Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Thymoquinone, an Active Compound of Nigella sativa: Role in Prevention and Treatment of Cancer

Author(s): Saleh A. Almatroodi, Ahmad Almatroudi, Mohammed A. Alsahli, Amjad A. Khan and Arshad H. Rahmani*

Volume 21, Issue 11, 2020

Page: [1028 - 1041] Pages: 14

DOI: 10.2174/1389201021666200416092743

Price: $65

Abstract

Background: Cancer is the leading cause of death worldwide and the current mode of cancer treatment causes side effects on normal cells and are still the key challenges in its’ treatment. However, natural products or active compounds of medicinal plants have shown to be safe, affordable, and effective in diseases cure.

Methods: In this context, scientific studies evidence the health-promoting effects of natural products, which work through its anti-oxidant, anti-inflammatory, and anti-cancer activity. Thymoquinone (TM), a predominant active compound of Nigella sativa, has confirmed anti-neoplastic activity through its ability to regulate various genetic pathways. In addition, thymoquinone has established anti-cancerous effects through killing of various cancerous cells,and inhibiting the initiation, migration, invasion, and progression of the cancer. The anti-cancer effects of TM are chiefly mediated via regulating various cell signaling pathways such as VEGF, bcl2/bax ratio, p53, NF-kB, and oncogenes.

Results: The anti-cancer drugs have limitations in efficacy and also causes adverse side effects on normal cells. The combination of anti-cancer drugs and thymoquinone improves the efficacy of drugs which is evident by decrease resistance to drugs and regulation of various cell signaling pathways. Moreover, combination of anti-cancer drugs as well as thymoquinone shows synergistic effect on killing of cancer cells and cells viability. Thus, TM, in combination with anti-cancer drugs, can be a good strategy in the management of various types of cancer.

Conclusion: In this review article, we deliver an outline of thymoquinone role in cancer inhibition and prevention of cancer-based on in vivo and in vitro studies. Further studies on thymoquinone based on clinical trials are highly required to explore the benefits of thymoquinone in cancer management.

Keywords: Nigella sativa, thymoquinone, multiple cancer, VEGF, cells viability, signalling molecule.

Graphical Abstract

[1]
Rahmani, A.H.; Al Zohairy, M.A.; Aly, S.M.; Khan, M.A. Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways. BioMed Res. Int., 2014, 2014761608
[http://dx.doi.org/10.1155/2014/761608] [PMID: 25295272]
[2]
Rahmani, A.H.; Al Shabrmi, F.M.; Allemailem, K.S.; Aly, S.M.; Khan, M.A. Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway. BioMed Res. Int., 2015, 2015, 925640.
[http://dx.doi.org/10.1155/2015/925640]
[3]
El-Kadi, A.; Kandil, O. Effect of Nigella sativa (the black seed) on immunity. Proceedings of the Fourth International Conference on Islamic Medicine, 1986Kuwait, pp. 344-348.
[4]
Al-Jishi, S.A.A. Effect of Nigella sativa on blood hemostatic function in rats. J. Ethnopharmacol., 2003, 85(1), 7-14.
[5]
Alobaedi, O.H.; Talib, W.H.; Basheti, I.A. Antitumor effect of thymoquinone combined with resveratrol on mice transplanted with breast cancer. Asian Pac. J. Trop. Med., 2017, 10(4), 400-408.
[http://dx.doi.org/10.1016/j.apjtm.2017.03.026] [PMID: 28552110]
[6]
Fatfat, M.; Fakhoury, I.; Habli, Z.; Mismar, R.; Gali-Muhtasib, H. Thymoquinone enhances the anticancer activity of doxorubicin against adult T-cell leukemia in vitro and in vivo through ROS-dependent mechanisms. Life Sci., 2019, 232116628
[http://dx.doi.org/10.1016/j.lfs.2019.116628] [PMID: 31278946]
[7]
Park, E.J.; Chauhan, A.K.; Min, K.J.; Park, D.C.; Kwon, T.K. Thymoquinone induces apoptosis through downregulation of c-FLIP and Bcl-2 in renal carcinoma Caki cells. Oncol. Rep., 2016, 36(4), 2261-2267.
[http://dx.doi.org/10.3892/or.2016.5019] [PMID: 27573448]
[8]
Odeh, L.H.; Talib, W.H.; Basheti, I.A. Synergistic effect of thymoquinone and melatonin against breast cancer implanted in mice. J. Cancer Res. Ther., 2018, 14(Suppl.), S324-S330.
[http://dx.doi.org/10.4103/0973-1482.235349] [PMID: 29970684]
[9]
Badary, O.A.; Taha, R.A.; Gamal el-Din, A.M.; Abdel-Wahab, M.H. Thymoquinone is a potent superoxide anion scavenger. Drug Chem. Toxicol., 2003, 26(2), 87-98.
[http://dx.doi.org/10.1081/DCT-120020404] [PMID: 12816394]
[10]
Li, F.; Rajendran, P.; Sethi, G. Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br. J. Pharmacol., 2010, 161(3), 541-554.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00874.x] [PMID: 20880395]
[11]
Mercan, T.; Yamasan, B.E.; Erkan, O.; Ozdemir, S. Thymoquinone alters ionic currents and decreases β adrenergic response in rat ventricle myocytes. J. Mol. Cell. Cardiol., 2018, 120, 22.
[http://dx.doi.org/10.1016/j.yjmcc.2018.05.074]
[12]
Peng, L.; Liu, A.; Shen, Y.; Xu, H.Z.; Yang, S.Z.; Ying, X.Z.; Liao, W.; Liu, H.X.; Lin, Z.Q.; Chen, Q.Y.; Cheng, S.W.; Shen, W.D. Antitumor and anti-angiogenesis effects of thymoquinone on osteosarcoma through the NF-κB pathway. Oncol. Rep., 2013, 29(2), 571-578.
[http://dx.doi.org/10.3892/or.2012.2165] [PMID: 23232982]
[13]
Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Thymoquinone-induced antitumor and apoptosis in human lung adenocarcinoma cells. J. Cell. Physiol., 2019, 234(7), 10421-10431.
[http://dx.doi.org/10.1002/jcp.27710] [PMID: 30387147]
[14]
Arafa, S.A.; Zhu, Q.; Shah, Z.I.; Wani, G.; Barakat, B.M.; Racoma, I.; El-Mahdy, M.A.; Wani, A.A. Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells. Mutat. Res., 2011, 706(1-2), 28-35.
[http://dx.doi.org/10.1016/j.mrfmmm.2010.10.007] [PMID: 21040738]
[15]
Khan, M.A.; Tania, M.; Wei, C.; Mei, Z.; Fu, S.; Cheng, J.; Xu, J.; Fu, J. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget, 2015, 6(23), 19580-19591.
[http://dx.doi.org/10.18632/oncotarget.3973] [PMID: 26023736]
[16]
Wang, H.; Khor, T.O.; Shu, L.; Su, Z.Y.; Fuentes, F.; Lee, J.H.; Kong, A.N. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer. Agents Med. Chem., 2012, 12(10), 1281-1305.
[http://dx.doi.org/10.2174/187152012803833026] [PMID: 22583408]
[17]
Yeh, C.T.; Yen, G.C. Chemopreventive functions of sulforaphane: a potent inducer of antioxidant enzymes and apoptosis. J. Funct. Foods, 2009, 1, 23-32.
[http://dx.doi.org/10.1016/j.jff.2008.09.002]
[18]
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M. J. Cancer statistics, 2009. CA Cancer J. Clin., 2009, 59(4), 225-249.
[http://dx.doi.org/10.3322/caac.20006] [PMID: 19474385]
[19]
Kado, K.; Forsyth, A.; Patel, P.R.; Schwartz, J.A. Dietary supplements and natural products in breast cancer trials. Front. Biosci. (Elite Ed.), 2012, 4, 546-567.
[http://dx.doi.org/10.2741/e399] [PMID: 22201894]
[20]
Lee, K.W.; Bode, A.M.; Dong, Z. Molecular targets of phytochemicals for cancer prevention. Nat. Rev. Cancer, 2011, 11(3), 211-218.
[http://dx.doi.org/10.1038/nrc3017] [PMID: 21326325]
[21]
Ye, I.; Jia, Y.JI K.E.; Sanders, A.J.; Xue, K.; Ji, J.; Mason, M.D.; Jiang, W.G. Traditional Chinese medicine in the prevention and treatment of breast cancer and cancer metastasis. Oncol. Lett., 2015, 10, 1240-1250.
[http://dx.doi.org/10.3892/ol.2015.3459] [PMID: 26622657]
[22]
Shanmugam, M.K.; Ahn, K.S.; Hsu, A.; Woo, C.C.; Yuan, Y.; Tan, K.H.B.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Koh, A.P.F.; Arfuso, F.; Huang, R.Y-J.; Lim, L.H.K.; Sethi, G.; Kumar, A.P. Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis. Front. Pharmacol., 2018, 9, 1294.
[http://dx.doi.org/10.3389/fphar.2018.01294] [PMID: 30564115]
[23]
Bashmail, H.A.; Alamoudi, A.A.; Noorwali, A.; Hegazy, G.A. AJabnoor, G.; Choudhry, H.; Al-Abd, A.M. Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities. Sci. Rep., 2018, 8(1), 11674.
[http://dx.doi.org/10.1038/s41598-018-30046-z] [PMID: 30076320]
[24]
Khan, A.; Aldebasi, Y.H.; Alsuhaibani, S.A.; Khan, M.A. Thymoquinone augments cyclophosphamide-mediated inhibition of cell proliferation in breast cancer cells. Asian Pac. J. Cancer Prev., 2019, 20(4), 1153-1160.
[http://dx.doi.org/10.31557/APJCP.2019.20.4.1153] [PMID: 31030489]
[25]
Woo, C.C.; Hsu, A.; Kumar, A.P.; Sethi, G.; Tan, K.H. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: the role of p38 MAPK and ROS. PLoS One, 2013, 8(10)e75356
[http://dx.doi.org/10.1371/journal.pone.0075356] [PMID: 24098377]
[26]
World Health Organization (WHO) (2016) Human papillomavirus (HPV) and cervical cancer, Fact sheet.
[27]
Moore, E.E.; Wark, J.D.; Hopper, J.L.; Erbas, B.; Garland, S.M. The roles of genetic and environmental factors on risk of cervical cancer: A review of classical twin studies. Twin Res. Hum. Genet., 2012, 15(1), 79-86.
[http://dx.doi.org/10.1375/twin.15.1.79] [PMID: 22784457]
[28]
Maher, D.M.; Bell, M.C.; O’Donnell, E.A.; Gupta, B.K.; Jaggi, M.; Chauhan, S.C. Curcumin suppresses human papillomavirus oncoproteins, restores p53, Rb, and PTPN13 proteins and inhibits benzo[a]pyrene-induced upregulation of HPV E7. Mol. Carcinog., 2011, 50(1), 47-57.
[http://dx.doi.org/10.1002/mc.20695] [PMID: 21061268]
[29]
Saranya, J.; Dhanya, B.P.; Greeshma, G.; Radhakrishnan, K.V.; Priya, S. Effects of a new synthetic Zerumbone Pendant Derivative (ZPD) on apoptosis induction and anti-migratory effects in human cervical cancer cells. Chem. Biol. Interact., 2017, 278, 32-39.
[http://dx.doi.org/10.1016/j.cbi.2017.10.006] [PMID: 28987329]
[30]
Li, J.; Khan, M.A.; Wei, C.; Cheng, J.; Chen, H.; Yang, L.; Ijaz, I.; Fu, J. Thymoquinone inhibits the migration and invasive characteristics of cervical cancer cells SiHa and CaSki In vitro by targeting epithelial to mesenchymal transition associated transcription factors Twist1 and Zeb1. Molecules, 2017, 22(12), 2105.
[http://dx.doi.org/10.3390/molecules22122105] [PMID: 29207526]
[31]
Ichwan, S.J.; Al-Ani, I.M.; Bilal, H.G.; Suriyah, W.H.; Taher, M.; Ikeda, M.A. Apoptotic activities of thymoquinone, an active ingredient of black seed (Nigella sativa), in cervical cancer cell lines. Chin. J. Physiol., 2014, 57(5), 249-255.
[http://dx.doi.org/10.4077/CJP.2014.BAB190] [PMID: 25241984]
[32]
Ng, W.K.; Yazan, L.S.; Ismail, M. Thymoquinone from Nigella sativa was more potent than cisplatin in eliminating of SiHa cells via apoptosis with down-regulation of Bcl-2 protein. Toxicol. In Vitro, 2011, 25(7), 1392-1398.
[http://dx.doi.org/10.1016/j.tiv.2011.04.030] [PMID: 21609759]
[33]
Jemal, A.; Murray, T.; Ward, E.; Samuels, A.; Tiwari, R.C.; Ghafoor, A.; Feuer, E.J.; Thun, M. J. Cancer statistics, 2005. CA Cancer J. Clin., 2005, 55(1), 10-30.
[http://dx.doi.org/10.3322/canjclin.55.1.10] [PMID: 15661684]
[34]
Liu, X.; Dong, J.; Cai, W.; Pan, Y.; Li, R.; Li, B. The effect of thymoquinone on apoptosis of SK-OV-3 ovarian cancer cell by regulation of Bcl-2 and Bax. Int. J. Gynecol. Cancer, 2017, 27(8), 1596-1601.
[http://dx.doi.org/10.1097/IGC.0000000000001064] [PMID: 28692636]
[35]
Wilson, A.J.; Saskowski, J.; Barham, W.; Yull, F.; Khabele, D. Thymoquinone enhances cisplatin-response through direct tumor effects in a syngeneic mouse model of ovarian cancer. J. Ovarian Res., 2015, 28(8), 46.
[http://dx.doi.org/10.1186/s13048-015-0177-8]
[36]
Kuipers, E.J. Gastric cancer: Synopsis and epidemiology of gastric cancer.Helicobacter pylori; Kim, N., Ed.; Springer: Singapore, 2016, pp. 241-249.
[http://dx.doi.org/10.1007/978-981-287-706-2_21]
[37]
Cianchi, F.; Indennitate, G.; Trallori, G.; Ortolani, M.; Paoli, B.; Macrì, G.; Lami, G.; Mallardi, B.; Badii, B.; Staderini, F.; Qirici, E.; Taddei, A.; Ringressi, M.N.; Messerini, L.; Novelli, L.; Bagnoli, S.; Bonanomi, A.; Foppa, C.; Skalamera, I.; Fiorenza, G.; Perigli, G. Robotic vs. laparoscopic distal gastrectomy with D2 lymphadenectomy for gastric cancer: A retrospective comparative mono-institutional study. BMC Surg., 2016, 16(1), 65.
[http://dx.doi.org/10.1186/s12893-016-0180-z] [PMID: 27646414]
[38]
Lachenmayer, A.; Alsinet, C.; Chang, C.Y.; Llovet, J.M. Molecular approaches to treatment of hepatocellular carcinoma. Dig. Liver Dis., 2010, 42(Suppl. 3), S264-S272.
[http://dx.doi.org/10.1016/S1590-8658(10)60515-4] [PMID: 20547313]
[39]
Zhu, W-Q.; Wang, J.; Guo, X-F.; Liu, Z.; Dong, W-G. Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro. World J. Gastroenterol., 2016, 22(16), 4149-4159.
[http://dx.doi.org/10.3748/wjg.v22.i16.4149] [PMID: 27122665]
[40]
Feng, L.M.; Wang, X.F.; Huang, Q.X. Thymoquinone induces cytotoxicity and reprogramming of EMT in gastric cancer cells by targeting PI3K/Akt/mTOR pathway. J. Biosci., 2017, 42(4), 547-554.
[http://dx.doi.org/10.1007/s12038-017-9708-3] [PMID: 29229873]
[41]
Lei, X.; Lv, X.; Liu, M.; Yang, Z.; Ji, M.; Guo, X.; Dong, W. Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem. Biophys. Res. Commun., 2012, 417(2), 864-868.
[http://dx.doi.org/10.1016/j.bbrc.2011.12.063] [PMID: 22206670]
[42]
Ma, J.; Hu, X.; Li, J.; Wu, D.; Lan, Q.; Wang, Q.; Tian, S.; Dong, W. Enhancing conventional chemotherapy drug cisplatin-induced anti-tumor effects on human gastric cancer cells both in vitro and in vivo by Thymoquinone targeting PTEN gene. Oncotarget, 2017, 8(49), 85926-85939.
[http://dx.doi.org/10.18632/oncotarget.20721] [PMID: 29156767]
[43]
Alsanea, N.; Abduljabbar, A.S.; Alhomoud, S.; Ashari, L.H.; Hibbert, D.; Bazarbashi, S. Colorectal cancer in Saudi Arabia: Incidence, survival, demographics and implications for national policies. Ann. Saudi Med., 2015, 35(3), 196-202.
[http://dx.doi.org/10.5144/0256-4947.2015.196] [PMID: 26409793]
[44]
Creanza, N.; Ruhlen, M.; Pemberton, T.J.; Rosenberg, N.A.; Feldman, M.W.; Ramachandran, S. A comparison of worldwide phonemic and genetic variation in human populations. Proc. Natl. Acad. Sci. USA, 2015, 112(5), 1265-1272.
[http://dx.doi.org/10.1073/pnas.1424033112] [PMID: 25605893]
[45]
Hsu, H.H.; Chen, M.C.; Day, C.H.; Lin, Y.M.; Li, S.Y.; Tu, C.C.; Padma, V.V.; Shih, H.N.; Kuo, W.W.; Huang, C.Y. Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activation. World J. Gastroenterol., 2017, 23(7), 1171-1179.
[http://dx.doi.org/10.3748/wjg.v23.i7.1171] [PMID: 28275297]
[46]
Zhang, L.; Bai, Y.; Yang, Y. Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κB. Oncol. Lett., 2016, 12(4), 2840-2845.
[http://dx.doi.org/10.3892/ol.2016.4971] [PMID: 27698868]
[47]
Kensara, O.A.; El-Shemi, A.G.; Mohamed, A.M.; Refaat, B.; Idris, S.; Ahmad, J. Thymoquinone subdues tumor growth and potentiates the chemopreventive effect of 5-fluorouracil on the early stages of colorectal carcinogenesis in rats. Drug Des. Devel. Ther., 2016, 10, 2239-2253.
[http://dx.doi.org/10.2147/DDDT.S109721] [PMID: 27468227]
[48]
Khalife, R.; Hodroj, M.H.; Fakhoury, R.; Rizk, S. Thymoquinone from nigella sativa seeds promotes the antitumor activity of noncytotoxic doses of topotecan in human colorectal cancer cells in vitro. Planta Med., 2016, 82(4), 312-321.
[http://dx.doi.org/10.1055/s-0035-1558289] [PMID: 26848703]
[49]
Chen, M.C.; Lee, N.H.; Hsu, H.H.; Ho, T.J.; Tu, C.C.; Chen, R.J.; Lin, Y.M.; Viswanadha, V.P.; Kuo, W.W.; Huang, C.Y. Inhibition of NF-κB and metastasis in irinotecan (CPT-11)-resistant LoVo colon cancer cells by thymoquinone via JNK and p38. Environ. Toxicol., 2017, 32(2), 669-678.
[http://dx.doi.org/10.1002/tox.22268] [PMID: 27060453]
[50]
Helmy, S.A.; El-Mesery, M.; El-Karef, A.; Eissa, L.A.; El Gayar, A.M. Thymoquinone upregulates TRAIL/TRAILR2 expression and attenuates hepatocellular carcinoma in vivo model. Life Sci., 2019.233116673
[http://dx.doi.org/10.1016/j.lfs.2019.116673] [PMID: 31336121]
[51]
Raghunandhakumar, S.; Paramasivam, A.; Senthilraja, S.; Naveenkumar, C.; Asokkumar, S.; Binuclara, J.; Jagan, S.; Anandakumar, P.; Devaki, T. Thymoquinone inhibits cell proliferation through regulation of G1/S phase cell cycle transition in N-nitrosodiethylamine-induced experimental rat hepatocellular carcinoma. Toxicol. Lett., 2013, 223(1), 60-72.
[http://dx.doi.org/10.1016/j.toxlet.2013.08.018] [PMID: 24012840]
[52]
Sayed-Ahmed, M.M.; Aleisa, A.M.; Al-Rejaie, S.S.; Al-Yahya, A.A.; Al-Shabanah, O.A.; Hafez, M.M.; Nagi, M.N. Thymoquinone attenuates diethylnitrosamine induction of hepatic carcinogenesis through antioxidant signaling. Oxid. Med. Cell. Longev., 2010, 3(4), 254-261.
[http://dx.doi.org/10.4161/oxim.3.4.12714] [PMID: 20972371]
[53]
Ashour, A.E.; Abd-Allah, A.R.; Korashy, H.M.; Attia, S.M.; Alzahrani, A.Z.; Saquib, Q.; Bakheet, S.A.; Abdel-Hamied, H.E.; Jamal, S.; Rishi, A.K. Thymoquinone suppression of the human hepatocellular carcinoma cell growth involves inhibition of IL-8 expression, elevated levels of TRAIL receptors, oxidative stress and apoptosis. Mol. Cell. Biochem., 2014, 389(1-2), 85-98.
[http://dx.doi.org/10.1007/s11010-013-1930-1] [PMID: 24399465]
[54]
Ke, X.; Zhao, Y.; Lu, X.; Wang, Z.; Liu, Y.; Ren, M.; Lu, G.; Zhang, D.; Sun, Z.; Xu, Z.; Song, J.H.; Cheng, Y.; Meltzer, S.J.; He, S. TQ inhibits hepatocellular carcinoma growth in vitro and in vivo via repression of Notch signaling. Oncotarget, 2015, 6(32), 32610-32621.
[http://dx.doi.org/10.18632/oncotarget.5362] [PMID: 26416455]
[55]
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Murray, T.; Thun, M. J. Cancer statistics, 2008. CA Cancer J. Clin., 2008, 58(2), 71-96.
[http://dx.doi.org/10.3322/CA.2007.0010] [PMID: 18287387]
[56]
Strimpakos, A.; Saif, M.W.; Syrigos, K.N. Pancreatic cancer: from molecular pathogenesis to targeted therapy. Cancer Metastasis Rev., 2008, 27(3), 495-522.
[http://dx.doi.org/10.1007/s10555-008-9134-y] [PMID: 18427734]
[57]
Shen, L.; Kim, S.H.; Chen, C.Y. Sensitization of human pancreatic cancer cells harboring mutated K-ras to apoptosis. PLoS One, 2012, 7(7), e40435.
[http://dx.doi.org/10.1371/journal.pone.0040435] [PMID: 22848379]
[58]
Relles, D.; Chipitsyna, G.I.; Gong, Q.; Yeo, C.J.; Arafat, H.A. Thymo-quinone promotes pancreatic cancer cell death and reduction of tumor size through combined inhibition of histone deacetylation and induction of histone acetylation. Adv. Prev. Med., 2016, 2016, 1407840.
[http://dx.doi.org/10.1155/2016/1407840] [PMID: 28105374]
[59]
Wang, Y.M. [Inhibitory effects of thymoquinone on human pancreatic carcinoma orthotopically implanted in nude mice] Zhonghua Yi Xue Za Zhi, 2011, 91(44), 3111-3114.
[PMID: 22340651]
[60]
Jafri, S.H.; Glass, J.; Shi, R.; Zhang, S.; Prince, M.; Kleiner-Hancock, H. Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo. J. Exp. Clin. Cancer Res., 2010, 29, 87.
[http://dx.doi.org/10.1186/1756-9966-29-87] [PMID: 20594324]
[61]
Yang, J.; Kuang, X.R.; Lv, P.T.; Yan, X.X. Thymoquinone inhibits proliferation and invasion of human nonsmall-cell lung cancer cells via ERK pathway. Tumour Biol., 2015, 36(1), 259-269.
[http://dx.doi.org/10.1007/s13277-014-2628-z] [PMID: 25238880]
[62]
Ulasli, S.S.; Celik, S.; Gunay, E.; Ozdemir, M.; Hazman, O.; Ozyurek, A.; Koyuncu, T.; Unlu, M. Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pac. J. Cancer Prev., 2013, 14(10), 6159-6164.
[http://dx.doi.org/10.7314/APJCP.2013.14.10.6159] [PMID: 24289642]
[63]
Acharya, B.R.; Chatterjee, A.; Ganguli, A.; Bhattacharya, S.; Chakrabarti, G. Thymoquinone inhibits microtubule polymerization by tubulin binding and causes mitotic arrest following apoptosis in A549 cells. Biochimie, 2014, 97, 78-91.
[http://dx.doi.org/10.1016/j.biochi.2013.09.025] [PMID: 24113316]
[64]
Kotowski, U.; Heiduschka, G.; Kadletz, L.; Fahim, T.; Seemann, R.; Schmid, R.; Schneider, S.; Mitterbauer, A.; Thurnher, D. Effect of thymoquinone on head and neck squamous cell carcinoma cells in vitro: Synergism with radiation. Oncol. Lett., 2017, 14(1), 1147-1151.
[http://dx.doi.org/10.3892/ol.2017.6189] [PMID: 28693287]
[65]
Ren, X.; Luo, W. Exploration of pro-apoptotic effect of Thymoquinone on oral squamous cell carcinoma cells through PI3K/Akt signaling pathway. Cell. Mol. Biol., 2019, 65(1), 61-64.
[http://dx.doi.org/10.14715/cmb/2019.65.1.11] [PMID: 30782296]
[66]
Alaufi, O.M.; Noorwali, A.; Zahran, F.; Al-Abd, A.M.; Al-Attas, S. Cytotoxicity of thymoquinone alone or in Combination With Cisplatin (CDDP) against oral squamous cell carcinoma in vitro. Sci. Rep., 2017, 7(1), 13131.
[http://dx.doi.org/10.1038/s41598-017-13357-5] [PMID: 29030590]
[67]
Chu, S.C.; Hsieh, Y.S.; Yu, C.C.; Lai, Y.Y.; Chen, P.N. Thymoquinone induces cell death in human squamous carcinoma cells via caspase activation-dependent apoptosis and LC3-II activation-dependent autophagy. PLoS One, 2014, 9(7), e101579.
[http://dx.doi.org/10.1371/journal.pone.0101579] [PMID: 25000169]
[68]
Abdelfadil, E.; Cheng, Y.H.; Bau, D.T.; Ting, W.J.; Chen, L.M.; Hsu, H.H.; Lin, Y.M.; Chen, R.J.; Tsai, F.J.; Tsai, C.H.; Huang, C.Y. Thymoquinone induces apoptosis in oral cancer cells through p38β inhibition. Am. J. Chin. Med., 2013, 41(3), 683-696.
[http://dx.doi.org/10.1142/S0192415X1350047X] [PMID: 23711149]
[69]
Liou, Y.F.; Chen, P.N.; Chu, S.C.; Kao, S.H.; Chang, Y.Z.; Hsieh, Y.S.; Chang, H.R. Thymoquinone suppresses the proliferation of renal cell carcinoma cells via reactive oxygen species-induced apoptosis and reduces cell stemness. Environ. Toxicol., 2019, 34(11), 1208-1220.
[http://dx.doi.org/10.1002/tox.22822] [PMID: 31298468]
[70]
Liou, Y.F.; Hsieh, Y.S.; Hung, T.W.; Chen, P.N.; Chang, Y.Z.; Kao, S.H.; Lin, S.W.; Chang, H.R. Thymoquinone inhibits metastasis of renal cell carcinoma cell 786-O-SI3 associating with downregulation of MMP-2 and u-PA and suppression of PI3K/Src signaling. Int. J. Med. Sci., 2019, 16(5), 686-695.
[http://dx.doi.org/10.7150/ijms.32763] [PMID: 31217736]
[71]
Lee, Y.M.; Kim, G.H.; Park, E.J.; Oh, T.I.; Lee, S.; Kan, S.Y.; Kang, H.; Kim, B.M.; Kim, J.H.; Lim, J.H. Thymoquinone selectively kills hypoxic renal cancer cells by suppressing HIF-1α-mediated glycolysis. Int. J. Mol. Sci., 2019, 20(5), 1092.
[http://dx.doi.org/10.3390/ijms20051092]
[72]
Zhang, Y.; Fan, Y.; Huang, S.; Wang, G.; Han, R.; Lei, F.; Luo, A.; Jing, X.; Zhao, L.; Gu, S.; Zhao, X. Thymoquinone inhibits the metastasis of renal cell cancer cells by inducing autophagy via AMPK/mTOR signaling pathway. Cancer Sci., 2018, 109(12), 3865-3873.
[http://dx.doi.org/10.1111/cas.13808] [PMID: 30259603]
[73]
Kou, B.; Kou, Q.; Ma, B.; Zhang, J.; Sun, B.; Yang, Y.; Li, J.; Zhou, J.; Liu, W. Thymoquinone inhibits metastatic phenotype and epithelial-mesenchymal transition in renal cell carcinoma by regulating the LKB1/AMPK signaling pathway. Oncol. Rep., 2018, 40(3), 1443-1450.
[http://dx.doi.org/10.3892/or.2018.6519] [PMID: 29956793]
[74]
Walters, D.K.; Muff, R.; Langsam, B.; Born, W.; Fuchs, B. Cytotoxic effects of curcumin on osteosarcoma cell lines. Invest. New Drugs, 2008, 26(4), 289-297.
[http://dx.doi.org/10.1007/s10637-007-9099-7] [PMID: 18071634]
[75]
Shoieb, A.M.; Elgayyar, M.; Dudrick, P.S.; Bell, J.L.; Tithof, P.K. In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone. Int. J. Oncol., 2003, 22(1), 107-113.
[http://dx.doi.org/10.3892/ijo.22.1.107] [PMID: 12469192]
[76]
Roepke, M.; Diestel, A.; Bajbouj, K.; Walluscheck, D.; Schonfeld, P.; Roessner, A.; Schneider-Stock, R.; Gali-Muhtasib, H. Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. Cancer Biol. Ther., 2007, 6(2), 160-169.
[http://dx.doi.org/10.4161/cbt.6.2.3575] [PMID: 17218778]
[77]
Zhang, M.; Du, H.; Huang, Z.; Zhang, P.; Yue, Y.; Wang, W.; Liu, W.; Zeng, J.; Ma, J.; Chen, G.; Wang, X.; Fan, J. Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway. Chem. Biol. Interact., 2018, 292, 65-75.
[http://dx.doi.org/10.1016/j.cbi.2018.06.013] [PMID: 29981725]
[78]
Mu, H.Q.; Yang, S.; Wang, Y.J.; Chen, Y.H. Role of NF-κB in the anti-tumor effect of thymoquinone on bladder cancer. Zhonghua Yi Xue Za Zhi, 2012, 92(6), 392-396.
[PMID: 22490899]
[79]
Krylova, N.G.; Drobysh, M.S.; Semenkova, G.N.; Kulahava, T.A.; Pinchuk, S.V.; Shadyro, O.I. Cytotoxic and antiproliferative effects of thymoquinone on rat C6 glioma cells depend on oxidative stress. Mol. Cell. Biochem., 2019, 462(1-2), 195-206.
[http://dx.doi.org/10.1007/s11010-019-03622-8] [PMID: 31493190]
[80]
Subburayan, K.; Thayyullathil, F.; Pallichankandy, S.; Rahman, A.; Galadari, S. Par-4-dependent p53 up-regulation plays a critical role in thymoquinone-induced cellular senescence in human malignant glioma cells. Cancer Lett., 2018, 426, 80-97.
[http://dx.doi.org/10.1016/j.canlet.2018.04.009] [PMID: 29656006]
[81]
Ashour, A.E.; Ahmed, A.F.; Kumar, A.; Zoheir, K.M.; Aboul-Soud, M.A.; Ahmad, S.F.; Attia, S.M.; Abd-Allah, A.R.; Cheryan, V.T.; Rishi, A.K. Thymoquinone inhibits growth of human medulloblastoma cells by inducing oxidative stress and caspase-dependent apoptosis while suppressing NF-κB signaling and IL-8 expression. Mol. Cell. Biochem., 2016, 416(1-2), 141-155.
[http://dx.doi.org/10.1007/s11010-016-2703-4] [PMID: 27084536]
[82]
Gurung, R.L.; Lim, S.N.; Khaw, A.K.; Soon, J.F.; Shenoy, K.; Mohamed Ali, S.; Jayapal, M.; Sethu, S.; Baskar, R.; Hande, M.P. Thymoquinone induces telomere shortening, DNA damage and apoptosis in human glioblastoma cells. PLoS One, 2010, 5(8), e12124.
[http://dx.doi.org/10.1371/journal.pone.0012124] [PMID: 20711342]
[83]
Ozturk, S.A.; Alp, E.; Yar Saglam, A.S.; Konac, E.; Menevse, E.S. The effects of thymoquinone and genistein treatment on telomerase activity, apoptosis, angiogenesis, and survival in thyroid cancer cell lines. J. Cancer Res. Ther., 2018, 14(2), 328-334.
[PMID: 29516914]
[84]
Hussain, A.R.; Uddin, S.; Ahmed, M.; Al-Dayel, F.; Bavi, P.P.; Al-Kuraya, K.S. Phosphorylated IκBα predicts poor prognosis in activated B-cell lymphoma and its inhibition with thymoquinone induces apoptosis via ROS release. PLoS One, 2013, 8(3)e60540
[http://dx.doi.org/10.1371/journal.pone.0060540] [PMID: 23555990]
[85]
Soltani, A.; Pourgheysari, B.; Shirzad, H.; Sourani, Z. Antiproliferative and apoptosis-inducing activities of thymoquinone in lymphoblastic leukemia cell line. Indian J. Hematol. Blood Transfus., 2017, 33(4), 516-524.
[http://dx.doi.org/10.1007/s12288-016-0758-8] [PMID: 29075062]
[86]
Diab-Assaf, M.; Semaan, J.; El-Sabban, M.; Al Jaouni, S.K.; Azar, R.; Kamal, M.A.; Harakeh, S. Inhibition of proliferation and induction of apoptosis by thymoquinone via modulation of TGF family, p53, p21 and Bcl-2α in leukemic cells. Anticancer. Agents Med. Chem., 2018, 18(2), 210-215.
[http://dx.doi.org/10.2174/1871520617666170912133054] [PMID: 28901264]
[87]
Salim, L.Z.; Mohan, S.; Othman, R.; Abdelwahab, S.I.; Kamalidehghan, B.; Sheikh, B.Y.; Ibrahim, M.Y. Thymoquinone induces mitochondria-mediated apoptosis in acute lymphoblastic leukaemia in vitro. Molecules, 2013, 18(9), 11219-11240.
[http://dx.doi.org/10.3390/molecules180911219] [PMID: 24036512]
[88]
Khalife, R.; El-Hayek, S.; Tarras, O.; Hodroj, M.H.; Rizk, S. Antiproliferative and proapoptotic effects of topotecan in combination with thymoquinone on acute myelogenous leukemia. Clin. Lymphoma Myeloma Leuk., 2014, 14(Suppl.), S46-S55.
[http://dx.doi.org/10.1016/j.clml.2014.04.014] [PMID: 25486955]
[89]
Salim, L.Z.; Othman, R.; Abdulla, M.A.; Al-Jashamy, K.; Ali, H.M.; Hassandarvish, P.; Dehghan, F.; Ibrahim, M.Y.; Omer, F.A.; Mohan, S. Thymoquinone inhibits murine leukemia WEHI-3 cells in vivo and in vitro. PLoS One, 2014, 9(12), e115340.
[http://dx.doi.org/10.1371/journal.pone.0115340] [PMID: 25531768]
[90]
Siveen, K.S.; Mustafa, N.; Li, F.; Kannaiyan, R.; Ahn, K.S.; Kumar, A.P.; Chng, W.J.; Sethi, G. Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB regulated gene products in multiple myeloma xenograft mouse model. Oncotarget, 2014, 5(3), 634-648.
[http://dx.doi.org/10.18632/oncotarget.1596] [PMID: 24504138]
[91]
Badr, G.; Mohany, M.; Abu-Tarboush, F. Thymoquinone decreases F-actin polymerization and the proliferation of human multiple myeloma cells by suppressing STAT3 phosphorylation and Bcl2/Bcl-XL expression. Lipids Health Dis., 2011, 10, 236.
[http://dx.doi.org/10.1186/1476-511X-10-236] [PMID: 22177381]
[92]
Badr, G.; Lefevre, E.A.; Mohany, M. Thymoquinone inhibits the CXCL12-induced chemotaxis of multiple myeloma cells and increases their susceptibility to Fas-mediated apoptosis. PLoS One, 2011, 6(9), e23741.
[http://dx.doi.org/10.1371/journal.pone.0023741] [PMID: 21912642]
[93]
El-Mahdy, M.A.; Zhu, Q.; Wang, Q.E.; Wani, G.; Wani, A.A. Thymoquinone induces apoptosis through activation of caspase-8 and mitochondrial events in p53-null myeloblastic leukemia HL-60 cells. Int. J. Cancer, 2005, 117(3), 409-417.
[http://dx.doi.org/10.1002/ijc.21205] [PMID: 15906362]
[94]
Hatiboglu, M.A.; Kocyigit, A.; Guler, E.M.; Akdur, K.; Khan, I.; Nalli, A.; Karatas, E.; Tuzgen, S. Thymoquinone enhances the effect of gamma knife in B16-F10 melanoma through inhibition of phosphorylated STAT3. World Neurosurg., 2019, 128, e570-e581.
[http://dx.doi.org/10.1016/j.wneu.2019.04.205] [PMID: 31054338]
[95]
Hatiboglu, M.A.; Kocyigit, A.; Guler, E.M.; Akdur, K.; Nalli, A.; Karatas, E.; Tuzgen, S. Thymoquinone induces apoptosis in B16-F10 melanoma cell through inhibition of p-STAT3 and inhibits tumor growth in a murine intracerebral melanoma model. World Neurosurg., 2018, 114, e182-e190.
[http://dx.doi.org/10.1016/j.wneu.2018.02.136] [PMID: 29510292]
[96]
Ahmad, I.; Muneer, K.M.; Tamimi, I.A.; Chang, M.E.; Ata, M.O.; Yusuf, N. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome. Toxicol. Appl. Pharmacol., 2013, 270(1), 70-76.
[http://dx.doi.org/10.1016/j.taap.2013.03.027] [PMID: 23583630]
[97]
Koka, P.S.; Mondal, D.; Schultz, M.; Abdel-Mageed, A.B.; Agrawal, K.C. Studies on molecular mechanisms of growth inhibitory effects of thymoquinone against prostate cancer cells: role of reactive oxygen species. Exp. Biol. Med. (Maywood), 2010, 235(6), 751-760.
[http://dx.doi.org/10.1258/ebm.2010.009369] [PMID: 20511679]
[98]
Kou, B.; Liu, W.; Zhao, W.; Duan, P.; Yang, Y.; Yi, Q.; Guo, F.; Li, J.; Zhou, J.; Kou, Q. Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-β/Smad2/3 signaling pathway. Oncol. Rep., 2017, 38(6), 3592-3598.
[http://dx.doi.org/10.3892/or.2017.6012] [PMID: 29039572]
[99]
Dirican, A.; Erten, C.; Atmaca, H.; Bozkurt, E.; Kucukzeybek, Y.; Varol, U.; Oktay Tarhan, M.; Karaca, B.; Uslu, R. Enhanced cytotoxicity and apoptosis by thymoquinone in combination with zoledronic acid in hormone- and drug-resistant prostate cancer cell lines. J. Buon, 2014, 19(4), 1055-1061.
[PMID: 25536616]
[100]
Dirican, A.; Atmaca, H.; Bozkurt, E.; Erten, C.; Karaca, B.; Uslu, R. Novel combination of docetaxel and thymoquinone induces synergistic cytotoxicity and apoptosis in DU-145 human prostate cancer cells by modulating PI3K-AKT pathway. Clin. Transl. Oncol., 2015, 17(2), 145-151.
[http://dx.doi.org/10.1007/s12094-014-1206-6] [PMID: 25060568]
[101]
Pazhouhi, M.; Sariri, R.; Rabzia, A.; Khazaei, M. Thymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibition of autophagy in U87MG cell line. Iran. J. Basic Med. Sci., 2016, 19(8), 890-898.
[PMID: 27746872]
[102]
Nessa, M.U.; Beale, P.; Chan, C.; Yu, J.Q.; Huq, F. Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res., 2011, 31(11), 3789-3797.
[PMID: 22110201]
[103]
Sarman, H.; Bayram, R.; Benek, S.B. Anticancer drugs with chemotherapeutic interactions with thymoquinone in osteosarcoma cells. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(7), 1263-1270.
[PMID: 27097945]
[104]
Effenberger-Neidnicht, K.; Schobert, R. Combinatorial effects of thymoquinone on the anti-cancer activity of doxorubicin. Cancer Chemother. Pharmacol., 2011, 67(4), 867-874.
[http://dx.doi.org/10.1007/s00280-010-1386-x] [PMID: 20582416]
[105]
Rajput, S.; Kumar, B.N.; Sarkar, S.; Das, S.; Azab, B.; Santhekadur, P.K.; Das, S.K.; Emdad, L.; Sarkar, D.; Fisher, P.B.; Mandal, M. Targeted apoptotic effects of thymoquinone and tamoxifen on XIAP mediated Akt regulation in breast cancer. PLoS One, 2013, 8(4), e61342.
[http://dx.doi.org/10.1371/journal.pone.0061342] [PMID: 23613836]
[106]
Rahmani, A.H.; Alzohairy, M.A.; Khan, M.A.; Aly, S.M. Therapeutic implications of black seed and its constituent thymoquinone in the prevention of cancer through inactivation and activation of molecular pathways. Evid.-. Evid. Based Complement. Alternat. Med., 2014, 2014, 724658.
[http://dx.doi.org/10.1155/2014/724658] [PMID: 24959190]
[107]
Rahmani, A.H.; Aldebasi, Y.H.; Srikar, S.; Khan, A.A.; Aly, S.M. Aloe vera: Potential candidate in health management via modulation of biological activities. Pharmacogn. Rev., 2015, 9(18), 120-126.
[http://dx.doi.org/10.4103/0973-7847.162118] [PMID: 26392709]
[108]
Rahmani, A.H.; Aly, S.M.; Ali, H.; Babiker, A.Y.; Srikar, S.; Khan, A.A. Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity. Int. J. Clin. Exp. Med., 2014, 7(3), 483-491.
[PMID: 24753740]
[109]
Rahmani, A.H. Cassia fistula Linn: Potential candidate in the health management. Pharmacognosy Res., 2015, 7(3), 217-224.
[http://dx.doi.org/10.4103/0974-8490.157956] [PMID: 26130932]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy