods, 2013, 10(1), 28-34.
[http://dx.doi.org/10.1038/nmeth.2309] [PMID: 23269374]
[59]
Marx, V. Targeted proteomics. Nat. Methods, 2013, 10(1), 19-22.
[http://dx.doi.org/10.1038/nmeth.2285] [PMID: 23547293]
[60]
Shao, S.; Neely, B.A.; Kao, T.C.; Eckhaus, J.; Bourgeois, J.; Brooks, J.; Jones, E.E.; Drake, R.R.; Zhu, K. Proteomic profiling of serial prediagnostic serum samples for early detection of colon cancer in the U.S. military. Cancer Epidemiol. Biomarkers Prev., 2017, 26(5), 711-718.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0732] [PMID: 28003179]
[61]
Yu, J.; Li, X.; Zhong, C.; Li, D.; Zhai, X.; Hu, W.; Guo, C.; Yuan, Y.; Zheng, S. High-throughput proteomics integrated with gene microarray for discovery of colorectal cancer potential biomarkers. Oncotarget, 2016, 7(46), 75279-75292.
[http://dx.doi.org/10.18632/oncotarget.12143] [PMID: 27661117]
[62]
Shiromizu, T.; Kume, H.; Ishida, M.; Adachi, J.; Kano, M.; Matsubara, H.; Tomonaga, T. Quantitation of putative colorectal cancer biomarker candidates in serum extracellular vesicles by targeted proteomics. Sci. Rep., 2017, 7(1), 12782.
[http://dx.doi.org/10.1038/s41598-017-13092-x] [PMID: 28986585]
[63]
Shin, J.; Kim, H.J.; Kim, G.; Song, M.; Woo, S.J.; Lee, S.T.; Kim, H.; Lee, C. Discovery of melanotransferrin as a serological marker of colorectal cancer by secretome analysis and quantitative proteomics. J. Proteome Res., 2014, 13(11), 4919-4931.
[http://dx.doi.org/10.1021/pr500790f] [PMID: 25216327]
[64]
Kobayashi, S.; Hoshino, T.; Hiwasa, T.; Satoh, M.; Rahmutulla, B.; Tsuchida, S.; Komukai, Y.; Tanaka, T.; Matsubara, H.; Shimada, H.; Nomura, F.; Matsushita, K. Anti-FIRs (PUF60) auto-antibodies are detected in the sera of early-stage colon cancer patients. Oncotarget, 2016, 7(50), 82493-82503.
[http://dx.doi.org/10.18632/oncotarget.12696] [PMID: 27756887]
[65]
Fan, N.J.; Kang, R.; Ge, X.Y.; Li, M.; Liu, Y.; Chen, H.M.; Gao, C.F. Identification alpha-2-HS-glycoprotein precursor and tubulin beta chain as serology diagnosis biomarker of colorectal cancer. Diagn. Pathol., 2014, 9, 53.
[http://dx.doi.org/10.1186/1746-1596-9-53] [PMID: 24618180]
[66]
Murakoshi, Y.; Honda, K.; Sasazuki, S.; Ono, M.; Negishi, A.; Matsubara, J.; Sakuma, T.; Kuwabara, H.; Nakamori, S.; Sata, N.; Nagai, H.; Ioka, T.; Okusaka, T.; Kosuge, T.; Shimahara, M.; Yasunami, Y.; Ino, Y.; Tsuchida, A.; Aoki, T.; Tsugane, S.; Yamada, T. Plasma biomarker discovery and validation for colorectal cancer by quantitative shotgun mass spectrometry and protein microarray. Cancer Sci., 2011, 102(3), 630-638.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01818.x] [PMID: 21199170]
[67]
Ma, Y.; Peng, J.; Liu, W.; Zhang, P.; Huang, L.; Gao, B.; Shen, T.; Zhou, Y.; Chen, H.; Chu, Z.; Zhang, M.; Qin, H. Proteomics identification of desmin as a potential oncofetal diagnostic and prognostic biomarker in colorectal cancer. Mol. Cell. Proteomics, 2009, 8(8), 1878-1890.
[http://dx.doi.org/10.1074/mcp.M800541-MCP200] [PMID: 19460759]
[68]
Babel, I.; Barderas, R.; Diaz-Uriarte, R.; Moreno, V.; Suarez, A.; Fernandez-Aceñero, M. J.; Salazar, R.; Capellá, G.; Casal, J. I. Identification of MST1/STK4 and SULF1 proteins as autoantibody targets for the diagnosis of colorectal cancer by using phage microarrays. Mol. Cell. Proteomics, 2011, 10(3), M110.001784..
[http://dx.doi.org/10.1074/mcp.m110.001784] [PMID: 21228115]
[69]
Ladd, J.J.; Busald, T.; Johnson, M.M.; Zhang, Q.; Pitteri, S.J.; Wang, H.; Brenner, D.E.; Lampe, P.D.; Kucherlapati, R.; Feng, Z.; Prentice, R.L.; Hanash, S.M. Increased plasma levels of the APC-interacting protein MAPRE1, LRG1, and IGFBP2 preceding a diagnosis of colorectal cancer in women. Cancer Prev. Res. (Phila.), 2012, 5(4), 655-664.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0412] [PMID: 22277732]
[70]
Yao, L.; Lao, W.; Zhang, Y.; Tang, X.; Hu, X.; He, C.; Hu, X.; Xu, L.X. Identification of EFEMP2 as a serum biomarker for the early detection of colorectal cancer with lectin affinity capture assisted secretome analysis of cultured fresh tissues. J. Proteome Res., 2012, 11(6), 3281-3294.
[http://dx.doi.org/10.1021/pr300020p] [PMID: 22506683]
[71]
Ji, D.; Li, M.; Zhan, T.; Yao, Y.; Shen, J.; Tian, H.; Zhang, Z.; Gu, J. Prognostic role of serum AZGP1, PEDF and PRDX2 in colorectal cancer patients. Carcinogenesis, 2013, 34(6), 1265-1272.
[http://dx.doi.org/10.1093/carcin/bgt056] [PMID: 23393224]
[72]
Wang, J.; Wang, X.; Lin, S.; Chen, C.; Wang, C.; Ma, Q.; Jiang, B. Identification of kininogen-1 as a serum biomarker for the early detection of advanced colorectal adenoma and colorectal cancer. PLoS One, 2013, 8(7)e70519
[http://dx.doi.org/10.1371/journal.pone.0070519] [PMID: 23894665]
[73]
Bertuzzi, M.; Marelli, C.; Bagnati, R.; Colombi, A.; Fanelli, R.; Saieva, C.; Ceroti, M.; Bendinelli, B.; Caini, S.; Airoldi, L.; Palli, D. Plasma clusterin as a candidate pre-diagnosis marker of colorectal cancer risk in the Florence cohort of the European Prospective Investigation into Cancer and Nutrition: a pilot study. BMC Cancer, 2015, 15, 56.
[http://dx.doi.org/10.1186/s12885-015-1058-7] [PMID: 25884309]
[74]
Qiao, J.; Fang, C.Y.; Chen, S.X.; Wang, X.Q.; Cui, S.J.; Liu, X.H.; Jiang, Y.H.; Wang, J.; Zhang, Y.; Yang, P.Y.; Liu, F. Stroma derived COL6A3 is a potential prognosis marker of colorectal carcinoma revealed by quantitative proteomics. Oncotarget, 2015, 6(30), 29929-29946.
[http://dx.doi.org/10.18632/oncotarget.4966] [PMID: 26338966]
[75]
Lin, Q.; Lim, H.S.; Lin, H.L.; Tan, H.T.; Lim, T.K.; Cheong, W.K.; Cheah, P.Y.; Tang, C.L.; Chow, P.K.; Chung, M.C. Analysis of colorectal cancer glyco-secretome identifies laminin β-1 (LAMB1) as a potential serological biomarker for colorectal cancer. Proteomics, 2015, 15(22), 3905-3920.
[http://dx.doi.org/10.1002/pmic.201500236] [PMID: 26359947]
[76]
Peltier, J.; Roperch, J.P.; Audebert, S.; Borg, J.P.; Camoin, L. Activation peptide of the coagulation factor XIII (AP-F13A1) as a new biomarker for the screening of colorectal cancer. Clin. Proteomics, 2018, 15, 15.
[http://dx.doi.org/10.1186/s12014-018-9191-3] [PMID: 29657559]
[77]
Jaberie, H.; Hosseini, S.V.; Naghibalhossaini, F. Evaluation of alpha 1-antitrypsin for the early diagnosis of colorectal cancer. Pathol. Oncol. Res., 2020, 26(2), 1165-1173.
[http://dx.doi.org/10.1007/s12253-019-00679-0]] [PMID: 31183614]
[78]
Álvarez-Fernández, S.M.; Barbariga, M.; Cannizzaro, L.; Cannistraci, C.V.; Hurley, L.; Zanardi, A.; Conti, A.; Sanvito, F.; Innocenzi, A.; Pecorelli, N.; Braga, M.; Alessio, M. Serological immune response against ADAM10 pro-domain is associated with favourable prognosis in stage III colorectal cancer patients. Oncotarget, 2016, 7(48), 80059-80076.
[http://dx.doi.org/10.18632/oncotarget.11181] [PMID: 27517630]
[79]
Villar-Vázquez, R.; Padilla, G.; Fernández-Aceñero, M.J.; Suárez, A.; Fuente, E.; Pastor, C.; Calero, M.; Barderas, R.; Casal, J.I. Development of a novel multiplex beads-based assay for autoantibody detection for colorectal cancer diagnosis. Proteomics, 2016, 16(8), 1280-1290.
[http://dx.doi.org/10.1002/pmic.201500413] [PMID: 26915739]
[80]
Liu, C.; Pan, C.; Shen, J.; Wang, H.; Yong, L. MALDI-TOF MS combined with magnetic beads for detecting serum protein biomarkers and establishment of boosting decision tree model for diagnosis of colorectal cancer. Int. J. Med. Sci., 2011, 8(1), 39-47.
[http://dx.doi.org/10.7150/ijms.8.39] [PMID: 21234268]
[81]
Lim, L.C.; Looi, M.L.; Zakaria, S.Z.; Sagap, I.; Rose, I.M.; Chin, S.F.; Jamal, R. Identification of differentially expressed proteins in the serum of colorectal cancer patients using 2D-DIGE proteomics analysis. Pathol. Oncol. Res., 2016, 22(1), 169-177.
[http://dx.doi.org/10.1007/s12253-015-9991-y] [PMID: 26463353]
[82]
Albrethsen, J.; Bøgebo, R.; Møller, C.H.; Olsen, J.A.; Raskov, H.H.; Gammeltoft, S. Candidate biomarker verification: critical examination of a serum protein pattern for human colorectal cancer. Proteomics Clin. Appl., 2012, 6(3-4), 182-189.
[http://dx.doi.org/10.1002/prca.201100095] [PMID: 22532454]
[83]
Zhu, D.; Wang, J.; Ren, L.; Li, Y.; Xu, B.; Wei, Y.; Zhong, Y.; Yu, X.; Zhai, S.; Xu, J.; Qin, X. Serum proteomic profiling for the early diagnosis of colorectal cancer. J. Cell. Biochem., 2013, 114(2), 448-455.
[http://dx.doi.org/10.1002/jcb.24384] [PMID: 22961748]
[84]
Dowling, P.; Hughes, D.J.; Larkin, A.M.; Meiller, J.; Henry, M.; Meleady, P.; Lynch, V.; Pardini, B.; Naccarati, A.; Levy, M.; Vodicka, P.; Neary, P.; Clynes, M. Elevated levels of 14-3-3 proteins, serotonin, gamma enolase and pyruvate kinase identified in clinical samples from patients diagnosed with colorectal cancer. Clin. Chim. Acta, 2015, 441, 133-141.
[http://dx.doi.org/10.1016/j.cca.2014.12.005]] [PMID: 25540887]
[85]
Shu, P.; Zhao, L.; Wagn, J.; Shen, X.; Zhang, X.; Shen, S.; Ma, J.; Li, X. [Association between serum levels of S100A8/S100A9 and clinical features of colorectal cancer patients]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2016, 41(6), 553-559.
[http://dx.doi.org/10.11817/j.issn.1672-7347.2016.06.001]] [PMID: 27374437]
[86]
Kim, H.J.; Kang, H.J.; Lee, H.; Lee, S.T.; Yu, M.H.; Kim, H.; Lee, C. Identification of S100A8 and S100A9 as serological markers for colorectal cancer. J. Proteome Res., 2009, 8(3), 1368-1379.
[http://dx.doi.org/10.1021/pr8007573] [PMID: 19186948]
[87]
Niewiarowska, K.; Pryczynicz, A.; Dymicka-Piekarska, V.; Gryko, M.; Cepowicz, D.; Famulski, W.; Kemona, A.; Guzińska-Ustymowicz, K. Diagnostic significance of TIMP-1 level in serum and its immunohistochemical expression in colorectal cancer patients. Pol. J. Pathol., 2014, 65(4), 296-304.
[http://dx.doi.org/10.5114/pjp.2014.48191]] [PMID: 25693084]
[88]
Waas, E.T.; Hendriks, T.; Lomme, R.M.; Wobbes, T. Plasma levels of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 correlate with disease stage and survival in colorectal cancer patients. Dis. Colon Rectum, 2005, 48(4), 700-710.
[http://dx.doi.org/10.1007/s10350-004-0854-y] [PMID: 15906450]
[89]
Soler, M.; Estevez, M.C.; Villar-Vazquez, R.; Casal, J.I.; Lechuga, L.M. Label-free nanoplasmonic sensing of tumor-associate autoantibodies for early diagnosis of colorectal cancer. Anal. Chim. Acta, 2016, 930, 31-38.
[http://dx.doi.org/10.1016/j.aca.2016.04.059] [PMID: 27265902]
[90]
Schisterman, E.F.; Faraggi, D.; Reiser, B. Adjusting the generalized ROC curve for covariates. Stat. Med., 2004, 23(21), 3319-3331.
[http://dx.doi.org/10.1002/sim.1908] [PMID: 15490426]
[91]
Huber, K.; Kirchheimer, J.C.; Sedlmayer, A.; Bell, C.; Ermler, D.; Binder, B.R. Clinical value of determination of urokinase-type plasminogen activator antigen in plasma for detection of colorectal cancer: comparison with circulating tumor-associated antigens CA 19-9 and carcinoembryonic antigen. Cancer Res., 1993, 53(8), 1788-1793.
[PMID: 8467497]
[92]
Kos, J.; Nielsen, H.J.; Krasovec, M.; Christensen, I.J.; Cimerman, N.; Stephens, R.W.; Brünner, N. Prognostic values of cathepsin B and carcinoembryonic antigen in sera of patients with colorectal cancer. Clin. Cancer Res., 1998, 4(6), 1511-1516.
[PMID: 9626470]
[93]
Sebzda, T.; Saleh, Y.; Gburek, J.; Warwas, M.; Andrzejak, R.; Siewinski, M.; Rudnicki, J. Total and lipid-bound plasma sialic acid as diagnostic markers in colorectal cancer patients: correlation with cathepsin B expression in progression to Dukes stage. J. Exp. Ther. Oncol., 2006, 5(3), 223-229.
[PMID: 16528972]
[94]
Huntington, J.A. Shape-shifting serpins--advantages of a mobile mechanism. Trends Biochem. Sci., 2006, 31(8), 427-435.
[http://dx.doi.org/10.1016/j.tibs.2006.06.005] [PMID: 16820297]
[95]
Silverman, G.A.; Bird, P.I.; Carrell, R.W.; Church, F.C.; Coughlin, P.B.; Gettins, P.G.; Irving, J.A.; Lomas, D.A.; Luke, C.J.; Moyer, R.W.; Pemberton, P.A.; Remold-O’Donnell, E.; Salvesen, G.S.; Travis, J.; Whisstock, J.C. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J. Biol. Chem., 2001, 276(36), 33293-33296.
[http://dx.doi.org/10.1074/jbc.R100016200] [PMID: 11435447]
[96]
Karashima, S.; Kataoka, H.; Itoh, H.; Maruyama, R.; Koono, M. Prognostic significance of alpha-1-antitrypsin in early stage of colorectal carcinomas. Int. J. Cancer, 1990, 45(2), 244-250.
[http://dx.doi.org/10.1002/ijc.2910450207] [PMID: 2303291]
[97]
Kwon, C.H.; Park, H.J.; Choi, J.H.; Lee, J.R.; Kim, H.K.; Jo, H.J.; Kim, H.S.; Oh, N.; Song, G.A.; Park, D.Y. Snail and serpinA1 promote tumor progression and predict prognosis in colorectal cancer. Oncotarget, 2015, 6(24), 20312-20326.
[http://dx.doi.org/10.18632/oncotarget.3964] [PMID: 26015410]
[98]
Cao, L-L.; Pei, X-F.; Qiao, X.; Yu, J.; Ye, H.; Xi, C-L.; Wang, P-Y.; Gong, Z-L. SERPINA3 silencing inhibits the migration, invasion, and liver metastasis of colon cancer cells. Dig. Dis. Sci., 2018, 63(9), 2309-2319.
[http://dx.doi.org/10.1007/s10620-018-5137-x] [PMID: 29855767]
[99]
Kittas, C.; Aroni, K.; Kotsis, L.; Papadimitriou, C.S. Distribution of lysozyme, alpha 1-Antichymotrypsin and alpha 1-Antitrypsin in adenocarcinomas of the stomach and large intestine. An immunohistochemical study. Virchows Arch. A Pathol. Anat. Histopathol., 1982, 398(2), 139-147.
[http://dx.doi.org/10.1007/BF00618865] [PMID: 6819707]
[100]
McCarthy, C.; Saldova, R.; Wormald, M.R.; Rudd, P.M.; McElvaney, N.G.; Reeves, E.P. The role and importance of glycosylation of acute phase proteins with focus on alpha-1 antitrypsin in acute and chronic inflammatory conditions. J. Proteome Res., 2014, 13(7), 3131-3143.
[http://dx.doi.org/10.1021/pr500146y] [PMID: 24892502]
[101]
Shahaf, G.; Moser, H.; Ozeri, E.; Mizrahi, M.; Abecassis, A.; Lewis, E.C. α-1-antitrypsin gene delivery reduces inflammation, increases T-regulatory cell population size and prevents islet allograft rejection. Mol. Med., 2011, 17(9-10), 1000-1011.
[http://dx.doi.org/10.2119/molmed.2011.00145] [PMID: 21670848]
[102]
Ercetin, E.; Richtmann, S.; Delgado, B.M.; Gomez-Mariano, G.; Wrenger, S.; Korenbaum, E.; Liu, B.; DeLuca, D.; Kühnel, M.P.; Jonigk, D.; Yuskaeva, K.; Warth, A.; Muley, T.; Winter, H.; Meister, M.; Welte, T.; Janciauskiene, S.; Schneider, M.A. Clinical significance of SERPINA1 gene and its encoded alpha1-antitrypsin protein in NSCLC. Cancers (Basel), 2019, 11(9)E1306
[http://dx.doi.org/10.3390/cancers11091306] [PMID: 31487965]
[103]
Dufresne, J.; Bowden, P.; Thavarajah, T.; Florentinus-Mefailoski, A.; Chen, Z.Z.; Tucholska, M.; Norzin, T.; Ho, M.T.; Phan, M.; Mohamed, N.; Ravandi, A.; Stanton, E.; Slutsky, A.S.; Dos Santos, C.C.; Romaschin, A.; Marshall, J.C.; Addison, C.; Malone, S.; Heyland, D.; Scheltens, P.; Killestein, J.; Teunissen, C.E.; Diamandis, E.P.; Michael Siu, K.W.; Marshall, J.G. The plasma peptides of ovarian cancer. Clin. Proteomics, 2018, 15, 41.
[http://dx.doi.org/10.1186/s12014-018-9215-z] [PMID: 30598658]
[104]
Chu, H-W.; Chang, K-P.; Hsu, C-W.; Chang, I.Y-F.; Liu, H-P.; Chen, Y-T.; Wu, C-C. Identification of salivary biomarkers for oral cancer detection with untargeted and targeted quantitative proteomics approaches. Mol. Cell. Proteomics, 2019, 18(9), 1796-1806.
[http://dx.doi.org/10.1074/mcp.RA119.001530] [PMID: 31253657]
[105]
Xie, L.Q.; Zhao, C.; Cai, S.J.; Xu, Y.; Huang, L.Y.; Bian, J.S.; Shen, C.P.; Lu, H.J.; Yang, P.Y. Novel proteomic strategy reveal combined alpha1 antitrypsin and cathepsin D as biomarkers for colorectal cancer early screening. J. Proteome Res., 2010, 9(9), 4701-4709.
[http://dx.doi.org/10.1021/pr100406z] [PMID: 20666480]
[106]
Pérez-Holanda, S.; Blanco, I.; Menéndez, M.; Rodrigo, L. Serum concentration of alpha-1 antitrypsin is significantly higher in colorectal cancer patients than in healthy controls. BMC Cancer, 2014, 14, 355.
[http://dx.doi.org/10.1186/1471-2407-14-355] [PMID: 24886427]
[107]
Yang, P.; Cunningham, J.M.; Halling, K.C.; Lesnick, T.G.; Burgart, L.J.; Wiegert, E.M.; Christensen, E.R.; Lindor, N.M.; Katzmann, J.A.; Thibodeau, S.N. Higher risk of mismatch repair-deficient colorectal cancer in alpha(1)-antitrypsin deficiency carriers and cigarette smokers. Mol. Genet. Metab., 2000, 71(4), 639-645.
[http://dx.doi.org/10.1006/mgme.2000.3089] [PMID: 11136557]
[108]
Bujanda, L.; Sarasqueta, C.; Cosme, A.; Hijona, E.; Enríquez-Navascués, J.M.; Placer, C.; Villarreal, E.; Herreros-Villanueva, M.; Giraldez, M.D.; Gironella, M.; Balaguer, F.; Castells, A. Evaluation of alpha 1-antitrypsin and the levels of mRNA expression of matrix metalloproteinase 7, urokinase type plasminogen activator receptor and COX-2 for the diagnosis of colorectal cancer. PLoS One, 2013, 8(1)e51810
[http://dx.doi.org/10.1371/journal.pone.0051810] [PMID: 23300952]
[109]
Srikrishna, G. S100A8 and S100A9: new insights into their roles in malignancy. J. Innate Immun., 2012, 4(1), 31-40.
[http://dx.doi.org/10.1159/000330095] [PMID: 21912088]
[110]
Ang, C.W.; Nedjadi, T.; Sheikh, A.A.; Tweedle, E.M.; Tonack, S.; Honap, S.; Jenkins, R.E.; Park, B.K.; Schwarte-Waldhoff, I.; Khattak, I.; Azadeh, B.; Dodson, A.; Kalirai, H.; Neoptolemos, J.P.; Rooney, P.S.; Costello, E. Smad4 loss is associated with fewer S100A8-positive monocytes in colorectal tumors and attenuated response to S100A8 in colorectal and pancreatic cancer cells. Carcinogenesis, 2010, 31(9), 1541-1551.
[http://dx.doi.org/10.1093/carcin/bgq137] [PMID: 20622003]
[111]
Duan, L.; Wu, R.; Ye, L.; Wang, H.; Yang, X.; Zhang, Y.; Chen, X.; Zuo, G.; Zhang, Y.; Weng, Y.; Luo, J.; Tang, M.; Shi, Q.; He, T.; Zhou, L. S100A8 and S100A9 are associated with colorectal carcinoma progression and contribute to colorectal carcinoma cell survival and migration via Wnt/β-catenin pathway. PLoS One, 2013, 8(4)e62092
[http://dx.doi.org/10.1371/journal.pone.0062092] [PMID: 23637971]
[112]
Cheng, P.; Corzo, C.A.; Luetteke, N.; Yu, B.; Nagaraj, S.; Bui, M.M.; Ortiz, M.; Nacken, W.; Sorg, C.; Vogl, T.; Roth, J.; Gabrilovich, D.I. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. Exp. Med., 2008, 205(10), 2235-2249.
[http://dx.doi.org/10.1084/jem.20080132] [PMID: 18809714]
[113]
Kim, J.H.; Oh, S.H.; Kim, E.J.; Park, S.J.; Hong, S.P.; Cheon, J.H.; Kim, T.I.; Kim, W.H. The role of myofibroblasts in upregulation of S100A8 and S100A9 and the differentiation of myeloid cells in the colorectal cancer microenvironment. Biochem. Biophys. Res. Commun., 2012, 423(1), 60-66.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.081] [PMID: 22634002]
[114]
Azramezani Kopi, T.; Amini Kadijani, A.; Parsian, H.; Shahrokh, S.; Asadzadeh Aghdaei, H.; Mirzaei, A.; Balaii, H.; Zali, M.R. The value of mRNA expression of S100A8 and S100A9 as blood-based biomarkers of inflammatory bowel disease. Arab J. Gastroenterol., 2019, 20(3), 135-140.
[http://dx.doi.org/10.1016/j.ajg.2019.07.002] [PMID: 31563476]
[115]
Kobold, S.; Lütkens, T.; Cao, Y.; Bokemeyer, C.; Atanackovic, D. Autoantibodies against tumor-related antigens: incidence and biologic significance. Hum. Immunol., 2010, 71(7), 643-651.
[http://dx.doi.org/10.1016/j.humimm.2010.03.015] [PMID: 20433885]
[116]
Chapman, C.; Murray, A.; Chakrabarti, J.; Thorpe, A.; Woolston, C.; Sahin, U.; Barnes, A.; Robertson, J. Autoantibodies in breast cancer: their use as an aid to early diagnosis. Ann. Oncol., 2007, 18(5), 868-873.
[http://dx.doi.org/10.1093/annonc/mdm007] [PMID: 17347129]
[117]
Babel, I.; Barderas, R.; Díaz-Uriarte, R.; Martínez-Torrecuadrada, J.L.; Sánchez-Carbayo, M.; Casal, J.I. Identification of tumor-associated autoantigens for the diagnosis of colorectal cancer in serum using high density protein microarrays. Mol. Cell. Proteomics, 2009, 8(10), 2382-2395.
[http://dx.doi.org/10.1074/mcp.M800596-MCP200] [PMID: 19638618]
[118]
Gerke, V.; Creutz, C.E.; Moss, S.E. Annexins: linking Ca2+ signalling to membrane dynamics. Nat. Rev. Mol. Cell Biol., 2005, 6(6), 449-461.
[http://dx.doi.org/10.1038/nrm1661] [PMID: 15928709]
[119]
Duncan, R.; Carpenter, B.; Main, L.C.; Telfer, C.; Murray, G.I. Characterisation and protein expression profiling of annexins in colorectal cancer. Br. J. Cancer, 2008, 98(2), 426-433.
[http://dx.doi.org/10.1038/sj.bjc.6604128] [PMID: 18071363]
[120]
Shannan, B.; Seifert, M.; Leskov, K.; Willis, J.; Boothman, D.; Tilgen, W.; Reichrath, J. Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ., 2006, 13(1), 12-19.
[http://dx.doi.org/10.1038/sj.cdd.4401779] [PMID: 16179938]
[121]
Rodríguez-Piñeiro, A.M.; García-Lorenzo, A.; Blanco-Prieto, S.; Alvarez-Chaver, P.; Rodríguez-Berrocal, F.J.; Cadena, M.P.; Martínez-Zorzano, V.S. Secreted clusterin in colon tumor cell models and its potential as diagnostic marker for colorectal cancer. Cancer Invest., 2012, 30(1), 72-78.
[http://dx.doi.org/10.3109/07357907.2011.630051] [PMID: 22236192]
[122]
Dubois, V.; Delort, L.; Mishellany, F.; Jarde, T.; Billard, H.; Lequeux, C.; Damour, O.; Penault-Llorca, F.; Vasson, M.P.; Caldefie-Chezet, F. Zinc-alpha2-glycoprotein: a new biomarker of breast cancer? Anticancer Res., 2010, 30(7), 2919-2925.
[PMID: 20683033]
[123]
Smith, M.J.; Culhane, A.C.; Donovan, M.; Coffey, J.C.; Barry, B.D.; Kelly, M.A.; Higgins, D.G.; Wang, J.H.; Kirwan, W.O.; Cotter, T.G.; Redmond, H.P. Analysis of differential gene expression in colorectal cancer and stroma using fluorescence-activated cell sorting purification. Br. J. Cancer, 2009, 100(9), 1452-1464.
[http://dx.doi.org/10.1038/sj.bjc.6604931] [PMID: 19401702]
[124]
Gardina, P.J.; Clark, T.A.; Shimada, B.; Staples, M.K.; Yang, Q.; Veitch, J.; Schweitzer, A.; Awad, T.; Sugnet, C.; Dee, S.; Davies, C.; Williams, A.; Turpaz, Y. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics, 2006, 7, 325.
[http://dx.doi.org/10.1186/1471-2164-7-325] [PMID: 17192196]
[125]
Hao, J.M.; Chen, J.Z.; Sui, H.M.; Si-Ma, X.Q.; Li, G.Q.; Liu, C.; Li, J.L.; Ding, Y.Q.; Li, J.M. A five-gene signature as a potential predictor of metastasis and survival in colorectal cancer. J. Pathol., 2010, 220(4), 475-489.
[http://dx.doi.org/10.1002/path.2668] [PMID: 20077526]
[126]
Roth, A.D.; Tejpar, S.; Delorenzi, M.; Yan, P.; Fiocca, R.; Klingbiel, D.; Dietrich, D.; Biesmans, B.; Bodoky, G.; Barone, C.; Aranda, E.; Nordlinger, B.; Cisar, L.; Labianca, R.; Cunningham, D.; Van Cutsem, E.; Bosman, F. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J. Clin. Oncol., 2010, 28(3), 466-474.
[http://dx.doi.org/10.1200/JCO.2009.23.3452] [PMID: 20008640]
[127]
Therkildsen, C.; Bergmann, T.K.; Henrichsen-Schnack, T.; Ladelund, S.; Nilbert, M. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis. Acta Oncol., 2014, 53(7), 852-864.
[http://dx.doi.org/10.3109/0284186X.2014.895036] [PMID: 24666267]
[128]
Douillard, J.Y.; Siena, S.; Cassidy, J.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; Rivera, F.; Kocákova, I.; Ruff, P.; Błasińska-Morawiec, M.; Šmakal, M.; Canon, J.L.; Rother, M.; Oliner, K.S.; Tian, Y.; Xu, F.; Sidhu, R. Final results from PRIME: randomized phase III study of panitumumab with FOLFOX4 for first-line treatment of metastatic colorectal cancer. Ann. Oncol., 2014, 25(7), 1346-1355.
[http://dx.doi.org/10.1093/annonc/mdu141] [PMID: 24718886]
[129]
Van Cutsem, E.; Köhne, C.H.; Hitre, E.; Zaluski, J.; Chang, Chien C.R.; Makhson, A.; D’Haens, G.; Pintér, T.; Lim, R.; Bodoky, G.; Roh, J.K.; Folprecht, G.; Ruff, P.; Stroh, C.; Tejpar, S.; Schlichting, M.; Nippgen, J.; Rougier, P. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med., 2009, 360(14), 1408-1417.
[http://dx.doi.org/10.1056/NEJMoa0805019] [PMID: 19339720]
[130]
Vilar, E.; Scaltriti, M.; Balmaña, J.; Saura, C.; Guzman, M.; Arribas, J.; Baselga, J.; Tabernero, J. Microsatellite instability due to hMLH1 deficiency is associated with increased cytotoxicity to irinotecan in human colorectal cancer cell lines. Br. J. Cancer, 2008, 99(10), 1607-1612.
[http://dx.doi.org/10.1038/sj.bjc.6604691] [PMID: 18941461]
[131]
Magrini, R.; Bhonde, M.R.; Hanski, M.L.; Notter, M.; Scherübl, H.; Boland, C.R.; Zeitz, M.; Hanski, C. Cellular effects of CPT-11 on colon carcinoma cells: dependence on p53 and hMLH1 status. Int. J. Cancer, 2002, 101(1), 23-31.
[http://dx.doi.org/10.1002/ijc.10565] [PMID: 12209584]
[132]
Gryfe, R.; Kim, H.; Hsieh, E.T.; Aronson, M.D.; Holowaty, E.J.; Bull, S.B.; Redston, M.; Gallinger, S. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N. Engl. J. Med., 2000, 342(2), 69-77.
[http://dx.doi.org/10.1056/NEJM200001133420201] [PMID: 10631274]
[133]
Watanabe, T.; Wu, T.T.; Catalano, P.J.; Ueki, T.; Satriano, R.; Haller, D.G.; Benson, A.B. III.; Hamilton, S.R. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N. Engl. J. Med., 2001, 344(16), 1196-1206.
[http://dx.doi.org/10.1056/NEJM200104193441603] [PMID: 11309634]
[134]
Goldenberg, N.; Kahn, S.R.; Solymoss, S. Markers of coagulation and angiogenesis in cancer-associated venous thromboembolism. J. Clin. Oncol., 2003, 21(22), 4194-4199.
[http://dx.doi.org/10.1200/JCO.2003.05.165] [PMID: 14615447]
[135]
Wang, X.; Wang, E.; Kavanagh, J.J.; Freedman, R.S. Ovarian cancer, the coagulation pathway, and inflammation. J. Transl. Med., 2005, 3, 25.
[http://dx.doi.org/10.1186/1479-5876-3-25] [PMID: 15969748]
[136]
Muszbek, L.; Bagoly, Z.; Bereczky, Z.; Katona, E. The involvement of blood coagulation factor XIII in fibrinolysis and thrombosis. Cardiovasc. Hematol. Agents Med. Chem., 2008, 6(3), 190-205.
[http://dx.doi.org/10.2174/187152508784871990] [PMID: 18673233]
[137]
Dardik, R.; Solomon, A.; Loscalzo, J.; Eskaraev, R.; Bialik, A.; Goldberg, I.; Schiby, G.; Inbal, A. Novel proangiogenic effect of factor XIII associated with suppression of thrombospondin 1 expression. Arterioscler. Thromb. Vasc. Biol., 2003, 23(8), 1472-1477.
[http://dx.doi.org/10.1161/01.ATV.0000081636.25235.C6] [PMID: 12805075]
[138]
Vossen, C.Y.; Hoffmeister, M.; Chang-Claude, J.C.; Rosendaal, F.R.; Brenner, H. Clotting factor gene polymorphisms and colorectal cancer risk. J. Clin. Oncol., 2011, 29(13), 1722-1727.
[http://dx.doi.org/10.1200/JCO.2010.31.8873] [PMID: 21422408]
[139]
Nalejska, E.; Mączyńska, E.; Lewandowska, M.A. Prognostic and predictive biomarkers: tools in personalized oncology. Mol. Diagn. Ther., 2014, 18(3), 273-284.
[http://dx.doi.org/10.1007/s40291-013-0077-9] [PMID: 24385403]
[140]
Wei, Z.; Cao, S.; Liu, S.; Yao, Z.; Sun, T.; Li, Y.; Li, J.; Zhang, D.; Zhou, Y. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients’ survival? A pilot study on relevant mechanism. Oncotarget, 2016, 7(29), 46158-46172.
[http://dx.doi.org/10.18632/oncotarget.10064] [PMID: 27323816]
[141]
Ransohoff, D.F. Rules of evidence for cancer molecular-marker discovery and validation. Nat. Rev. Cancer, 2004, 4(4), 309-314.
[http://dx.doi.org/10.1038/nrc1322] [PMID: 15057290]
[142]
Ludwig, J.A.; Weinstein, J.N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer, 2005, 5(11), 845-856.
[http://dx.doi.org/10.1038/nrc1739] [PMID: 16239904]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy