Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Fractional Exhaled Nitric Oxide and Nanomaterial Exposure in Workplaces

Author(s): Ivo Iavicoli*, Luca Fontana , Veruscka Leso , Maria Carmela Macrini and Daniela Pelclova

Volume 27, Issue 42, 2020

Page: [7200 - 7212] Pages: 13

DOI: 10.2174/0929867327666200320154545

Price: $65

Abstract

Background: The widespread application of engineered nanomaterials (ENMs) and the increasing likelihood of general and occupational exposure raised concerns on their possible human health impact. ENMs, in fact, may induce alterations in different organ systems, and particularly in the respiratory tract. This makes it important to identify possible biomarkers of early lung effect in exposed workers. In this regard, the possibility to use the fractional exhaled levels of nitric oxide (FENO) in biological monitoring has attracted considerable interest.

Objective: To comprehensively assess the role of FENO as a possible biomarker of lung effect in ENM exposed workers.

Methods: A systematic search was performed on Pubmed, Scopus, and ISI Web of Knowledge databases according to the PRISMA guidelines.

Results: Seven studies investigated FENO in workers exposed to different kinds of metal- (i.e. silver and gold), metal oxide- (titanium and silica dioxide), and carbon-based ENMs (carbon nanotubes). In general, no significant alterations were detected between exposed workers and controls.

Conclusion: Definite conclusion on the function of FENO in occupational biological monitoring cannot be extrapolated due to the limited number of available studies and the small size of investigated populations. Additionally, the lack of environmental monitoring data and the fragmented knowledge on ENM modes of action prevent to establish dose-response relationships. Future research appears necessary to deeply define the possibility to employ FENO as an early biomarker of lung effects taking in consideration possible occupational exposure issues, i.e. differently characterized ENMs and work tasks, as well as individual influencing factors, i.e. smoking and atopy.

Keywords: Fractional exhaled nitric oxide, nanomaterials, nanoparticles, biomarkers, exhaled breath condensate, occupational exposure.

[1]
Bhushan, B. Springer Handbook of Nanotechnology, 4th ed; Springer-Verlag: Berlin, 2017.
[http://dx.doi.org/10.1007/978-3-662-54357-3]
[2]
Stirling, D.A. The Nanotechnology Revolution: A Global Bibliographic Perspective, 1st ed; Jenny Stanford Publishing: New York, 2018.
[http://dx.doi.org/10.1201/9781315110837]
[3]
Leso, V.; Fontana, L.; Mauriello, M.C.; Iavicoli, I. Occupational risk assessment of engineered nanomaterials: limits, challenges and opportunities. Curr. Nanosci., 2017, 13(1), 55-78.
[http://dx.doi.org/10.2174/1573413712666161017114934]
[4]
Nanowerk nanomaterial database inventory. Nanomaterials database. Available at: https://www.nanowerk.com/nanomaterial-database.php (Accessed Date: 2nd February, 2020).
[5]
The project on emerging nanotechnologies. consumer products inventory: an inventory of nanotechnology-based consumer products introduced on the market. Available at: http://www.nanotechproject.org/cpi/ (Accessed Date: 2nd February, 2020).
[6]
Nanotechnology products database. Available at: https://product.statnano.com/ (Accessed Date: 2nd February, 2020)
[7]
Iavicoli, I.; Fontana, L.; Pingue, P.; Todea, A.M.; Asbach, C. Assessment of occupational exposure to engineered nanomaterials in research laboratories using personal monitors. Sci. Total Environ., 2018, 627, 689-702.
[http://dx.doi.org/10.1016/j.scitotenv.2018.01.260] [PMID: 29426194]
[8]
Marmiroli, M.; White, J.; Song, J. Exposure to Engineered Nanomaterials in the Environment, 1st ed; Elsevier: Amsterdam, 2019.
[9]
Di Sia, P. Education, health and ICT for a transcultural world. Proceedings of the 7th International conference on intercultural education - education, health and ICT - from a transcultural perspective (EDUHEM) Almeria, Spain. June 15-17 2017.
[10]
Fadeel, B.; Pietroiusti, A.; Shvedova, A.A. Adverse effects of engineered nanomaterials: exposure, toxicology, and impact on human health, 2nd ed; Academic Press: London, 2017.
[11]
Iavicoli, I.; Fontana, L.; Leso, V.; Bergamaschi, A. The effects of nanomaterials as endocrine disruptors. Int. J. Mol. Sci., 2013, 14(8), 16732-16801.
[http://dx.doi.org/10.3390/ijms140816732] [PMID: 23949635]
[12]
Feng, X.; Chen, A.; Zhang, Y.; Wang, J.; Shao, L.; Wei, L. Central nervous system toxicity of metallic nanoparticles. Int. J. Nanomedicine, 2015, 10, 4321-4340.
[http://dx.doi.org/10.2147/IJN.S78308] [PMID: 26170667]
[13]
Donaldson, K.; Duffin, R.; Langrish, J.P.; Miller, M.R.; Mills, N.L.; Poland, C.A.; Raftis, J.; Shah, A.; Shaw, C.A.; Newby, D.E. Na-noparticles and the cardiovascular system: a critical review. Nanomedicine (Lond.), 2013, 8(3), 403-423.
[http://dx.doi.org/10.2217/nnm.13.16] [PMID: 23477334]
[14]
Lu, X.; Zhu, T.; Chen, C.; Liu, Y. Right or left: the role of nanoparticles in pulmonary diseases. Int. J. Mol. Sci., 2014, 15(10), 17577-17600.
[http://dx.doi.org/10.3390/ijms151017577] [PMID: 25268624]
[15]
Dobrovolskaia, M.A.; Shurin, M.; Shvedova, A.A. Current understanding of interactions between nanoparticles and the immune system. Toxicol. Appl. Pharmacol., 2016, 299, 78-89.
[http://dx.doi.org/10.1016/j.taap.2015.12.022] [PMID: 26739622]
[16]
Iavicoli, I.; Leso, V.; Fontana, L.; Calabrese, E.J. Nanoparticle exposure and hormetic dose-responses: an update. Int. J. Mol. Sci., 2018, 19(3)E805
[http://dx.doi.org/10.3390/ijms19030805] [PMID: 29534471]
[17]
Iavicoli, I.; Fontana, L.; Nordberg, G. The effects of nanoparticles on the renal system. Crit. Rev. Toxicol., 2016, 46(6), 490-560.
[http://dx.doi.org/10.1080/10408444.2016.1181047] [PMID: 27195425]
[18]
Iavicoli, I.; Leso, V.; Fontana, L.; Bergamaschi, A. Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mam-malian studies. Eur. Rev. Med. Pharmacol. Sci., 2011, 15(5), 481-508.
[PMID: 21744743]
[19]
Iavicoli, I.; Farina, M.; Fontana, L.; Lucchetti, D.; Leso, V.; Fanali, C.; Cufino, V.; Boninsegna, A.; Leopold, K.; Schindl, R.; Brucker, D.; Sgambato, A. In vitro evaluation of the potential toxic effects of palladium nanoparticles on fibroblasts and lung epithelial cells. Toxicol. In Vitro, 2017, 42, 191-199.
[http://dx.doi.org/10.1016/j.tiv.2017.04.024] [PMID: 28473196]
[20]
Leso, V.; Fontana, L.; Iavicoli, I. Nanomaterial exposure and sterile inflammatory reactions. Toxicol. Appl. Pharmacol., 2018, 355, 80-92.
[http://dx.doi.org/10.1016/j.taap.2018.06.021] [PMID: 29959027]
[21]
Pietroiusti, A.; Stockmann-Juvala, H.; Lucaroni, F.; Savolainen, K. Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2018.
[http://dx.doi.org/10.1002/wnan.1513] [PMID: 29473695]
[22]
Spinazzè, A.; Cattaneo, A.; Del Buono, L.; Fontana, L.; Iavicoli, I.; Cavallo, D.M. Engineered nanomaterials: current status of occupa-tional exposure assessment. Ital. J. Occup. Environ. Hyg., 2016, 7(2), 81-98.
[23]
Asbach, C.; Alexander, C.; Clavaguera, S.; Dahmann, D.; Dozol, H.; Faure, B.; Fierz, M.; Fontana, L.; Iavicoli, I.; Kaminski, H.; MacCalman, L.; Meyer-Plath, A.; Simonow, B.; van Tongeren, M.; Todea, A.M. Review of measurement techniques and methods for assessing personal exposure to airborne nanomaterials in workplaces. Sci. Total Environ., 2017, 603-604, 793-806.
[http://dx.doi.org/10.1016/j.scitotenv.2017.03.049] [PMID: 28431758]
[24]
Iavicoli, I.; Leso, V.; Schulte, P.A. Biomarkers of susceptibility: state of the art and implications for occupational exposure to engineered nanomaterials. Toxicol. Appl. Pharmacol., 2016, 299, 112-124.
[http://dx.doi.org/10.1016/j.taap.2015.12.018] [PMID: 26724381]
[25]
Schulte, P.; Leso, V.; Niang, M.; Iavicoli, I. Biological monitoring of workers exposed to engineered nanomaterials. Toxicol. Lett., 2018, 298, 112-124.
[http://dx.doi.org/10.1016/j.toxlet.2018.06.003] [PMID: 29920308]
[26]
Bergamaschi, E.; Poland, C.; Guseva Canu, I.; Prina-Mello, A. The role of biological monitoring in nano-safety. Nano Today, 2015, 10(3), 274-277.
[http://dx.doi.org/10.1016/j.nantod.2015.02.001]
[27]
Liou, S.H.; Tsai, C.S.; Pelclova, D.; Schubauer-Berigan, M.K.; Schulte, P.A. Assessing the first wave of epidemiological studies of nanomaterial workers. J. Nanopart. Res., 2015, 17(10), 413.
[http://dx.doi.org/10.1007/s11051-015-3219-7] [PMID: 26635494]
[28]
Schulte, P.A.; Leso, V.; Niang, M.; Iavicoli, I. Current state of knowledge on the health effects of engineered nanomaterials in workers: a systematic review of human studies and epidemiological investigations. Scand. J. Work Environ. Health, 2019, 45(3), 217-238.
[http://dx.doi.org/10.5271/sjweh.3800] [PMID: 30653633]
[29]
Wu, W.T.; Liao, H.Y.; Chung, Y.T.; Li, W.F.; Tsou, T.C.; Li, L.A.; Lin, M.H.; Ho, J.J.; Wu, T.N.; Liou, S.H. Effect of nanoparticles exposure on fractional exhaled nitric oxide (FENO) in workers exposed to nanomaterials. Int. J. Mol. Sci., 2014, 15(1), 878-894.
[http://dx.doi.org/10.3390/ijms15010878] [PMID: 24413755]
[30]
Eckel, S.P.; Berhane, K.; Salam, M.T.; Rappaport, E.B.; Linn, W.S.; Bastain, T.M.; Zhang, Y.; Lurmann, F.; Avol, E.L.; Gilliland, F.D. Residential traffic-related pollution exposures and exhaled nitric oxide in the children’s health study. Environ. Health Perspect., 2011, 119(10), 1472-1477.
[http://dx.doi.org/10.1289/ehp.1103516] [PMID: 21708511]
[31]
Workshop Proceedings, A.T.S. American thoracic society workshop. ATS workshop proceedings: exhaled nitric oxide and nitric oxide oxidative metabolism in exhaled breath condensate: executive summary. Am. J. Respir. Crit. Care Med., 2006, 173(7), 811-813.
[http://dx.doi.org/10.1164/rccm.2601014] [PMID: 16556701]
[32]
Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.C.; Plummer, A.L.; Taylor, D.R. Ameri-can thoracic society committee on interpretation of exhaled nitric oxide levels (FENO) for clinical applications. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med., 2011, 184(5), 602-615.
[http://dx.doi.org/10.1164/rccm.9120-11ST] [PMID: 21885636]
[33]
Lane, C.; Knight, D.; Burgess, S.; Franklin, P.; Horak, F.; Legg, J.; Moeller, A.; Stick, S. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax, 2004, 59(9), 757-760.
[http://dx.doi.org/10.1136/thx.2003.014894] [PMID: 15333851]
[34]
Guo, F.H.; Comhair, S.A.; Zheng, S.; Dweik, R.A.; Eissa, N.T.; Thomassen, M.J.; Calhoun, W.; Erzurum, S.C. Molecular mechanisms of increased nitric oxide (NO) in asthma: evidence for transcriptional and post-translational regulation of NO synthesis. J. Immunol., 2000, 164(11), 5970-5980.
[http://dx.doi.org/10.4049/jimmunol.164.11.5970] [PMID: 10820280]
[35]
Hansel, T.T.; Kharitonov, S.A.; Donnelly, L.E.; Erin, E.M.; Currie, M.G.; Moore, W.M.; Manning, P.T.; Recker, D.P.; Barnes, P.J. A selective inhibitor of inducible nitric oxide synthase inhibits exhaled breath nitric oxide in healthy volunteers and asthmatics. FASEB J., 2003, 17(10), 1298-1300.
[http://dx.doi.org/10.1096/fj.02-0633fje] [PMID: 12738811]
[36]
Dupont, L.J.; Demedts, M.G.; Verleden, G.M. Prospective evaluation of the validity of exhaled nitric oxide for the diagnosis of asthma. Chest, 2003, 123(3), 751-756.
[http://dx.doi.org/10.1378/chest.123.3.751] [PMID: 12628874]
[37]
Shaw, D.E.; Berry, M.A.; Thomas, M.; Green, R.H.; Brightling, C.E.; Wardlaw, A.J.; Pavord, I.D. The use of exhaled nitric oxide to guide asthma management: a randomized controlled trial. Am. J. Respir. Crit. Care Med., 2007, 176(3), 231-237.
[http://dx.doi.org/10.1164/rccm.200610-1427OC] [PMID: 17496226]
[38]
Porsbjerg, C.; Lund, T.K.; Pedersen, L.; Backer, V. Inflammatory subtypes in asthma are related to airway hyperresponsiveness to mannitol and exhaled NO. J. Asthma, 2009, 46(6), 606-612.
[http://dx.doi.org/10.1080/02770900903015654] [PMID: 19657904]
[39]
Smith, A.D.; Cowan, J.O.; Brassett, K.P.; Filsell, S.; McLachlan, C.; Monti-Sheehan, G.; Peter Herbison, G.; Robin Taylor, D. Exhaled nitric oxide: a predictor of steroid response. Am. J. Respir. Crit. Care Med., 2005, 172(4), 453-459.
[http://dx.doi.org/10.1164/rccm.200411-1498OC] [PMID: 15901605]
[40]
Szefler, S.J.; Phillips, B.R.; Martinez, F.D.; Chinchilli, V.M.; Lemanske, R.F.; Strunk, R.C.; Zeiger, R.S.; Larsen, G.; Spahn, J.D.; Bacharier, L.B.; Bloomberg, G.R.; Guilbert, T.W.; Heldt, G.; Morgan, W.J.; Moss, M.H.; Sorkness, C.A.; Taussig, L.M. Characteriza-tion of within-subject responses to fluticasone and montelukast in childhood asthma. J. Allergy Clin. Immunol., 2005, 115(2), 233-242.
[http://dx.doi.org/10.1016/j.jaci.2004.11.014] [PMID: 15696076]
[41]
Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. PRISMA-P Group Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev., 2015, 4(1), 1.
[http://dx.doi.org/10.1186/2046-4053-4-1] [PMID: 25554246]
[42]
Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. PRISMA-P group Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ, 2015, 350, g7647.
[http://dx.doi.org/10.1136/bmj.g7647] [PMID: 25555855]
[43]
Liou, S.H.; Tsou, T.C.; Wang, S.L. Epidemiological study of health hazards among workers handling engineered nanomaterials. J. Nanopart. Res., 2012, 14, 878-882.
[http://dx.doi.org/10.1007/s11051-012-0878-5]
[44]
Liao, H-Y.; Chung, Y-T.; Lai, C-H.; Wang, S-L.; Chiang, H-C.; Li, L-A.; Tsou, T-C.; Li, W-F.; Lee, H-L.; Wu, W-T.; Lin, M-H.; Hsu, J-H.; Ho, J-J.; Chen, C-J.; Shih, T-S.; Lin, C-C.; Liou, S-H. Six-month follow-up study of health markers of nanomaterials among workers handling engineered nanomaterials. Nanotoxicology, 2014, 8(Suppl. 1), 100-110.
[http://dx.doi.org/10.3109/17435390.2013.858793] [PMID: 24295335]
[45]
Pelclova, D.; Zdimal, V.; Kacer, P.; Fenclova, Z.; Vlckova, S.; Komarc, M.; Navratil, T.; Schwarz, J.; Zikova, N.; Makes, O.; Syslova, K.; Belacek, J.; Zakharov, S. Leukotrienes in exhaled breath condensate and fractional exhaled nitric oxide in workers exposed to TiO2 nanoparticles. J. Breath Res., 2016, 10(3)036004
[http://dx.doi.org/10.1088/1752-7155/10/3/036004] [PMID: 27356965]
[46]
Glass, D.C.; Mazhar, M.; Xiang, S.; Dean, P.; Simpson, P.; Priestly, B.; Plebanski, M.; Abramson, M.; Sim, M.R.; Dennekamp, M. Immunological effects among workers who handle engineered nanoparticles. Occup. Environ. Med., 2017, 74(12), 868-876.
[http://dx.doi.org/10.1136/oemed-2016-104111] [PMID: 28847906]
[47]
NanoIndEx Project, 2016: assessment of personal exposure to airborne nanomaterials - a guidance. Available at: https://nanopartikel.info/files/projekte/NanoIndEx/NanoIndEx-GuidanceDocument-2016.pdf (Accessed Date: 2nd February, 2020).
[48]
Vlaanderen, J.; Pronk, A.; Rothman, N.; Hildesheim, A.; Silverman, D.; Hosgood, H.D.; Spaan, S.; Kuijpers, E.; Godderis, L.; Hoet, P.; Lan, Q.; Vermeulen, R. A cross-sectional study of changes in markers of immunological effects and lung health due to exposure to multi-walled carbon nanotubes. Nanotoxicology, 2017, 11(3), 395-404.
[http://dx.doi.org/10.1080/17435390.2017.1308031] [PMID: 28301273]
[49]
Pelclova, D.; Zdimal, V.; Komarc, M.; Vlckova, S.; Fenclova, Z.; Ondracek, J.; Schwarz, J.; Kostejn, M.; Kacer, P.; Dvorackova, S.; Popov, A.; Klusackova, P.; Zakharov, S.; Bello, D. Deep airway inflammation and respiratory disorders in nanocomposite workers. Nanomaterials (Basel), 2018, 8(9)E731
[http://dx.doi.org/10.3390/nano8090731] [PMID: 30223600]
[50]
Pelclova, D.; Zdimal, V.; Fenclova, Z.; Vlckova, S.; Turci, F.; Corazzari, I.; Kacer, P.; Schwarz, J.; Zikova, N.; Makes, O.; Syslova, K.; Komarc, M.; Belacek, J.; Navratil, T.; Machajova, M.; Zakharov, S. Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles. Occup. Environ. Med., 2016, 73(2), 110-118.
[http://dx.doi.org/10.1136/oemed-2015-103161] [PMID: 26644454]
[51]
Pelclova, D.; Zdimal, V.; Kacer, P.; Zikova, N.; Komarc, M.; Fenclova, Z.; Vlckova, S.; Schwarz, J.; Makeš, O.; Syslova, K.; Navratil, T.; Turci, F.; Corazzari, I.; Zakharov, S.; Bello, D. Markers of lipid oxidative damage in the exhaled breath condensate of nano TiO2 production workers. Nanotoxicology, 2017, 11(1), 52-63.
[http://dx.doi.org/10.1080/17435390.2016.1262921] [PMID: 27855548]
[52]
Lee, J.S.; Choi, Y.C.; Shin, J.H.; Lee, J.H.; Lee, Y.; Park, S.Y.; Baek, J.E.; Park, J.D.; Ahn, K.; Yu, I.J. Health surveillance study of workers who manufacture multi-walled carbon nanotubes. Nanotoxicology, 2015, 9(6), 802-811.
[http://dx.doi.org/10.3109/17435390.2014.978404] [PMID: 25395166]
[53]
de Abreu, F.C.; da Silva, J.L.R. Jr.; Rabahi, M.F. The fraction exhaled nitric oxide as a biomarker of asthma control. Biomark. Insights, 2019, 141177271919826550
[http://dx.doi.org/10.1177/1177271919826550] [PMID: 30728712]
[54]
Zhang, X.; Staimer, N.; Gillen, D.L.; Tjoa, T.; Schauer, J.J.; Shafer, M.M.; Hasheminassab, S.; Pakbin, P.; Vaziri, N.D.; Sioutas, C.; Delfino, R.J. Associations of oxidative stress and inflammatory biomarkers with chemically-characterized air pollutant exposures in an elderly cohort. Environ. Res., 2016, 150, 306-319.
[http://dx.doi.org/10.1016/j.envres.2016.06.019] [PMID: 27336235]
[55]
Buonanno, G.; Marks, G.B.; Morawska, L. Health effects of daily airborne particle dose in children: direct association between personal dose and respiratory health effects. Environ. Pollut., 2013, 180, 246-250.
[http://dx.doi.org/10.1016/j.envpol.2013.05.039] [PMID: 23792384]
[56]
Gümperlein, I.; Fischer, E.; Dietrich-Gümperlein, G.; Karrasch, S.; Nowak, D.; Jörres, R.A.; Schierl, R. Acute health effects of desktop 3D printing (fused deposition modeling) using acrylonitrile butadiene styrene and polylactic acid materials: An experimental exposure study in human volunteers. Indoor Air, 2018, 28(4), 611-623.
[http://dx.doi.org/10.1111/ina.12458] [PMID: 29500848]
[57]
Groso, A.; Petri-Fink, A.; Rothen-Rutishauser, B.; Hofmann, H.; Meyer, T. Engineered nanomaterials: toward effective safety man-agement in research laboratories. J. Nanobiotechnology, 2016, 14, 21.
[http://dx.doi.org/10.1186/s12951-016-0169-x] [PMID: 26979818]
[58]
Methner, M.; Hodson, L.; Geraci, C. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials--part A. J. Occup. Environ. Hyg., 2010, 7(3), 127-132.
[http://dx.doi.org/10.1080/15459620903476355] [PMID: 20017054]
[59]
Methner, M.; Hodson, L.; Dames, A.; Geraci, C. Nanoparticle emission assessment technique (NEAT) for the identification and meas-urement of potential inhalation exposure to engineered nanomaterials--part B: results from 12 field studies. J. Occup. Environ. Hyg., 2010, 7(3), 163-176.
[http://dx.doi.org/10.1080/15459620903508066] [PMID: 20063229]
[60]
Eastlake, A.C.; Beaucham, C.; Martinez, K.F.; Dahm, M.M.; Sparks, C.; Hodson, L.L.; Geraci, C.L. Refinement of the nanoparticle emission assessment technique into the nanomaterial exposure assessment technique (NEAT 2.0). J. Occup. Environ. Hyg., 2016, 13(9), 708-717.
[http://dx.doi.org/10.1080/15459624.2016.1167278] [PMID: 27027845]
[61]
Romero-Franco, M.; Godwin, H.A.; Bilal, M.; Cohen, Y. Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs). Beilstein J. Nanotechnol., 2017, 8, 989-1014.
[http://dx.doi.org/10.3762/bjnano.8.101] [PMID: 28546894]
[62]
Borrill, Z.; Clough, D.; Truman, N.; Morris, J.; Langley, S.; Singh, D. A comparison of exhaled nitric oxide measurements performed using three different analysers. Respir. Med., 2006, 100(8), 1392-1396.
[http://dx.doi.org/10.1016/j.rmed.2005.11.018] [PMID: 16431095]
[63]
Grob, N.M.; Dweik, R.A. Exhaled nitric oxide in asthma. From diagnosis, to monitoring, to screening: are we there yet? Chest, 2008, 133(4), 837-839.
[http://dx.doi.org/10.1378/chest.07-2743] [PMID: 18398112]
[64]
Persson, M.G.; Zetterström, O.; Agrenius, V.; Ihre, E.; Gustafsson, L.E. Single-breath nitric oxide measurements in asthmatic patients and smokers. Lancet, 1994, 343(8890), 146-147.
[http://dx.doi.org/10.1016/S0140-6736(94)90935-0] [PMID: 7904005]
[65]
Dressel, H.; de la Motte, D.; Reichert, J.; Ochmann, U.; Petru, R.; Angerer, P.; Holz, O.; Nowak, D.; Jörres, R.A. Exhaled nitric oxide: independent effects of atopy, smoking, respiratory tract infection, gender and height. Respir. Med., 2008, 102(7), 962-969.
[http://dx.doi.org/10.1016/j.rmed.2008.02.012] [PMID: 18396030]
[66]
Gratziou, C.; Lignos, M.; Dassiou, M.; Roussos, C. Influence of atopy on exhaled nitric oxide in patients with stable asthma and rhinitis. Eur. Respir. J., 1999, 14(4), 897-901.
[http://dx.doi.org/10.1034/j.1399-3003.1999.14d28.x] [PMID: 10573239]
[67]
Ho, L.P.; Wood, F.T.; Robson, A.; Innes, J.A.; Greening, A.P. Atopy influences exhaled nitric oxide levels in adult asthmatics. Chest, 2000, 118(5), 1327-1331.
[http://dx.doi.org/10.1378/chest.118.5.1327] [PMID: 11083682]
[68]
Buchvald, F.; Hermansen, M.N.; Nielsen, K.G.; Bisgaard, H. Exhaled nitric oxide predicts exercise-induced bronchoconstriction in asthmatic school children. Chest, 2005, 128(4), 1964-1967.
[http://dx.doi.org/10.1378/chest.128.4.1964] [PMID: 16236842]
[69]
Jacinto, T.; Malinovschi, A.; Janson, C.; Fonseca, J.; Alving, K. Differential effect of cigarette smoke exposure on exhaled nitric oxide and blood eosinophils in healthy and asthmatic individuals. J. Breath Res., 2017, 11(3)036006
[http://dx.doi.org/10.1088/1752-7163/aa746b] [PMID: 28825404]
[70]
Ricciardolo, F.L.; Sterk, P.J.; Gaston, B.; Folkerts, G. Nitric oxide in health and disease of the respiratory system. Physiol. Rev., 2004, 84(3), 731-765.
[http://dx.doi.org/10.1152/physrev.00034.2003] [PMID: 15269335]
[71]
Jang, W.N.; Park, I.S.; Choi, C.H.; Bauer, S.; Harmin, S.; Seo, S.C.; Choi, I.S.; Choung, J.T.; Yoo, Y. Relationships between exhaled nitric oxide and atopy profiles in children with asthma. Allergy Asthma Immunol. Res., 2013, 5(3), 155-161.
[http://dx.doi.org/10.4168/aair.2013.5.3.155] [PMID: 23638314]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy