Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Review Article

Recent Studies on Aromatase and Sulfatase Involved in Breast Cancer and their Inhibitors

Author(s): Subhajit Makar, Abhrajyoti Ghosh, Ashok Kumar and Sushil K. Singh*

Volume 16, Issue 1, 2020

Page: [20 - 44] Pages: 25

DOI: 10.2174/1573408016666200325120248

Price: $65

Abstract

Enzyme aromatase uses several androgen substrates for the biosynthesis of estrogen, i.e. conversion of androstenedione to estrone and testosterone to biologically potent estradiol. Aromatase inhibitors (AIs) such as anastrozole, letrozole and exemestane have been established in standard endocrine therapy of breast cancer, by interfering with estrogen signaling cascade. Steroid sulphatase (STS) regulates the level of active oestrogens and androgens in human target organs and steroidogenic tissues, which have a key role in hormone dependent breast cancers (HDBC). Sulfatase is still under the exploration stage and is yet to emerge as a potential therapeutic target in breast cancer. The discovery of estrone 3-O-sulfamate (EMATE), a highly potent irreversible STS inhibitor, accelerated the development of potent steroidal and nonsteroidal STS inhibitors. Attempts are also being made for the development of dual inhibitors of AI and STS, as an alternative approach to overcome the acquired resistance. This review includes the molecular structures and biochemistry of aromatase and sulphatase enzymes. The advances in the development of inhibitors of the two enzymes have also been outlined.

Keywords: Aromatase, breast cancer, cytochrome P450, DASIs, estradiol, steroidal sulphatase.

Graphical Abstract

[1]
DeSantis, C.; Ma, J.; Bryan, L.; Jemal, A. Breast cancer statistics, 2013. CA Cancer J. Clin., 2014, 64(1), 52-62.
[http://dx.doi.org/10.3322/caac.21203] [PMID: 24114568]
[2]
Druesne-Pecollo, N.; Touvier, M.; Barrandon, E.; Chan, D.S.; Norat, T.; Zelek, L.; Hercberg, S.; Latino-Martel, P. Excess body weight and second primary cancer risk after breast cancer: a systematic review and meta-analysis of prospective studies. Breast Cancer Res. Treat., 2012, 135(3), 647-654.
[http://dx.doi.org/10.1007/s10549-012-2187-1] [PMID: 22864804]
[3]
Tao, Z.; Shi, A.; Lu, C.; Song, T.; Zhang, Z.; Zhao, J. Breast cancer: epidemiology and etiology. Cell Biochem. Biophys., 2015, 72(2), 333-338.
[http://dx.doi.org/10.1007/s12013-014-0459-6] [PMID: 25543329]
[4]
Yamamoto-Ibusuki, M.; Arnedos, M.; André, F. Targeted therapies for ER+/HER2- metastatic breast cancer. BMC Med., 2015, 13(1), 137.
[http://dx.doi.org/10.1186/s12916-015-0369-5] [PMID: 26059247]
[5]
Saha, T.; Makar, S.; Swetha, R.; Gutti, G.; Singh, S.K. Estrogen signaling: An emanating therapeutic target for breast cancer treatment. Eur. J. Med. Chem., 2019, 177, 116-143.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.023] [PMID: 31129450]
[6]
Goldhirsch, A.; Wood, W.C.; Coates, A.S.; Gelber, R.D.; Thürlimann, B.; Senn, H-J.; Members, P. Panel members. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann. Oncol., 2011, 22(8), 1736-1747.
[http://dx.doi.org/10.1093/annonc/mdr304] [PMID: 21709140]
[7]
Boswell, K.A.; Wang, X.; Shah, M.V.; Aapro, M.S. Disease burden and treatment outcomes in second-line therapy of patients with estrogen receptor-positive (ER+) advanced breast cancer: a review of the literature. Breast, 2012, 21(6), 701-706.
[http://dx.doi.org/10.1016/j.breast.2012.09.005] [PMID: 23092824]
[8]
Simpson, E.R.; Mahendroo, M.S.; Means, G.D.; Kilgore, M.W.; Hinshelwood, M.M.; Graham-Lorence, S.; Amarneh, B.; Ito, Y.; Fisher, C.R.; Michael, M.D. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr. Rev., 1994, 15(3), 342-355.
[PMID: 8076586]
[9]
Reed, M.J.; Owen, A.M.; Lai, L.C.; Coldham, N.G.; Ghilchik, M.W.; Shaikh, N.A.; James, V.H. In situ oestrone synthesis in normal breast and breast tumour tissues: effect of treatment with 4-hydroxyandrostenedione. Int. J. Cancer, 1989, 44(2), 233-237.
[http://dx.doi.org/10.1002/ijc.2910440208] [PMID: 2759729]
[10]
Brueggemeier, R.W.; Hackett, J.C.; Diaz-Cruz, E.S. Aromatase inhibitors in the treatment of breast cancer. Endocr. Rev., 2005, 26(3), 331-345.
[http://dx.doi.org/10.1210/er.2004-0015] [PMID: 15814851]
[11]
Purohit, A.; Woo, L.W.; Chander, S.K.; Newman, S.P.; Ireson, C.; Ho, Y.; Grasso, A.; Leese, M.P.; Potter, B.V.; Reed, M.J. Steroid sulphatase inhibitors for breast cancer therapy. J. Steroid Biochem. Mol. Biol., 2003, 86(3-5), 423-432.
[http://dx.doi.org/10.1016/S0960-0760(03)00353-4] [PMID: 14623540]
[12]
Reed, M.J.; Purohit, A.; Woo, L.W.; Newman, S.P.; Potter, B.V. Steroid sulfatase: molecular biology, regulation, and inhibition. Endocr. Rev., 2005, 26(2), 171-202.
[http://dx.doi.org/10.1210/er.2004-0003] [PMID: 15561802]
[13]
Woo, L.L.; Purohit, A.; Malini, B.; Reed, M.J.; Potter, B.V. Potent active site-directed inhibition of steroid sulphatase by tricyclic coumarin-based sulphamates. Chem. Biol., 2000, 7(10), 773-791.
[http://dx.doi.org/10.1016/S1074-5521(00)00023-5] [PMID: 11033081]
[14]
Jackson, T.; Woo, L.W.; Trusselle, M.N.; Chander, S.K.; Purohit, A.; Reed, M.J.; Potter, B.V. Dual aromatase-sulfatase inhibitors based on the anastrozole template: synthesis, in vitro SAR, molecular modelling and in vivo activity. Org. Biomol. Chem., 2007, 5(18), 2940-2952.
[http://dx.doi.org/10.1039/b707768h] [PMID: 17728860]
[15]
Spinello, A.; Martini, S.; Berti, F.; Pennati, M.; Pavlin, M.; Sgrignani, J.; Grazioso, G.; Colombo, G.; Zaffaroni, N.; Magistrato, A. Rational design of allosteric modulators of the aromatase enzyme: An unprecedented therapeutic strategy to fight breast cancer. Eur. J. Med. Chem., 2019, 168, 253-262.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.045] [PMID: 30822713]
[16]
Spinello, A.; Ritacco, I.; Magistrato, A. The catalytic mechanism of steroidogenic cytochromes P450 from all-atom simulations: entwinement with membrane environment, redox partners, and post-transcriptional regulation. Catalysts, 2019, 9(1), 81.
[http://dx.doi.org/10.3390/catal9010081]
[17]
Sgrignani, J.; Magistrato, A. Influence of the membrane lipophilic environment on the structure and on the substrate access/egress routes of the human aromatase enzyme. A computational study. J. Chem. Inf. Model., 2012, 52(6), 1595-1606.
[http://dx.doi.org/10.1021/ci300151h] [PMID: 22621202]
[18]
Spinello, A.; Pavlin, M.; Casalino, L.; Magistrato, A. A dehydrogenase dual hydrogen abstraction mechanism promotes estrogen biosynthesis: can we expand the functional annotation of the aromatase enzyme? Chemistry, 2018, 24(42), 10840-10849.
[http://dx.doi.org/10.1002/chem.201802025] [PMID: 29770981]
[19]
Favia, A.D.; Cavalli, A.; Masetti, M.; Carotti, A.; Recanatini, M. Three-dimensional model of the human aromatase enzyme and density functional parameterization of the iron-containing protoporphyrin IX for a molecular dynamics study of heme-cysteinato cytochromes. Proteins, 2006, 62(4), 1074-1087.
[http://dx.doi.org/10.1002/prot.20829] [PMID: 16395678]
[20]
Ghosh, D.; Griswold, J.; Erman, M.; Pangborn, W. X-ray structure of human aromatase reveals an androgen-specific active site. J. Steroid Biochem. Mol. Biol., 2010, 118(4-5), 197-202.
[http://dx.doi.org/10.1016/j.jsbmb.2009.09.012] [PMID: 19808095]
[21]
Chen, S.; Zhou, D.; Swiderek, K.M.; Kadohama, N.; Osawa, Y.; Hall, P.F. Structure-function studies of human aromatase. J. Steroid Biochem. Mol. Biol., 1993, 44(4-6), 347-356.
[http://dx.doi.org/10.1016/0960-0760(93)90238-R] [PMID: 8476748]
[22]
Graham-Lorence, S.; Amarneh, B.; White, R.E.; Peterson, J.A.; Simpson, E.R. A three-dimensional model of aromatase cytochrome P450. Protein Sci., 1995, 4(6), 1065-1080.
[http://dx.doi.org/10.1002/pro.5560040605] [PMID: 7549871]
[23]
Kao, Y.C.; Korzekwa, K.R.; Laughton, C.A.; Chen, S. Evaluation of the mechanism of aromatase cytochrome P450. A site-directed mutagenesis study. Eur. J. Biochem., 2001, 268(2), 243-251.
[http://dx.doi.org/10.1046/j.1432-1033.2001.01886.x] [PMID: 11168357]
[24]
Chen, S.; Zhang, F.; Sherman, M.A.; Kijima, I.; Cho, M.; Yuan, Y.C.; Toma, Y.; Osawa, Y.; Zhou, D.; Eng, E.T. Structure-function studies of aromatase and its inhibitors: a progress report. J. Steroid Biochem. Mol. Biol., 2003, 86(3-5), 231-237.
[http://dx.doi.org/10.1016/S0960-0760(03)00361-3] [PMID: 14623516]
[25]
Ghosh, D.; Griswold, J.; Erman, M.; Pangborn, W. Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature, 2009, 457(7226), 219-223.
[http://dx.doi.org/10.1038/nature07614] [PMID: 19129847]
[26]
Ghosh, D. Human sulfatases: a structural perspective to catalysis. Cell. Mol. Life Sci., 2007, 64(15), 2013-2022.
[http://dx.doi.org/10.1007/s00018-007-7175-y] [PMID: 17558559]
[27]
Parenti, G.; Meroni, G.; Ballabio, A. The sulfatase gene family. Curr. Opin. Genet. Dev., 1997, 7(3), 386-391.
[http://dx.doi.org/10.1016/S0959-437X(97)80153-0] [PMID: 9229115]
[28]
Diez-Roux, G.; Ballabio, A. Sulfatases and human disease. Annu. Rev. Genomics Hum. Genet., 2005, 6, 355-379.
[http://dx.doi.org/10.1146/annurev.genom.6.080604.162334] [PMID: 16124866]
[29]
Vaccaro, A.M.; Salvioli, R.; Muscillo, M.; Renola, L. Purification and properties of arylsulfatase C from human placenta. Enzyme, 1987, 37(3), 115-126.
[http://dx.doi.org/10.1159/000469248] [PMID: 2953589]
[30]
Hernandez-Guzman, F.G.; Higashiyama, T.; Osawa, Y.; Ghosh, D. Purification, characterization and crystallization of human placental estrone/dehydroepiandrosterone sulfatase, a membrane-bound enzyme of the endoplasmic reticulum. J. Steroid Biochem. Mol. Biol., 2001, 78(5), 441-450.
[http://dx.doi.org/10.1016/S0960-0760(01)00119-4] [PMID: 11738554]
[31]
Hernandez-Guzman, F.G.; Higashiyama, T.; Pangborn, W.; Osawa, Y.; Ghosh, D. Structure of human estrone sulfatase suggests functional roles of membrane association. J. Biol. Chem., 2003, 278(25), 22989-22997.
[http://dx.doi.org/10.1074/jbc.M211497200] [PMID: 12657638]
[32]
Noël, H.; Plante, L.; Bleau, G.; Chapdelaine, A.; Roberts, K.D. Human placental steroid sulfatase: purification and properties. J. Steroid Biochem., 1983, 19(5), 1591-1598.
[http://dx.doi.org/10.1016/0022-4731(83)90375-8] [PMID: 6417417]
[33]
Dibbelt, L.; Kuss, E. Human placental steryl-sulfatase. Enzyme purification, production of antisera, and immunoblotting reactions with normal and sulfatase-deficient placentas. Biol. Chem. Hoppe Seyler, 1986, 367(12), 1223-1229.
[http://dx.doi.org/10.1515/bchm3.1986.367.2.1223] [PMID: 3470015]
[34]
Burns, G.R. Purification and partial characterization of arylsulphatase C from human placental microsomes. Biochim. Biophys. Acta, 1983, 759(3), 199-204.
[http://dx.doi.org/10.1016/0304-4165(83)90313-6] [PMID: 6576810]
[35]
Schmidt, B.; Selmer, T.; Ingendoh, A.; von Figura, K. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell, 1995, 82(2), 271-278.
[http://dx.doi.org/10.1016/0092-8674(95)90314-3] [PMID: 7628016]
[36]
Recksiek, M.; Selmer, T.; Dierks, T.; Schmidt, B.; von Figura, K. Sulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine. J. Biol. Chem., 1998, 273(11), 6096-6103.
[http://dx.doi.org/10.1074/jbc.273.11.6096] [PMID: 9497327]
[37]
Ghosh, D. Three-dimensional structures of sulfatases. Methods Enzymol., 2005, 400, 273-293.
[http://dx.doi.org/10.1016/S0076-6879(05)00016-9] [PMID: 16399355]
[38]
Ghosh, D.; Vihko, P. Molecular mechanisms of estrogen recognition and 17-keto reduction by human 17β-hydroxysteroid dehydrogenase 1. Chem. Biol. Interact., 2001, 130-132(1-3), 637-650.
[http://dx.doi.org/10.1016/S0009-2797(00)00255-6] [PMID: 11306082]
[39]
Sawicki, M.W.; Erman, M.; Puranen, T.; Vihko, P.; Ghosh, D. Structure of the ternary complex of human 17β-hydroxysteroid dehydrogenase type 1 with 3-hydroxyestra-1,3,5,7-tetraen-17-one (equilin) and NADP+. Proc. Natl. Acad. Sci. USA, 1999, 96(3), 840-845.
[http://dx.doi.org/10.1073/pnas.96.3.840] [PMID: 9927655]
[40]
Miller, W.R. In Seminars in oncology; Elsevier, 2003, Vol. 30, pp. 3-11.
[41]
Miller, W.R.; Mullen, P.; Sourdaine, P.; Watson, C.; Dixon, J.M.; Telford, J. Regulation of aromatase activity within the breast. J. Steroid Biochem. Mol. Biol., 1997, 61(3-6), 193-202.
[http://dx.doi.org/10.1016/S0960-0760(97)80012-X] [PMID: 9365190]
[42]
Sisemore, M.F.; Burstyn, J.N.; Valentine, J.S. Epoxidation of Electron‐Deficient Olefins by a Nucleophilic Iron (III) Peroxo Porphyrinato Complex, Peroxo (tetramesitylporphyrinato) ferrate. Angew. Chem. Int. Ed. Engl., 1996, 35(2), 206-208.
[http://dx.doi.org/10.1002/anie.199602061]
[43]
Burstyn, J.N.; Roe, J.A.; Miksztal, A.R.; Shaevitz, B.A.; Lang, G.; Valentine, J.S. Magnetic and spectroscopic characterization of an iron porphyrin peroxide complex. Peroxoferrioctaethylporphyrin. J. Am. Chem. Soc., 1988, 110(5), 1382-1388.
[http://dx.doi.org/10.1021/ja00213a009]
[44]
Naitoh, K.; Honjo, H.; Yamamoto, T.; Urabe, M.; Ogino, Y.; Yasumura, T.; Nambara, T. Estrone sulfate and sulfatase activity in human breast cancer and endometrial cancer. J. Steroid Biochem., 1989, 33(6), 1049-1054.
[http://dx.doi.org/10.1016/0022-4731(89)90408-1] [PMID: 2559248]
[45]
Cole, P.A.; Robinson, C.H. Peroxide model reaction for placental aromatase. J. Am. Chem. Soc., 1988, 110(4), 1284-1285.
[http://dx.doi.org/10.1021/ja00212a043]
[46]
Korzekwa, K.R.; Trager, W.F.; Mancewicz, J.; Osawa, Y. Studies on the mechanism of aromatase and other cytochrome P450 mediated deformylation reactions. J. Steroid Biochem. Mol. Biol., 1993, 44(4-6), 367-373.
[http://dx.doi.org/10.1016/0960-0760(93)90240-W] [PMID: 8476750]
[47]
Maltais, R.; Poirier, D. Steroid sulfatase inhibitors: a review covering the promising 2000-2010 decade. Steroids, 2011, 76(10-11), 929-948.
[http://dx.doi.org/10.1016/j.steroids.2011.03.010] [PMID: 21458474]
[48]
Santen, R.J.; Brodie, H.; Simpson, E.R.; Siiteri, P.K.; Brodie, A. History of aromatase: saga of an important biological mediator and therapeutic target. Endocr. Rev., 2009, 30(4), 343-375.
[http://dx.doi.org/10.1210/er.2008-0016] [PMID: 19389994]
[49]
Brodie, A.M.; Garrett, W.M.; Hendrickson, J.R.; Tsai-Morris, C.H.; Marcotte, P.A.; Robinson, C.H. Inactivation of aromatase in vitro by 4-hydroxy-4-androstene-3,17-dione and 4-acetoxy-4-androstene-3,17-dione and sustained effects in vivo. Steroids, 1981, 38(6), 693-702.
[http://dx.doi.org/10.1016/0039-128X(81)90087-8] [PMID: 7336466]
[50]
Burstein, H.J.; Griggs, J.J.; Prestrud, A.A.; Temin, S. American society of clinical oncology clinical practice guideline update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J. Oncol. Pract., 2010, 6(5), 243-246.
[http://dx.doi.org/10.1200/JOP.000082] [PMID: 21197188]
[51]
Chen, S.A.; Besman, M.J.; Sparkes, R.S.; Zollman, S.; Klisak, I.; Mohandas, T.; Hall, P.F.; Shively, J.E. Human aromatase: cDNA cloning, Southern blot analysis, and assignment of the gene to chromosome 15. DNA, 1988, 7(1), 27-38.
[http://dx.doi.org/10.1089/dna.1988.7.27] [PMID: 3390233]
[52]
Coombes, R.C.; Goss, P.; Dowsett, M.; Gazet, J.C.; Brodie, A. 4-Hydroxyandrostenedione in treatment of postmenopausal patients with advanced breast cancer. Lancet, 1984, 2(8414), 1237-1239.
[http://dx.doi.org/10.1016/S0140-6736(84)92795-8] [PMID: 6150277]
[53]
Henderson, D.; Norbisrath, G.; Kerb, U. 1-Methyl-1,4-androstadiene-3,17-dione (SH 489): characterization of an irreversible inhibitor of estrogen biosynthesis. J. Steroid Biochem., 1986, 24(1), 303-306.
[http://dx.doi.org/10.1016/0022-4731(86)90069-5] [PMID: 3754599]
[54]
Johnston, J.O. Biological characterization of 10-(2-propynyl) estr-4-ene-3, 17-dione (MDL 18,962), an enzyme-activated inhibitor of aromatase. Steroids, 1987, 50(1-3), 105-120.
[http://dx.doi.org/10.1016/0039-128X(83)90065-X] [PMID: 2847370]
[55]
Giudici, D.; Ornati, G.; Briatico, G.; Buzzetti, F.; Lombardi, P.; di Salle, E. 6-Methylenandrosta-1,4-diene-3,17-dione (FCE 24304): a new irreversible aromatase inhibitor. J. Steroid Biochem., 1988, 30(1-6), 391-394.
[http://dx.doi.org/10.1016/0022-4731(88)90129-X] [PMID: 3386266]
[56]
Schwarzel, W.C.; Kruggel, W.G.; Brodie, H.J. Studies on the mechanism of estrogen biosynthesis. 8. The development of inhibitors of the enzyme system in human placenta. Endocrinology, 1973, 92(3), 866-880.
[http://dx.doi.org/10.1210/endo-92-3-866] [PMID: 4267111]
[57]
Lombardi, P. Exemestane, a new steroidal aromatase inhibitor of clinical relevance. Biochim. Biophys. Acta, 2002, 1587(2-3), 326-337.
[http://dx.doi.org/10.1016/S0925-4439(02)00096-0] [PMID: 12084475]
[58]
Di salle, E.; Giudici, D.; Briatico, G.; Ornati, G. Novel irreversible aromatase inhibitors. Ann. N. Y. Acad. Sci., 1990, 595(1), 357-367.
[http://dx.doi.org/10.1111/j.1749-6632.1990.tb34309.x] [PMID: 2375613]
[59]
Nagaoka, M.; Watari, Y.; Yajima, H.; Tsukioka, K.; Muroi, Y.; Yamada, K.; Numazawa, M. Structure-activity relationships of 3-deoxy androgens as aromatase inhibitors. Synthesis and biochemical studies of 4-substituted 4-ene and 5-ene steroids. Steroids, 2003, 68(6), 533-542.
[http://dx.doi.org/10.1016/S0039-128X(03)00085-0] [PMID: 12906938]
[60]
Numazawa, M.; Yoshimura, A.; Tachibana, M.; Shelangouski, M.; Ishikawa, M. Time-dependent aromatase inactivation by 4 β,5 β-epoxides of the natural substrate androstenedione and its 19-oxygenated analogs. Steroids, 2002, 67(3-4), 185-193.
[http://dx.doi.org/10.1016/S0039-128X(01)00151-9] [PMID: 11856542]
[61]
Cepa, M.M.; Tavares da Silva, E.J.; Correia-da-Silva, G.; Roleira, F.M.; Teixeira, N.A. Structure-activity relationships of new A,D-ring modified steroids as aromatase inhibitors: design, synthesis, and biological activity evaluation. J. Med. Chem., 2005, 48(20), 6379-6385.
[http://dx.doi.org/10.1021/jm050129p] [PMID: 16190763]
[62]
Sherwin, P.F.; McMullan, P.C.; Covey, D.F. Effects of steroid D-ring modification on suicide inactivation and competitive inhibition of aromatase by analogues of androsta-1,4-diene-3,17-dione. J. Med. Chem., 1989, 32(3), 651-658.
[http://dx.doi.org/10.1021/jm00123a026] [PMID: 2918514]
[63]
Cepa, M.M.; da Silva, E.J.T.; Correia-da-Silva, G.; Roleira, F.M.; Teixeira, N.A. Synthesis and biochemical studies of 17-substituted androst-3-enes and 3, 4-epoxyandrostanes as aromatase inhibitors steroids, 2008, 73(14), 1409-1415.
[64]
Varela, C.; Tavares da Silva, E.J.; Amaral, C.; Correia da Silva, G.; Baptista, T.; Alcaro, S.; Costa, G.; Carvalho, R.A.; Teixeira, N.A.; Roleira, F.M. New structure-activity relationships of A- and D-ring modified steroidal aromatase inhibitors: design, synthesis, and biochemical evaluation. J. Med. Chem., 2012, 55(8), 3992-4002.
[http://dx.doi.org/10.1021/jm300262w] [PMID: 22475216]
[65]
Numazawa, M.; Oshibe, M.; Yamaguchi, S. 6-Alkylandrosta-4,6-diene-3,17-diones and their 1,4,6-triene analogs as aromatase inhibitors. Structure-activity relationships. Steroids, 1997, 62(8-9), 595-602.
[http://dx.doi.org/10.1016/S0039-128X(97)86814-6] [PMID: 9292934]
[66]
Penov Gasi, K.M.; Stanković, S.M.; Csanádi, J.J.; Djurendić, E.A.; Sakac, M.N.; Medić Mijacević, L.; Arcson, O.N.; Stojanović, S.Z.; Andrić, S.; Molnar Gabor, D.; Kovacević, R. New D-modified androstane derivatives as aromatase inhibitors. Steroids, 2001, 66(8), 645-653.
[http://dx.doi.org/10.1016/S0039-128X(01)00096-4] [PMID: 11430997]
[67]
Gasi, K.M.P.; Stojanović, S.Z.; Sakac, M.N.; Popsavin, M.; Santa, S.J.; Stanković, S.M.; Klisurić, O.R.; Andrić, N.; Kovacević, R. Synthesis and anti-aromatase activity of some new steroidal D-lactones. Steroids, 2005, 70(1), 47-53.
[http://dx.doi.org/10.1016/j.steroids.2004.10.005] [PMID: 15610896]
[68]
Gasi, K.M.P.; Brenesel, M.Dj.; Djurendić, E.A.; Sakac, M.N.; Canadi, J.J.; Daljev, J.J.; Armbruster, T.; Andrić, S.; Sladić, D.M.; Bozić, T.T.; Novaković, I.T.; Juranić, Z.D. Synthesis and biological evaluation of some 17-picolyl and 17-picolinylidene androst-5-ene derivatives. Steroids, 2007, 72(1), 31-40.
[http://dx.doi.org/10.1016/j.steroids.2006.10.002] [PMID: 17118415]
[69]
Bansal, R.; Guleria, S.; Thota, S.; Hartmann, R.W.; Zimmer, C. Synthesis and biological evaluation of 16E-arylidenosteroids as cytotoxic and anti-aromatase agents. Chem. Pharm. Bull. (Tokyo), 2011, 59(3), 327-331.
[http://dx.doi.org/10.1248/cpb.59.327] [PMID: 21372413]
[70]
Yadav, M.R.; Sabale, P.M.; Giridhar, R.; Zimmer, C.; Haupenthal, J.; Hartmann, R.W. Synthesis of some novel androstanes as potential aromatase inhibitors. Steroids, 2011, 76(5), 464-470.
[http://dx.doi.org/10.1016/j.steroids.2010.12.013] [PMID: 21215765]
[71]
Varela, C.L.; Amaral, C.; Correia-da-Silva, G.; Carvalho, R.A.; Teixeira, N.A.; Costa, S.C.; Roleira, F.M.; Tavares-da-Silva, E.J. Design, synthesis and biochemical studies of new 7α-allylandrostanes as aromatase inhibitors. Steroids, 2013, 78(7), 662-669.
[http://dx.doi.org/10.1016/j.steroids.2013.02.016] [PMID: 23499824]
[72]
Ghosh, D.; Lo, J.; Morton, D.; Valette, D.; Xi, J.; Griswold, J.; Hubbell, S.; Egbuta, C.; Jiang, W.; An, J.; Davies, H.M. Novel aromatase inhibitors by structure-guided design. J. Med. Chem., 2012, 55(19), 8464-8476.
[http://dx.doi.org/10.1021/jm300930n] [PMID: 22951074]
[73]
Roleira, F.M.F.; Varela, C.; Amaral, C.; Costa, S.C.; Correia-da-Silva, G.; Moraca, F.; Costa, G.; Alcaro, S.; Teixeira, N.A.A.; Tavares da Silva, E.J. C-6α- vs C-7α-Substituted Steroidal Aromatase Inhibitors: Which Is Better? Synthesis, Biochemical Evaluation, Docking Studies, and Structure-Activity Relationships. J. Med. Chem., 2019, 62(7), 3636-3657.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00157] [PMID: 30852901]
[74]
Brodie, A. Aromatase inhibitors in breast cancer. Trends Endocrinol. Metab., 2002, 13(2), 61-65.
[http://dx.doi.org/10.1016/S1043-2760(01)00529-X] [PMID: 11854020]
[75]
Narashimamurthy, J.; Rao, A.R.R.; Sastry, G.N. Aromatase inhibitors: a new paradigm in breast cancer treatment. Curr. Med. Chem. Anticancer Agents, 2004, 4(6), 523-534.
[http://dx.doi.org/10.2174/1568011043352669] [PMID: 15579017]
[76]
Buzdar, A.; Chlebowski, R.; Cuzick, J.; Duffy, S.; Forbes, J.; Jonat, W.; Ravdin, P.; Panel, I.A.I. Defining the role of aromatase inhibitors in the adjuvant endocrine treatment of early breast cancer. Curr. Med. Res. Opin., 2006, 22(8), 1575-1585.
[http://dx.doi.org/10.1185/030079906X120940] [PMID: 16870082]
[77]
Gradishar, W. Landmark trials in endocrine adjuvant therapy for breast carcinoma. Cancer, 2006, 106(5), 975-981.
[http://dx.doi.org/10.1002/cncr.21707] [PMID: 16435388]
[78]
Brueggemeier, R.W. Update on the use of aromatase inhibitors in breast cancer. Expert Opin. Pharmacother., 2006, 7(14), 1919-1930.
[http://dx.doi.org/10.1517/14656566.7.14.1919] [PMID: 17020418]
[79]
Recanatini, M.; Bisi, A.; Cavalli, A.; Belluti, F.; Gobbi, S.; Rampa, A.; Valenti, P.; Palzer, M.; Palusczak, A.; Hartmann, R.W. A new class of nonsteroidal aromatase inhibitors: design and synthesis of chromone and xanthone derivatives and inhibition of the P450 enzymes aromatase and 17 α-hydroxylase/C17,20-lyase. J. Med. Chem., 2001, 44(5), 672-680.
[http://dx.doi.org/10.1021/jm000955s] [PMID: 11262078]
[80]
Auvray, P.; Moslemi, S.; Sourdaine, P.; Galopin, S.; Séralini, G-E.; Enguehard, C.; Dallemagne, P.; Bureau, R.; Sonnet, P.; Rault, S. Evidence for new non-steroidal human aromatase inhibitors and comparison with equine aromatase inhibition for an understanding of the mammalian active site. Eur. J. Med. Chem., 1998, 33(6), 451-462.
[http://dx.doi.org/10.1016/S0223-5234(98)80046-9]
[81]
Sonnet, P.; Guillon, J.; Enguehard, C.; Dallemagne, P.; Bureau, R.; Rault S Auvray, P.; Moslemi, S.; Sourdiane, P.; Galopin, S.; Séralini, G.E. Design and synthesis of a new type of non steroidal human aromatase inhibitors. Bioorg. Med. Chem. Lett., 1998, 8(9), 1041-1044.
[http://dx.doi.org/10.1016/S0960-894X(98)00157-7] [PMID: 9871704]
[82]
Sonnet, P.; Dallemagne, P.; Guillon, J.; Enguehard, C.; Stiebing, S.; Tanguy, J.; Bureau, R.; Rault, S.; Auvray, P.; Moslemi, S.; Sourdaine, P.; Séralini, G.E. New aromatase inhibitors. Synthesis and biological activity of aryl-substituted pyrrolizine and indolizine derivatives. Bioorg. Med. Chem., 2000, 8(5), 945-955.
[http://dx.doi.org/10.1016/S0968-0896(00)00024-9] [PMID: 10882007]
[83]
Leonetti, F.; Favia, A.; Rao, A.; Aliano, R.; Paluszcak, A.; Hartmann, R.W.; Carotti, A. Design, synthesis, and 3D QSAR of novel potent and selective aromatase inhibitors. J. Med. Chem., 2004, 47(27), 6792-6803.
[http://dx.doi.org/10.1021/jm049535j] [PMID: 15615528]
[84]
Maiti, A.; Cuendet, M.; Croy, V.L.; Endringer, D.C.; Pezzuto, J.M.; Cushman, M. Synthesis and biological evaluation of (+/-)-abyssinone II and its analogues as aromatase inhibitors for chemoprevention of breast cancer. J. Med. Chem., 2007, 50(12), 2799-2806.
[http://dx.doi.org/10.1021/jm070109i] [PMID: 17511439]
[85]
Gobbi, S.; Cavalli, A.; Negri, M.; Schewe, K.E.; Belluti, F.; Piazzi, L.; Hartmann, R.W.; Recanatini, M.; Bisi, A. Imidazolylmethylbenzophenones as highly potent aromatase inhibitors. J. Med. Chem., 2007, 50(15), 3420-3422.
[http://dx.doi.org/10.1021/jm0702938] [PMID: 17585752]
[86]
Lézé, M-P.; Le Borgne, M.; Pinson, P.; Palusczak, A.; Duflos, M.; Le Baut, G.; Hartmann, R.W. Synthesis and biological evaluation of 5-[(aryl)(1H-imidazol-1-yl)methyl]-1H-indoles: potent and selective aromatase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(5), 1134-1137.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.099] [PMID: 16380254]
[87]
Pouget, C.; Fagnere, C.; Basly, J.P.; Habrioux, G.; Chulia, A.J. New aromatase inhibitors. Synthesis and inhibitory activity of pyridinyl-substituted flavanone derivatives. Bioorg. Med. Chem. Lett., 2002, 12(7), 1059-1061.
[http://dx.doi.org/10.1016/S0960-894X(02)00072-0] [PMID: 11909717]
[88]
Saberi, M.R.; Vinh, T.K.; Yee, S.W.; Griffiths, B.J.; Evans, P.J.; Simons, C. Potent CYP19 (aromatase) 1-[(benzofuran-2-yl)(phenylmethyl)pyridine, -imidazole, and -triazole inhibitors: synthesis and biological evaluation. J. Med. Chem., 2006, 49(3), 1016-1022.
[http://dx.doi.org/10.1021/jm0508282] [PMID: 16451067]
[89]
Cavalli, A.; Bisi, A.; Bertucci, C.; Rosini, C.; Paluszcak, A.; Gobbi, S.; Giorgio, E.; Rampa, A.; Belluti, F.; Piazzi, L.; Valenti, P.; Hartmann, R.W.; Recanatini, M. Enantioselective nonsteroidal aromatase inhibitors identified through a multidisciplinary medicinal chemistry approach. J. Med. Chem., 2005, 48(23), 7282-7289.
[http://dx.doi.org/10.1021/jm058042r] [PMID: 16279787]
[90]
Lézé, M.P.; Palusczak, A.; Hartmann, R.W.; Le Borgne, M. Synthesis of 6- or 4-functionalized indoles via a reductive cyclization approach and evaluation as aromatase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(16), 4713-4715.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.094] [PMID: 18640836]
[91]
Gobbi, S.; Zimmer, C.; Belluti, F.; Rampa, A.; Hartmann, R.W.; Recanatini, M.; Bisi, A. Novel highly potent and selective nonsteroidal aromatase inhibitors: synthesis, biological evaluation and structure-activity relationships investigation. J. Med. Chem., 2010, 53(14), 5347-5351.
[http://dx.doi.org/10.1021/jm100319h] [PMID: 20568782]
[92]
Sun, B.; Hoshino, J.; Jermihov, K.; Marler, L.; Pezzuto, J.M.; Mesecar, A.D.; Cushman, M. Design, synthesis, and biological evaluation of resveratrol analogues as aromatase and quinone reductase 2 inhibitors for chemoprevention of cancer. Bioorg. Med. Chem., 2010, 18(14), 5352-5366.
[http://dx.doi.org/10.1016/j.bmc.2010.05.042] [PMID: 20558073]
[93]
Hackett, J.C.; Kim, Y.W.; Su, B.; Brueggemeier, R.W. Synthesis and characterization of azole isoflavone inhibitors of aromatase. Bioorg. Med. Chem., 2005, 13(12), 4063-4070.
[http://dx.doi.org/10.1016/j.bmc.2005.03.050] [PMID: 15911319]
[94]
Yahiaoui, S.; Fagnere, C.; Pouget, C.; Buxeraud, J.; Chulia, A.J. New 7,8-benzoflavanones as potent aromatase inhibitors: synthesis and biological evaluation. Bioorg. Med. Chem., 2008, 16(3), 1474-1480.
[http://dx.doi.org/10.1016/j.bmc.2007.10.057] [PMID: 18042388]
[95]
Marchand, P.; Le Borgne, M.; Palzer, M.; Le Baut, G.; Hartmann, R.W. Preparation and pharmacological profile of 7-(α-azolylbenzyl)-1H-indoles and indolines as new aromatase inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(9), 1553-1555.
[http://dx.doi.org/10.1016/S0960-894X(03)00182-3] [PMID: 12699753]
[96]
Stefanachi, A.; Favia, A.D.; Nicolotti, O.; Leonetti, F.; Pisani, L.; Catto, M.; Zimmer, C.; Hartmann, R.W.; Carotti, A. Design, synthesis, and biological evaluation of imidazolyl derivatives of 4,7-disubstituted coumarins as aromatase inhibitors selective over 17-α-hydroxylase/C17-20 lyase. J. Med. Chem., 2011, 54(6), 1613-1625.
[http://dx.doi.org/10.1021/jm101120u] [PMID: 21341743]
[97]
Bansal, R.; Narang, G.; Zimmer, C.; Hartmann, R.W. Synthesis of some imidazolyl-substituted 2-benzylidene indanone derivatives as potent aromatase inhibitors for breast cancer therapy. Med. Chem. Res., 2011, 20(6), 661-669.
[http://dx.doi.org/10.1007/s00044-010-9368-4]
[98]
Richard, R.; Cuperlovic-Culf, M.; Robichaud, G.A.; Touaibia, M. Synthesis and structureeactivity relationship of 1-and 2-substituted- 1, 2, 3-triazole letrozole-based analogues as aromatase inhibitors. European Journal of Medicinal Chemistry., 2011, 46, 4010e4024
[99]
Wang, R.; Shi, H.F.; Zhao, J.F.; He, Y.P.; Zhang, H.B.; Liu, J.P. Design, synthesis and aromatase inhibitory activities of novel indole-imidazole derivatives. Bioorg. Med. Chem. Lett., 2013, 23(6), 1760-1762.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.045] [PMID: 23403081]
[100]
Pingaew, R.; Prachayasittikul, V.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and molecular docking of 1,2,3-triazole-based sulfonamides as aromatase inhibitors. Bioorg. Med. Chem., 2015, 23(13), 3472-3480.
[http://dx.doi.org/10.1016/j.bmc.2015.04.036] [PMID: 25934226]
[101]
Ferlin, M.G.; Carta, D.; Bortolozzi, R.; Ghodsi, R.; Chimento, A.; Pezzi, V.; Moro, S.; Hanke, N.; Hartmann, R.W.; Basso, G.; Viola, G. Design, synthesis, and structure-activity relationships of azolylmethylpyrroloquinolines as nonsteroidal aromatase inhibitors. J. Med. Chem., 2013, 56(19), 7536-7551.
[http://dx.doi.org/10.1021/jm400377z] [PMID: 24025069]
[102]
Amato, E.; Bankemper, T.; Kidney, R.; Do, T.; Onate, A.; Thowfeik, F.S.; Merino, E.J.; Paula, S.; Ma, L. Investigation of fluorinated and bifunctionalized 3-phenylchroman-4-one (isoflavanone) aromatase inhibitors. Bioorg. Med. Chem., 2014, 22(1), 126-134.
[http://dx.doi.org/10.1016/j.bmc.2013.11.045] [PMID: 24345481]
[103]
Pingaew, R.; Mandi, P.; Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, molecular docking, and QSAR study of sulfonamide-based indoles as aromatase inhibitors. Eur. J. Med. Chem., 2018, 143, 1604-1615.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.057] [PMID: 29137864]
[104]
Ghorab, M.M.; Alsaid, M.S.; Al-Ansary, G.H.; Abdel-Latif, G.A.; Abou El Ella, D.A. Analogue based drug design, synthesis, molecular docking and anticancer evaluation of novel chromene sulfonamide hybrids as aromatase inhibitors and apoptosis enhancers. Eur. J. Med. Chem., 2016, 124, 946-958.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.020] [PMID: 27770735]
[105]
Di Matteo, M.; Ammazzalorso, A.; Andreoli, F.; Caffa, I.; De Filippis, B.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Nencioni, A.; Parenti, M.D.; Soncini, D.; Del Rio, A.; Amoroso, R. Synthesis and biological characterization of 3-(imidazol-1-ylmethyl)piperidine sulfonamides as aromatase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(13), 3192-3194.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.078] [PMID: 27161804]
[106]
Ghorab, M.M.; Alsaid, M.S.; Samir, N.; Abdel-Latif, G.A.; Soliman, A.M.; Ragab, F.A.; Abou El Ella, D.A. Aromatase inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and molecular modeling studies of novel phenothiazine derivatives carrying sulfonamide moiety as hybrid molecules. Eur. J. Med. Chem., 2017, 134, 304-315.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.028] [PMID: 28427017]
[107]
Song, Z.; Liu, Y.; Dai, Z.; Liu, W.; Zhao, K.; Zhang, T.; Hu, Y.; Zhang, X.; Dai, Y. Synthesis and aromatase inhibitory evaluation of 4-N-nitrophenyl substituted amino-4H-1,2,4-triazole derivatives. Bioorg. Med. Chem., 2016, 24(19), 4723-4730.
[http://dx.doi.org/10.1016/j.bmc.2016.08.014] [PMID: 27567077]
[108]
Howarth, N.M.; Purohit, A.; Reed, M.J.; Potter, B.V. Estrone sulfamates: potent inhibitors of estrone sulfatase with therapeutic potential. J. Med. Chem., 1994, 37(2), 219-221.
[http://dx.doi.org/10.1021/jm00028a002] [PMID: 8295207]
[109]
Fischer, D.S.; Woo, L.W.; Mahon, M.F.; Purohit, A.; Reed, M.J.; Potter, B.V. D-ring modified estrone derivatives as novel potent inhibitors of steroid sulfatase. Bioorg. Med. Chem., 2003, 11(8), 1685-1700.
[http://dx.doi.org/10.1016/S0968-0896(03)00042-7] [PMID: 12659755]
[110]
Lønning, P.E.; Helle, H.; Duong, N.K.; Ekse, D.; Aas, T.; Geisler, J. Tissue estradiol is selectively elevated in receptor positive breast cancers while tumour estrone is reduced independent of receptor status. J. Steroid Biochem. Mol. Biol., 2009, 117(1-3), 31-41.
[http://dx.doi.org/10.1016/j.jsbmb.2009.06.005] [PMID: 19591931]
[111]
Billich, A.; Nussbaumer, P.; Lehr, P. Stimulation of MCF-7 breast cancer cell proliferation by estrone sulfate and dehydroepiandrosterone sulfate: inhibition by novel non-steroidal steroid sulfatase inhibitors. J. Steroid Biochem. Mol. Biol., 2000, 73(5), 225-235.
[http://dx.doi.org/10.1016/S0960-0760(00)00077-7] [PMID: 11070351]
[112]
Geisler, J.; Sasano, H.; Chen, S.; Purohit, A. Steroid sulfatase inhibitors: promising new tools for breast cancer therapy? J. Steroid Biochem. Mol. Biol., 2011, 125(1-2), 39-45.
[http://dx.doi.org/10.1016/j.jsbmb.2011.02.002] [PMID: 21356310]
[113]
Purohit, A.; Woo, L.W.; Potter, B.V.; Reed, M.J. In vivo inhibition of estrone sulfatase activity and growth of nitrosomethylurea-induced mammary tumors by 667 COUMATE. Cancer Res., 2000, 60(13), 3394-3396.
[PMID: 10910045]
[114]
Woo, L.W.; Ganeshapillai, D.; Thomas, M.P.; Sutcliffe, O.B.; Malini, B.; Mahon, M.F.; Purohit, A.; Potter, B.V. Structure- Activity Relationship for the First‐in‐Class Clinical Steroid Sulfatase Inhibitor Irosustat. . Structure-activity relationship for the first-in-class clinical steroid sulfatase inhibitor Irosustat (STX64, BN83495). ChemMedChem, 2011, 6(11), 2019-2034.
[http://dx.doi.org/10.1002/cmdc.201100288] [PMID: 21990014]
[115]
Palmieri, C.; Januszewski, A.; Stanway, S.; Coombes, R.C. Irosustat: a first-generation steroid sulfatase inhibitor in breast cancer. Expert Rev. Anticancer Ther., 2011, 11(2), 179-183.
[http://dx.doi.org/10.1586/era.10.201] [PMID: 21342037]
[116]
Mostafa, Y.A.; Taylor, S.D. Steroid derivatives as inhibitors of steroid sulfatase. J. Steroid Biochem. Mol. Biol., 2013, 137, 183-198.
[http://dx.doi.org/10.1016/j.jsbmb.2013.01.013] [PMID: 23391659]
[117]
Ishida, H.; Nakata, T.; Suzuki, M.; Shiotsu, Y.; Tanaka, H.; Sato, N.; Terasaki, Y.; Takebayashi, M.; Anazawa, H.; Murakata, C.; Li, P.K.; Kuwabara, T.; Akinaga, S. A novel steroidal selective steroid sulfatase inhibitor KW-2581 inhibits sulfated-estrogen dependent growth of breast cancer cells in vitro and in animal models. Breast Cancer Res. Treat., 2007, 106(2), 215-227.
[http://dx.doi.org/10.1007/s10549-007-9495-x] [PMID: 17268815]
[118]
Ishida, H.; Nakata, T.; Sato, N.; Li, P.K.; Kuwabara, T.; Akinaga, S. Inhibition of steroid sulfatase activity and cell proliferation in ZR-75-1 and BT-474 human breast cancer cells by KW-2581 in vitro and in vivo. Breast Cancer Res. Treat., 2007, 104(2), 211-219.
[http://dx.doi.org/10.1007/s10549-006-9404-8] [PMID: 17061037]
[119]
Poirier, D.; Boivin, R.P. 17α-Alkyl-or 17α-substituted benzyl-17β- estradiols: a new family of estrone-sulfatase inhibitors BMC letters, 1998, 8(14), 1891-1896.
[120]
Ciobanu, L.C.; Boivin, R.P.; Luu-The, V.; Labrie, F.; Poirier, D. Potent inhibition of steroid sulfatase activity by 3-O-sulfamate 17α-benzyl(or 4′-tert-butylbenzyl)estra-1,3,5(10)-trienes: combination of two substituents at positions C3 and c17α of estradiol. J. Med. Chem., 1999, 42(12), 2280-2286.
[http://dx.doi.org/10.1021/jm980677l] [PMID: 10377235]
[121]
Ciobanu, L.C.; Poirier, D. Synthesis of libraries of 16β-aminopropyl estradiol derivatives for targeting two key steroidogenic enzymes. ChemMedChem, 2006, 1(11), 1249-1259.
[http://dx.doi.org/10.1002/cmdc.200600071] [PMID: 16986200]
[122]
Ciobanu, L.C.; Poirier, D. Solid-phase parallel synthesis of 17α-substituted estradiol sulfamate and phenol libraries using the multidetachable sulfamate linker. J. Comb. Chem., 2003, 5(4), 429-440.
[http://dx.doi.org/10.1021/cc020115u] [PMID: 12857111]
[123]
Ciobanu, L.C.; Luu-The, V.; Martel, C.; Labrie, F.; Poirier, D. Inhibition of estrone sulfate-induced uterine growth by potent nonestrogenic steroidal inhibitors of steroid sulfatase. Cancer Res., 2003, 63(19), 6442-6446.
[PMID: 14559834]
[124]
Peters, R.H.; Chao, W-R.; Sato, B.; Shigeno, K.; Zaveri, N.T.; Tanabe, M. Steroidal oxathiazine inhibitors of estrone sulfatase. Steroids, 2003, 68(1), 97-110.
[http://dx.doi.org/10.1016/S0039-128X(02)00118-6] [PMID: 12475726]
[125]
Numazawa, M.; Tominaga, T.; Watari, Y.; Tada, Y. Inhibition of estrone sulfatase by aromatase inhibitor-based estrogen 3-sulfamates. Steroids, 2006, 71(5), 371-379.
[http://dx.doi.org/10.1016/j.steroids.2005.12.004] [PMID: 16476457]
[126]
Ciobanu, L.C.; Boivin, R.P.; Luu-The, V.; Poirier, D. Synthesis and steroid sulphatase inhibitory activity of C19- and C21-steroidal derivatives bearing a benzyl-inhibiting group. Eur. J. Med. Chem., 2001, 36(7-8), 659-671.
[http://dx.doi.org/10.1016/S0223-5234(01)01262-4] [PMID: 11600235]
[127]
Fournier, D.; Poirier, D. Estradiol dimers as a new class of steroid sulfatase reversible inhibitors. BMC letters, 2009, 19(3), 693-696.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.047]
[128]
Schreiner, E.P.; Billich, A. Estrone formate: a novel type of irreversible inhibitor of human steroid sulfatase. BMC letters, 2004, 14(19), 4999-5002.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.013]
[129]
Lapierre, J.; Ahmed, V.; Chen, M.-J.; Ispahany, M.; Guillemette, J.G.; Taylor, S.D. The difluoromethylene group as a replacement for the labile oxygen in steroid sulfates: a new approach to steroid sulfatase inhibitors. BMC letters, 2004, 14(1), 151-155.
[130]
Ahmed, V.; Liu, Y.; Silvestro, C.; Taylor, S.D Boronic acids as inhibitors of steroid sulfatase. BMC letters, 2006, 14(24), 8564-8573.
[http://dx.doi.org/10.1016/j.bmc.2006.08.033]
[131]
Hejaz, H.A.; Woo, L.W.; Purohit, A.; Reed, M.J.; Potter, B.V. Synthesis, in vitro and in vivo activity of benzophenone-based inhibitors of steroid sulfatase. Bioorg. Med. Chem., 2004, 12(10), 2759-2772.
[http://dx.doi.org/10.1016/j.bmc.2004.02.040] [PMID: 15110857]
[132]
Ahmed, S.; James, K.; Owen, C.P.; Patel, C.K.; Patel, M. Novel inhibitors of the enzyme estrone sulfatase (ES) BMC letter, 2001, 11(6), 841-844.
[133]
Ahmed, S.; James, K.; Owen, C.P. Inhibition of estrone sulfatase (ES) by derivatives of 4-[(aminosulfonyl) oxy] benzoic acid BMC letter, 2002, 12(17), 2391-2394.
[134]
Owen, C.P.; Patel, C.K.; Cartledge, T.; Ahmed, S. Synthesis and in vitro biochemical evaluation of a series of cycloalkyl esters of 4-sulfamoylated benzoic acid as inhibitors of estrone sulfatase (ES). Lett. Drug Des. Discov., 2007, 4(6), 399-403.
[http://dx.doi.org/10.2174/157018007781387845]
[135]
Okada, M.; Nakagawa, T.; Iwashita, S.; Takegawa, S.; Fujii, T.; Koizumi, N. Development of novel steroid sulfatase inhibitors. I. Synthesis and biological evaluation of biphenyl-4-O-sulfamates. J. Steroid Biochem. Mol. Biol., 2003, 87(2-3), 141-148.
[http://dx.doi.org/10.1016/j.jsbmb.2003.07.005] [PMID: 14672734]
[136]
Saito, T.; Kinoshita, S.; Fujii, T.; Bandoh, K.; Fuse, S.; Yamauchi, Y.; Koizumi, N.; Horiuchi, T. Development of novel steroid sulfatase inhibitors; II. TZS-8478 potently inhibits the growth of breast tumors in postmenopausal breast cancer model rats. J. Steroid Biochem. Mol. Biol., 2004, 88(2), 167-173.
[http://dx.doi.org/10.1016/j.jsbmb.2003.11.006] [PMID: 15084348]
[137]
Schreiner, E.P.; Wolff, B.; Winiski, A.P.; Billich, A. 6-(2- adamantan-2-ylidene-hydroxybenzoxazole)-O-sulfamate: a potent non-steroidal irreversible inhibitor of human steroid sulfatase BMC letters, 2013, 13(24), 4313-4316.
[138]
Ciobanu, L.C.; Luu-The, V.; Poirier, D. Nonsteroidal compounds designed to mimic potent steroid sulfatase inhibitors. J. Steroid Biochem. Mol. Biol., 2002, 80(3), 339-353.
[http://dx.doi.org/10.1016/S0960-0760(02)00024-9] [PMID: 11948019]
[139]
Golob, T.; Liebl, R.; von Angerer, E. Sulfamoyloxy-substituted 2-phenylindoles: antiestrogen-based inhibitors of the steroid sulfatase in human breast cancer cells. Bioorg. Med. Chem., 2002, 10(12), 3941-3953.
[http://dx.doi.org/10.1016/S0968-0896(02)00306-1] [PMID: 12413846]
[140]
Lafay, J.; Rondot, B.; Carniato, D.; Bonnet, P.; Clerc, T.; Shields, J.; Duc, I.; Duranti, E. Google Patents, 2009.
[141]
Nussbaumer, P.; Lehr, P.; Billich, A. 2-Substituted 4-(thio)chromenone 6-O-sulfamates: potent inhibitors of human steroid sulfatase. J. Med. Chem., 2002, 45(19), 4310-4320.
[http://dx.doi.org/10.1021/jm020878w] [PMID: 12213072]
[142]
Nussbaumer, P.; Billich, A. Steroid sulfatase inhibitors. Med. Res. Rev., 2004, 24(4), 529-576.
[http://dx.doi.org/10.1002/med.20008] [PMID: 15170594]
[143]
Kolli, A.; Chu, G.H.; Rhodes, M.E.; Inoue, K.; Selcer, K.W.; Li, P.K. Development of (p-O-sulfamoyl)-N-alkanoyl-phenylalkyl amines as non-steroidal estrone sulfatase inhibitors. J. Steroid Biochem. Mol. Biol., 1999, 68(1-2), 31-40.
[http://dx.doi.org/10.1016/S0960-0760(98)00159-9] [PMID: 10215035]
[144]
Nussbaumer, P.; Geyl, D.; Horvath, A.; Lehr, P.; Wolff, B.; Billich, A. Nortropinyl-arylsulfonylureas as novel, reversible inhibitors of human steroid sulfatase. BMC letters, 2003, 13(21), 3673-3677.
[http://dx.doi.org/10.1016/j.bmcl.2003.08.019]
[145]
Lehr, P.; Billich, A.; Wolff, B.; Nussbaumer, P. N-Acyl arylsulfonamides as novel, reversible inhibitors of human steroid sulfatase BMC letters, 2005, 15(4), 1235-1238.
[146]
Chu, G.H.; Peters, A.; Selcer, K.W.; Li, P.K. Synthesis and sulfatase inhibitory activities of (E)-and (Z)-4-hydroxytamoxifen sulfamates BMC letters, 1999, 9(2), 141-144.
[147]
Leese, M.P.; Jourdan, F.; Kimberley, M.R.; Cozier, G.E.; Thiyagarajan, N.; Stengel, C.; Regis-Lydi, S.; Foster, P.A.; Newman, S.P.; Acharya, K.R.; Ferrandis, E.; Purohit, A.; Reed, M.J.; Potter, B.V. Chimeric microtubule disruptors. Chem. Commun. (Camb.), 2010, 46(17), 2907-2909.
[http://dx.doi.org/10.1039/c002558e] [PMID: 20386818]
[148]
Franz, A.K.; Wilson, S.O. Organosilicon molecules with medicinal applications. J. Med. Chem., 2013, 56(2), 388-405.
[http://dx.doi.org/10.1021/jm3010114] [PMID: 23061607]
[149]
Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54(8), 2529-2591.
[http://dx.doi.org/10.1021/jm1013693] [PMID: 21413808]
[150]
Kajita, D.; Nakamura, M.; Matsumoto, Y.; Makishima, M.; Hashimoto, Y. Design and synthesis of silicon-containing steroid sulfatase inhibitors possessing pro-estrogen antagonistic character. Bioorg. Med. Chem., 2014, 22(7), 2244-2252.
[http://dx.doi.org/10.1016/j.bmc.2014.02.025] [PMID: 24630694]
[151]
Lee, W.; DeRome, M.; DeBear, J.; Noell, S.; Epstein, D.; Mahle, C.; DeCarr, L.; Woodruff, K.; Huang, Z.; Dumas, J. Abstracts of papers of the american chemical society, DC 20036: USA; 2003, 226, pp. , U57-U57.
[152]
Ouellet, É.; Maltais, R.; Ouellet, C.; Poirier, D.J.M. Investigation of a tetrahydroisoquinoline scaffold as dual-action steroid sulfatase inhibitors generated by parallel solid-phase synthesis. MedChemComm, 2013, 4(4), 681-692.
[http://dx.doi.org/10.1039/c3md20354a]
[153]
El-Gamal, M.I.; Semreen, M.H.; Foster, P.A.; Potter, B.V. Design, synthesis, and biological evaluation of new arylamide derivatives possessing sulfonate or sulfamate moieties as steroid sulfatase enzyme inhibitors. Bioorg. Med. Chem., 2016, 24(12), 2762-2767.
[http://dx.doi.org/10.1016/j.bmc.2016.04.040] [PMID: 27143133]
[154]
Demkowicz, S.; Daśko, M.; Kozak, W.; Krawczyk, K.; Witt, D.; Masłyk, M.; Kubiński, K.; Rachon, J. Synthesis and biological evaluation of fluorinated 3‐phenylcoumarin‐7‐O‐sulfamate derivatives as steroid sulfatase inhibitors. Chem. Biol. Drug Des., 2016, 87(2), 233-238.
[http://dx.doi.org/10.1111/cbdd.12652] [PMID: 26280898]
[155]
Jütten, P.; Schumann, W.; Härtl, A.; Heinisch, L.; Gräfe, U.; Werner, W.; Ulbricht, H. A novel type of nonsteroidal estrone sulfatase inhibitors. BMC letters, 2002, 12(10), 1339-1342.
[http://dx.doi.org/10.1016/S0960-894X(02)00171-3]
[156]
Demkowicz, S.; Kozak, W.; Daśko, M.; Masłyk, M.; Gielniewski, B.; Rachon, J. Synthesis of bicoumarin thiophosphate derivatives as steroid sulfatase inhibitors. Eur. J. Med. Chem., 2015, 101, 358-366.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.051] [PMID: 26163883]
[157]
Kumar, A.; Singh, S.; Bordbar, H.; Cartledge, T.; Ahmed, S.J. Synthesis and Biological Evaluation of a Range of Thiosemicarbazone-Based Compounds as Potential Inhibitors of Estrone Sulfatase (ES). Lett. Drug Des. Discov., 2011, 8(3), 241-245.
[http://dx.doi.org/10.2174/157018011794578231]
[158]
Chetrite, G.S.; Cortes-Prieto, J.; Philippe, J.C.; Wright, F.; Pasqualini, J.R. Comparison of estrogen concentrations, estrone sulfatase and aromatase activities in normal, and in cancerous, human breast tissues. J. Steroid Biochem. Mol. Biol., 2000, 72(1-2), 23-27.
[http://dx.doi.org/10.1016/S0960-0760(00)00040-6] [PMID: 10731634]
[159]
Labrie, F.; Bélanger, A.; Simard, J.; Van Luu-The, ; Labrie, C. DHEA and peripheral androgen and estrogen formation: intracinology. Ann. N. Y. Acad. Sci., 1995, 774(1), 16-28.
[http://dx.doi.org/10.1111/j.1749-6632.1995.tb17369.x] [PMID: 8597456]
[160]
Woo, L.W.; Sutcliffe, O.B.; Bubert, C.; Grasso, A.; Chander, S.K.; Purohit, A.; Reed, M.J.; Potter, B.V. First dual aromatase-steroid sulfatase inhibitors. J. Med. Chem., 2003, 46(15), 3193-3196.
[http://dx.doi.org/10.1021/jm034033b] [PMID: 12852749]
[161]
Woo, L.W.; Bubert, C.; Sutcliffe, O.B.; Smith, A.; Chander, S.K.; Mahon, M.F.; Purohit, A.; Reed, M.J.; Potter, B.V. Dual aromatase-steroid sulfatase inhibitors. J. Med. Chem., 2007, 50(15), 3540-3560.
[http://dx.doi.org/10.1021/jm061462b] [PMID: 17580845]
[162]
Wood, P.M.; Woo, L.W.; Labrosse, J-R.; Trusselle, M.N.; Abbate, S.; Longhi, G.; Castiglioni, E.; Lebon, F.; Purohit, A.; Reed, M.J.; Potter, B.V. Chiral aromatase and dual aromatase-steroid sulfatase inhibitors from the letrozole template: synthesis, absolute configuration, and in vitro activity. J. Med. Chem., 2008, 51(14), 4226-4238.
[http://dx.doi.org/10.1021/jm800168s] [PMID: 18590272]
[163]
Woo, L.W.; Jackson, T.; Putey, A.; Cozier, G.; Leonard, P.; Acharya, K.R.; Chander, S.K.; Purohit, A.; Reed, M.J.; Potter, B.V. Highly potent first examples of dual aromatase-steroid sulfatase inhibitors based on a biphenyl template. J. Med. Chem., 2010, 53(5), 2155-2170.
[http://dx.doi.org/10.1021/jm901705h] [PMID: 20148564]
[164]
Woo, L.W.; Bubert, C.; Purohit, A.; Potter, B.V. Hybrid dual aromatase-steroid sulfatase inhibitors with exquisite picomolar inhibitory activity. ACS Med. Chem. Lett., 2010, 2(3), 243-247.
[http://dx.doi.org/10.1021/ml100273k] [PMID: 24900302]
[165]
Wood, P.M.; Woo, L.W.; Labrosse, J.R.; Thomas, M.P.; Mahon, M.F.; Chander, S.K.; Purohit, A.; Reed, M.J.; Potter, B.V. Bicyclic derivatives of the potent dual aromatase-steroid sulfatase inhibitor 2-bromo-4-[(4-cyanophenyl)(4h-1,2,4-triazol-4-yl)amino]methylphenylsulfamate: synthesis, SAR, crystal structure, and in vitro and in vivo activities. ChemMedChem, 2010, 5(9), 1577-1593.
[http://dx.doi.org/10.1002/cmdc.201000203] [PMID: 20632362]
[166]
Woo, L.W.; Wood, P.M.; Bubert, C.; Thomas, M.P.; Purohit, A.; Potter, B.V. Synthesis and structure-activity relationship studies of derivatives of the dual aromatase-sulfatase inhibitor 4-[(4-cyanophenyl)(4H-1,2,4-triazol-4-yl)amino]methylphenyl sulfamate. ChemMedChem, 2013, 8(5), 779-799.
[http://dx.doi.org/10.1002/cmdc.201300015] [PMID: 23495205]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy