Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Current Study of RhoA and Associated Signaling Pathways in Gastric Cancer

Author(s): Haiping Liu, Yiqian Liu, Xiaochuan Zhang and Xiaodong Wang*

Volume 15, Issue 7, 2020

Page: [607 - 613] Pages: 7

DOI: 10.2174/1574888X15666200330143958

Price: $65

Abstract

Gastric cancer (GC) is the fourth-most common cancer in the world, with an estimated 1.034 million new cases in 2015, and the third-highest cause of cancer deaths, estimated at 785,558, in 2014. Early diagnosis and treatment greatly affect the survival rate in patients with GC: the 5‐year survival rate of early GC reaches 90%‐95%, while the mortality rate significantly increases if GC develops to the late stage. Recently, studies for the role of RhoA in the diseases have become a hot topic, especially in the development of tumors. A study found that RhoA can regulate actin polymerization, cell adhesion, motor-myosin, cell transformation, and the ability to participate in the activities of cell movement, proliferation, migration, which are closely related to the invasion and metastasis of tumor cells. However, the specific role of RhoA in tumor cells remains to be studied. Therefore, our current study aimed to briefly review the role of RhoA in GC, especially for its associated signaling pathways involved in the GC progression.

Keywords: RhoA, gastric cancer, signaling pathway, PI3K-Akt, NF-kappaB, integrin.

[1]
Ciobanasu C, Faivre B, Le Clainche C. Actin dynamics associated with focal adhesions. Int J Cell Biol 2012.: 2012941292
[http://dx.doi.org/10.1155/2012/941292] [PMID: 22505938]
[2]
Kim NH, Chung HM, Cha KY, Chung KS. Microtubule and microfilament organization in maturing human oocytes. Hum Reprod 1998; 13(8): 2217-22.
[http://dx.doi.org/10.1093/humrep/13.8.2217] [PMID: 9756299]
[3]
Zhong JW, Yang SX, Chen RP, et al. Prognostic Value of Lymphovascular Invasion in Patients with Stage III Colorectal Cancer: A Retrospective Study. Med Sci Monit 2019; 25: 6043-50.
[http://dx.doi.org/10.12659/MSM.918133] [PMID: 31408453]
[4]
Liu J, Liu C, Zhang X, Yu L, Gong X, Wang P. Anticancer sulfonamide hybrids that inhibit bladder cancer cells growth and migration as tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2019; 34(1): 1380-7.
[http://dx.doi.org/10.1080/14756366.2019.1639696] [PMID: 31401884]
[5]
Cuartas-López AM, Hernández-Cuellar CE, Gallego-Gómez JC. Disentangling the role of PI3K/Akt, Rho GTPase and the actin cytoskeleton on dengue virus infection. Virus Res 2018; 256: 153-65.
[http://dx.doi.org/10.1016/j.virusres.2018.08.013] [PMID: 30130602]
[6]
Flickinger KS, Carter WG, Culp LA. Deficiency in integrin-mediated transmembrane signaling and microfilament stress fiber formation by aging dermal fibroblasts from normal and Down’s syndrome patients. Exp Cell Res 1992; 203(2): 466-75.
[http://dx.doi.org/10.1016/0014-4827(92)90022-Z] [PMID: 1459206]
[7]
He M, Cheng Y, Li W, et al. Vascular endothelial growth factor C promotes cervical cancer metastasis via up-regulation and activation of RhoA/ROCK-2/moesin cascade. BMC Cancer 2010; 10: 170.
[http://dx.doi.org/10.1186/1471-2407-10-170] [PMID: 20429915]
[8]
Wang J, Liu H, Chen B, et al. RhoA/ROCK-dependent moesin phosphorylation regulates AGE-induced endothelial cellular response. Cardiovasc Diabetol 2012; 11: 7.
[http://dx.doi.org/10.1186/1475-2840-11-7] [PMID: 22251897]
[9]
Birukova AA, Birukov KG, Smurova K, et al. Novel role of microtubules in thrombin-induced endothelial barrier dysfunction. FASEB J 2004; 18(15): 1879-90.
[http://dx.doi.org/10.1096/fj.04-2328com] [PMID: 15576491]
[10]
Kee SH, Jang SI, Ahvazi B, Larsen M, Yamada KM, Steinert PM. Cell-cell adhesion and RhoA-mediated actin polymerization are independent phenomena in microtubule disrupted keratinocytes. J Invest Dermatol 2002; 119(2): 440-8.
[http://dx.doi.org/10.1046/j.1523-1747.2002.01826.x] [PMID: 12190868]
Pronk MCA, van Bezu JSM, van Nieuw Amerongen GP, et al. . RhoA, RhoB and RhoC differentially regulate endothelial barrier function. J Small GTPases 2017; 1-19.
[12]
Morel A, Blangy A, Vives V. Methods to Investigate the Role of Rho GTPases in Osteoclast Function. Methods Mol Biol 2018; 1821: 219-33.
[http://dx.doi.org/10.1007/978-1-4939-8612-5_15] [PMID: 30062415]
[13]
Karlsson R, Pedersen ED, Wang Z, Brakebusch C. Rho GTPase function in tumorigenesis. Biochim Biophys Acta 2009; 1796(2): 91-8.
[http://dx.doi.org/10.1016/j.bbcan.2009.03.003] [PMID: 19327386]
[14]
Leung TH, Ching YP, Yam JW, et al. Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity. Proc Natl Acad Sci USA 2005; 102(42): 15207-12.
[http://dx.doi.org/10.1073/pnas.0504501102] [PMID: 16217026]
[15]
Zhang G, Zhu F, Han G, et al. Silencing of URG11 expression inhibits the proliferation and epithelial mesenchymal transition in benign prostatic hyperplasia cells via the RhoA/ROCK1 pathway. Mol Med Rep 2018; 18(1): 391-8.
[http://dx.doi.org/10.3892/mmr.2018.8993] [PMID: 29749520]
[16]
Wang X, Jiang W, Kang J, Liu Q, Nie M. Knockdown of RhoA expression alters ovarian cancer biological behavior in vitro and in nude mice. Oncol Rep 2015; 34(2): 891-9.
[http://dx.doi.org/10.3892/or.2015.4009] [PMID: 26035556]
[17]
Zhou J, Hayakawa Y, Wang TC, Bass AJ. RhoA mutations identified in diffuse gastric cancer. Cancer Cell 2014; 26(1): 9-11.
[http://dx.doi.org/10.1016/j.ccr.2014.06.022] [PMID: 25026207]
[18]
Chang YW, Putzer K, Ren L, et al. Differential regulation of cyclooxygenase 2 expression by small GTPases Ras, Rac1, and RhoA. J Cell Biochem 2005; 96(2): 314-29.
[http://dx.doi.org/10.1002/jcb.20568] [PMID: 16088958]
[19]
Datta A, Sandilands E, Mostov KE, Bryant DM. Fibroblast-derived HGF drives acinar lung cancer cell polarization through integrin-dependent RhoA-ROCK1 inhibition. Cell Signal 2017; 40: 91-8.
[http://dx.doi.org/10.1016/j.cellsig.2017.09.001] [PMID: 28888686]
[20]
Fukata M, Nakagawa M, Kaibuchi K. Roles of Rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol 2003; 15(5): 590-7.
[http://dx.doi.org/10.1016/S0955-0674(03)00097-8] [PMID: 14519394]
[21]
Amano M, Chihara K, Kimura K, et al. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 1997; 275(5304): 1308-11.
[http://dx.doi.org/10.1126/science.275.5304.1308] [PMID: 9036856]
[22]
El Atat O, Fakih A, El-Sibai M. RHOG Activates RAC1 through CDC42 Leading to Tube Formation in Vascular Endothelial Cells. Cells 2019; 8(2): E171
[http://dx.doi.org/10.3390/cells8020171] [PMID: 30781697]
[23]
Ikehata M, Yamada A, Fujita K, et al. Cooperation of Rho family proteins Rac1 and Cdc42 in cartilage development and calcified tissue formation. Biochem Biophys Res Commun 2018; 500(3): 525-9.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.032] [PMID: 29626467]
[24]
Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995; 81(1): 53-62.
[http://dx.doi.org/10.1016/0092-8674(95)90370-4] [PMID: 7536630]
[25]
Ortega MC, Santander-García D, Marcos-Ramiro B, et al. Activation of Rac1 and RhoA Preserve Corneal Endothelial Barrier Function. Invest Ophthalmol Vis Sci 2016; 57(14): 6210-22.
[http://dx.doi.org/10.1167/iovs.16-20031] [PMID: 27849309]
[26]
Tapon N, Hall A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 1997; 9(1): 86-92.
[http://dx.doi.org/10.1016/S0955-0674(97)80156-1] [PMID: 9013670]
[27]
Chang HR, Huang HP, Kao YL, et al. The suppressive effect of Rho kinase inhibitor, Y-27632, on oncogenic Ras/RhoA induced invasion/migration of human bladder cancer TSGH cells. Chem Biol Interact 2010; 183(1): 172-80.
[http://dx.doi.org/10.1016/j.cbi.2009.10.018] [PMID: 19896475]
[28]
Fagan-Solis KD, Schneider SS, Pentecost BT, et al. The RhoA pathway mediates MMP-2 and MMP-9-independent invasive behavior in a triple-negative breast cancer cell line. J Cell Biochem 2013; 114(6): 1385-94.
[http://dx.doi.org/10.1002/jcb.24480] [PMID: 23255405]
[29]
Watts KL, Cottrell E, Hoban PR, Spiteri MA. RhoA signaling modulates cyclin D1 expression in human lung fibroblasts; implications for idiopathic pulmonary fibrosis. Respir Res 2006; 7: 88.
[http://dx.doi.org/10.1186/1465-9921-7-88] [PMID: 16776827]
[30]
Lee G, Kim HJ, Kim HM. RhoA-JNK Regulates the E-Cadherin Junctions of Human Gingival Epithelial Cells. J Dent Res 2016; 95(3): 284-91.
[http://dx.doi.org/10.1177/0022034515619375] [PMID: 26635280]
[31]
Kunigal S, Gondi CS, Gujrati M, et al. SPARC-induced migration of glioblastoma cell lines via uPA-uPAR signaling and activation of small GTPase RhoA. Int J Oncol 2006; 29(6): 1349-57.
[http://dx.doi.org/10.3892/ijo.29.6.1349] [PMID: 17088972]
[32]
Xie P, Wang X, Kong M, Bai X, Jiang T. TRAF4 promotes endometrial cancer cell growth and migration by activation of PI3K/AKT/Oct4 signaling. Exp Mol Pathol 2019; 108: 9-16.
[http://dx.doi.org/10.1016/j.yexmp.2019.03.003] [PMID: 30853613]
[33]
Kane LP, Weiss A. The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunol Rev 2003; 192: 7-20.
[http://dx.doi.org/10.1034/j.1600-065X.2003.00008.x] [PMID: 12670391]
[34]
Matsuo FS, Andrade MF, Loyola AM, et al. Pathologic significance of AKT, mTOR, and GSK3β proteins in oral squamous cell carcinoma-affected patients. Virchows Arch 2018; 472(6): 983-97.
[http://dx.doi.org/10.1007/s00428-018-2318-0] [PMID: 29713826]
[35]
Sun HW, Tong SL, He J, et al. RhoA and RhoC -siRNA inhibit the proliferation and invasiveness activity of human gastric carcinoma by Rho/PI3K/Akt pathway. World J Gastroenterol 2007; 13(25): 3517-22.
[http://dx.doi.org/10.3748/wjg.v13.i25.3517] [PMID: 17659701]
[36]
Nam S, Kim JH, Lee DH. RHOA in Gastric Cancer: Functional Roles and Therapeutic Potential. Front Genet 2019; 10: 438.
[http://dx.doi.org/10.3389/fgene.2019.00438] [PMID: 31156701]
[37]
Arend RC, Londoño-Joshi AI, Straughn JM Jr, Buchsbaum DJ. The Wnt/β-catenin pathway in ovarian cancer: a review. Gynecol Oncol 2013; 131(3): 772-9.
[http://dx.doi.org/10.1016/j.ygyno.2013.09.034] [PMID: 24125749]
[38]
Naspi A, Zingariello M, Sancillo L, et al. IGFBP-3 inhibits Wnt signaling in metastatic melanoma cells. Mol Carcinog 2017; 56(2): 681-93.
[http://dx.doi.org/10.1002/mc.22525] [PMID: 27377812]
[39]
Murakami T, Toda S, Fujimoto M, et al. Constitutive activation of Wnt/beta-catenin signaling pathway in migration-active melanoma cells: role of LEF-1 in melanoma with increased metastatic potential. Biochem Biophys Res Commun 2001; 288(1): 8-15.
[http://dx.doi.org/10.1006/bbrc.2001.5719] [PMID: 11594745]
[40]
Zhang S, Li D, Jiao GJ, Wang HL, Yan TB. miR-185 suppresses progression of Ewing’s sarcoma via inhibiting the PI3K/AKT and Wnt/β-catenin pathways. OncoTargets Ther 2018; 11: 7967-77.
[http://dx.doi.org/10.2147/OTT.S167771] [PMID: 30519038]
[41]
Cui H, Song R, Wu J, Wang W, Chen X, Yin J. MicroRNA-337 regulates the PI3K/AKT and Wnt/β-catenin signaling pathways to inhibit hepatocellular carcinoma progression by targeting high-mobility group AT-hook 2. Am J Cancer Res 2018; 8(3): 405-21.
[PMID: 29636997]
[42]
Kitagishi Y, Nakanishi A, Ogura Y, Matsuda S. Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer’s disease. Alzheimers Res Ther 2014; 6(3): 35.
[http://dx.doi.org/10.1186/alzrt265] [PMID: 25031641]
[43]
Zhang X, Jiang D, Jiang W, Zhao M, Gan J. Role of TLR4-Mediated PI3K/AKT/GSK-3β Signaling Pathway in Apoptosis of Rat Hepatocytes. BioMed Res Int 2015.: 2015631326
[http://dx.doi.org/10.1155/2015/631326] [PMID: 26770978]
[44]
Liu J, Zhang Y, Xu R, et al. PI3K/Akt-dependent phosphorylation of GSK3β and activation of RhoA regulate Wnt5a-induced gastric cancer cell migration. Cell Signal 2013; 25(2): 447-56.
[http://dx.doi.org/10.1016/j.cellsig.2012.10.012] [PMID: 23123500]
[45]
Tapia O, Riquelme I, Leal P, et al. The PI3K/AKT/mTOR pathway is activated in gastric cancer with potential prognostic and predictive significance. Virchows Arch 2014; 465(1): 25-33.
[http://dx.doi.org/10.1007/s00428-014-1588-4] [PMID: 24844205]
[46]
Sharma V, Sharma AK, Punj V, Priya P. Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer. Semin Cancer Biol 2019; 59: 133-46.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.005] [PMID: 31408722]
[47]
Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin Cancer Biol 2019; 59: 125-32.
[http://dx.doi.org/10.1016/j.semcancer.2019.07.009] [PMID: 31323288]
[48]
Błajecka K, Marinov M, Leitner L, Uth K, Posern G, Arcaro A. Phosphoinositide 3-kinase C2β regulates RhoA and the actin cytoskeleton through an interaction with Dbl. PLoS One 2012; 7(9): e44945
[http://dx.doi.org/10.1371/journal.pone.0044945] [PMID: 22984590]
[49]
Chen X, Cheng H, Pan T, et al. mTOR regulate EMT through RhoA and Rac1 pathway in prostate cancer. Mol Carcinog 2015; 54(10): 1086-95.
[http://dx.doi.org/10.1002/mc.22177] [PMID: 25043657]
[50]
Liu P, Gan W, Chin YR, et al. PtdIns(3,4,5)P3-Dependent Activation of the mTORC2 Kinase Complex. Cancer Discov 2015; 5(11): 1194-209.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0460] [PMID: 26293922]
[51]
Liu L, Das S, Losert W, Parent CA. mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev Cell 2010; 19(6): 845-57.
[http://dx.doi.org/10.1016/j.devcel.2010.11.004] [PMID: 21145500]
[52]
Riquelme I, Tapia O, Espinoza JA, et al. The Gene Expression Status of the PI3K/AKT/mTOR Pathway in Gastric Cancer Tissues and Cell Lines. Pathol Oncol Res 2016; 22(4): 797-805.
[http://dx.doi.org/10.1007/s12253-016-0066-5] [PMID: 27156070]
[53]
Meng XG, Yue SW. Dexamethasone disrupts cytoskeleton organization and migration of T47D Human breast cancer cells by modulating the AKT/mTOR/RhoA pathway. Asian Pac J Cancer Prev 2014; 15(23): 10245-50.
[http://dx.doi.org/10.7314/APJCP.2014.15.23.10245] [PMID: 25556455]
[54]
Zainal NS, Gan CP, Lau BF, et al. Zerumbone targets the CXCR4-RhoA and PI3K-mTOR signaling axis to reduce motility and proliferation of oral cancer cells. Phytomedicine 2018; 39: 33-41.
[http://dx.doi.org/10.1016/j.phymed.2017.12.011] [PMID: 29433681]
[55]
Sun Z, Andersson R. NF-kappaB activation and inhibition: a review. Shock 2002; 18(2): 99-106.
[http://dx.doi.org/10.1097/00024382-200208000-00001] [PMID: 12166787]
[56]
Temiz-Resitoglu M, Kucukkavruk SP, Guden DS, et al. Activation of mTOR/IκB-α/NF-κB pathway contributes to LPS-induced hypotension and inflammation in rats. Eur J Pharmacol 2017; 802: 7-19.
[http://dx.doi.org/10.1016/j.ejphar.2017.02.034] [PMID: 28228357]
[57]
Pontoriero M, Fiume G, Vecchio E, et al. Activation of NF-κB in B cell receptor signaling through Bruton’s tyrosine kinase-dependent phosphorylation of IκB-α. J Mol Med (Berl) 2019; 97(5): 675-90.
[http://dx.doi.org/10.1007/s00109-019-01777-x] [PMID: 30887112]
[58]
Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel Transcription Factors in Pancreatic Cancer: Focusing on RelA, c-Rel, and RelB. Cancers (Basel) 2019; 11(7): E937
[http://dx.doi.org/10.3390/cancers11070937] [PMID: 31277415]
[59]
Cho SG, Li D, Stafford LJ, et al. KiSS1 suppresses TNFalpha-induced breast cancer cell invasion via an inhibition of RhoA-mediated NF-kappaB activation. J Cell Biochem 2009; 107(6): 1139-49.
[http://dx.doi.org/10.1002/jcb.22216] [PMID: 19533666]
[60]
Kim JG, Kwon HJ, Wu G, et al. RhoA GTPase oxidation stimulates cell proliferation via nuclear factor-κB activation. Free Radic Biol Med 2017; 103: 57-68.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.12.013] [PMID: 27974245]
[61]
Cowell CF, Yan IK, Eiseler T, Leightner AC, Döppler H, Storz P. Loss of cell-cell contacts induces NF-kappaB via RhoA-mediated activation of protein kinase D1. J Cell Biochem 2009; 106(4): 714-28.
[http://dx.doi.org/10.1002/jcb.22067] [PMID: 19173301]
[62]
Zhao H, Feng Y, Wei C, et al. Colivelin Rescues Ischemic Neuron and Axons Involving JAK/STAT3 Signaling Pathway. Neuroscience 2019; 416: 198-206.
[http://dx.doi.org/10.1016/j.neuroscience.2019.07.020] [PMID: 31374230]
[63]
Shiraiwa K, Matsuse M, Nakazawa Y, et al. JAK/STAT3 and NF-κB Signaling Pathways Regulate Cancer Stem-Cell Properties in Anaplastic Thyroid Cancer Cells. Thyroid 2019; 29(5): 674-82.
[http://dx.doi.org/10.1089/thy.2018.0212] [PMID: 30784360]
[64]
Le Zou T, Wang HF, Ren T, et al. Osthole inhibits the progression of human gallbladder cancer cells through JAK/STAT3 signal pathway both in vitro and in vivo. Anticancer Drugs 2019; 30(10): 1022-30.
[http://dx.doi.org/10.1097/CAD.0000000000000812] [PMID: 31283543]
[65]
Zhang T, Ma L, Wu P, et al. Gallic acid has anticancer activity and enhances the anticancer effects of cisplatin in non small cell lung cancer A549 cells via the JAK/STAT3 signaling pathway. Oncol Rep 2019; 41(3): 1779-88.
[http://dx.doi.org/10.3892/or.2019.6976] [PMID: 30747218]
[66]
Xiong H, Du W, Wang JL, et al. Constitutive activation of STAT3 is predictive of poor prognosis in human gastric cancer. J Mol Med (Berl) 2012; 90(9): 1037-46.
[http://dx.doi.org/10.1007/s00109-012-0869-0] [PMID: 22328012]
[67]
Zhao G, Zhu G, Huang Y, et al. IL-6 mediates the signal pathway of JAK-STAT3-VEGF-C promoting growth, invasion and lymphangiogenesis in gastric cancer. Oncol Rep 2016; 35(3): 1787-95.
[http://dx.doi.org/10.3892/or.2016.4544] [PMID: 26750536]
[68]
Xu X, Xu L, Gao F, et al. Identification of a novel gene fusion (BMX-ARHGAP) in gastric cardia adenocarcinoma. Diagn Pathol 2014; 9: 218.
[http://dx.doi.org/10.1186/s13000-014-0218-4] [PMID: 25499959]
[69]
Teng JP, Yang ZY, Zhu YM, Ni D, Zhu ZJ, Li XQ. The roles of ARHGAP10 in the proliferation, migration and invasion of lung cancer cells. Oncol Lett 2017; 14(4): 4613-8.
[http://dx.doi.org/10.3892/ol.2017.6729] [PMID: 28943961]
[70]
Xu XF, Wang JJ, Ding L, et al. Suppression of BMX-ARHGAP fusion gene inhibits epithelial-mesenchymal transition in gastric cancer cells via RhoA-mediated blockade of JAK/STAT axis. J Cell Biochem 2019; 120(1): 439-51.
[http://dx.doi.org/10.1002/jcb.27400] [PMID: 30216523]
[71]
You W, Tang Q, Zhang C, et al. IL-26 promotes the proliferation and survival of human gastric cancer cells by regulating the balance of STAT1 and STAT3 activation. PLoS One 2013; 8(5): e63588
[http://dx.doi.org/10.1371/journal.pone.0063588] [PMID: 23704922]
[72]
Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins J. Semin Cancer Biol 2019.
[73]
Yu LF, Zhu YB, Qiao MM, Zhong J, Tu SP, Wu YL. Constitutive activation and clinical significance of Stat3 in human gastric cancer tissues and cell lines. Zhonghua Yi Xue Za Zhi 2004; 84(24): 2064-9.
[PMID: 15730617]
[74]
Sun X, Mao Y, Wang J, et al. IL-6 secreted by cancer-associated fibroblasts induces tamoxifen resistance in luminal breast cancer J Oncogene 2014.
[75]
Vered M, Dayan D, Yahalom R, et al. Cancer-associated fibroblasts and epithelial-mesenchymal transition in metastatic oral tongue squamous cell carcinoma. Int J Cancer 2010; 127(6): 1356-62.
[http://dx.doi.org/10.1002/ijc.25358] [PMID: 20340130]
[76]
Wu X, Tao P, Zhou Q, et al. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget 2017; 8(13): 20741-50.
[http://dx.doi.org/10.18632/oncotarget.15119] [PMID: 28186964]
[77]
Adorno-Cruz V, Liu H. Regulation and functions of integrin α2 in cell adhesion and disease. Genes Dis 2018; 6(1): 16-24.
[http://dx.doi.org/10.1016/j.gendis.2018.12.003] [PMID: 30906828]
[78]
Costa P, Scales TM, Ivaska J, Parsons M. Integrin-specific control of focal adhesion kinase and RhoA regulates membrane protrusion and invasion. PLoS One 2013; 8(9): e74659
[http://dx.doi.org/10.1371/journal.pone.0074659] [PMID: 24040310]
[79]
Lin MT, Lin BR, Chang CC, et al. IL-6 induces AGS gastric cancer cell invasion via activation of the c-Src/RhoA/ROCK signaling pathway. Int J Cancer 2007; 120(12): 2600-8.
[http://dx.doi.org/10.1002/ijc.22599] [PMID: 17304514]
[80]
Pan X, Han H, Wang L, et al. Nitidine Chloride inhibits breast cancer cells migration and invasion by suppressing c-Src/FAK associated signaling pathway. Cancer Lett 2011; 313(2): 181-91.
[http://dx.doi.org/10.1016/j.canlet.2011.09.001] [PMID: 21959111]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy