Review Article

在工作场所中呼出的一氧化氮分数和纳米材料暴露

卷 27, 期 42, 2020

页: [7200 - 7212] 页: 13

弟呕挨: 10.2174/0929867327666200320154545

价格: $65

摘要

背景:工程纳米材料(ENM)的广泛应用以及一般和职业暴露的可能性越来越大,这引起了人们对其可能对人类健康的影响的担忧。实际上,ENMs可能会引起不同器官系统的变化,尤其是呼吸道的变化。因此,重要的是要确定暴露工人早期肺部影响的可能生物标志物。在这方面,在生物监测中使用呼出一氧化氮的分数(FENO)的可能性引起了极大的兴趣。 目的:全面评估FENO作为ENM暴露工人肺部疾病可能的生物标志物的作用。 方法:根据PRISMA指南,对Pubmed,Scopus和ISI Web of Knowledge数据库进行了系统的搜索。 结果:七项研究调查了暴露于不同种类的金属(即银和金),金属氧化物(钛和二氧化硅)和碳基ENM(碳纳米管)的工人的FENO。通常,在暴露的工人和对照之间没有发现明显的改变。 结论:由于可用的研究数量有限且被调查的人群较小,因此无法推断出FENO在职业生物学监测中的功能的确切结论。另外,缺乏环境监测数据和对ENM作用模式的零碎知识阻碍了建立剂量-反应关系。考虑到可能的职业暴露问题(即特征不同的ENM和工作任务以及个体影响因素(例如吸烟和特应性)),未来的研究似乎有必要深入定义将FENO用作肺部疾病早期生物标志物的可能性。

关键词: 呼出气一氧化氮,纳米材料,纳米颗粒,生物标志物,呼出气冷凝物,职业暴露。

[1]
Bhushan, B. Springer Handbook of Nanotechnology, 4th ed; Springer-Verlag: Berlin, 2017.
[http://dx.doi.org/10.1007/978-3-662-54357-3]
[2]
Stirling, D.A. The Nanotechnology Revolution: A Global Bibliographic Perspective, 1st ed; Jenny Stanford Publishing: New York, 2018.
[http://dx.doi.org/10.1201/9781315110837]
[3]
Leso, V.; Fontana, L.; Mauriello, M.C.; Iavicoli, I. Occupational risk assessment of engineered nanomaterials: limits, challenges and opportunities. Curr. Nanosci., 2017, 13(1), 55-78.
[http://dx.doi.org/10.2174/1573413712666161017114934]
[4]
Nanowerk nanomaterial database inventory. Nanomaterials database. Available at: https://www.nanowerk.com/nanomaterial-database.php (Accessed Date: 2nd February, 2020).
[5]
The project on emerging nanotechnologies. consumer products inventory: an inventory of nanotechnology-based consumer products introduced on the market. Available at: http://www.nanotechproject.org/cpi/ (Accessed Date: 2nd February, 2020).
[6]
Nanotechnology products database. Available at: https://product.statnano.com/ (Accessed Date: 2nd February, 2020)
[7]
Iavicoli, I.; Fontana, L.; Pingue, P.; Todea, A.M.; Asbach, C. Assessment of occupational exposure to engineered nanomaterials in research laboratories using personal monitors. Sci. Total Environ., 2018, 627, 689-702.
[http://dx.doi.org/10.1016/j.scitotenv.2018.01.260] [PMID: 29426194]
[8]
Marmiroli, M.; White, J.; Song, J. Exposure to Engineered Nanomaterials in the Environment, 1st ed; Elsevier: Amsterdam, 2019.
[9]
Di Sia, P. Education, health and ICT for a transcultural world. Proceedings of the 7th International conference on intercultural education - education, health and ICT - from a transcultural perspective (EDUHEM) Almeria, Spain. June 15-17 2017.
[10]
Fadeel, B.; Pietroiusti, A.; Shvedova, A.A. Adverse effects of engineered nanomaterials: exposure, toxicology, and impact on human health, 2nd ed; Academic Press: London, 2017.
[11]
Iavicoli, I.; Fontana, L.; Leso, V.; Bergamaschi, A. The effects of nanomaterials as endocrine disruptors. Int. J. Mol. Sci., 2013, 14(8), 16732-16801.
[http://dx.doi.org/10.3390/ijms140816732] [PMID: 23949635]
[12]
Feng, X.; Chen, A.; Zhang, Y.; Wang, J.; Shao, L.; Wei, L. Central nervous system toxicity of metallic nanoparticles. Int. J. Nanomedicine, 2015, 10, 4321-4340.
[http://dx.doi.org/10.2147/IJN.S78308] [PMID: 26170667]
[13]
Donaldson, K.; Duffin, R.; Langrish, J.P.; Miller, M.R.; Mills, N.L.; Poland, C.A.; Raftis, J.; Shah, A.; Shaw, C.A.; Newby, D.E. Na-noparticles and the cardiovascular system: a critical review. Nanomedicine (Lond.), 2013, 8(3), 403-423.
[http://dx.doi.org/10.2217/nnm.13.16] [PMID: 23477334]
[14]
Lu, X.; Zhu, T.; Chen, C.; Liu, Y. Right or left: the role of nanoparticles in pulmonary diseases. Int. J. Mol. Sci., 2014, 15(10), 17577-17600.
[http://dx.doi.org/10.3390/ijms151017577] [PMID: 25268624]
[15]
Dobrovolskaia, M.A.; Shurin, M.; Shvedova, A.A. Current understanding of interactions between nanoparticles and the immune system. Toxicol. Appl. Pharmacol., 2016, 299, 78-89.
[http://dx.doi.org/10.1016/j.taap.2015.12.022] [PMID: 26739622]
[16]
Iavicoli, I.; Leso, V.; Fontana, L.; Calabrese, E.J. Nanoparticle exposure and hormetic dose-responses: an update. Int. J. Mol. Sci., 2018, 19(3)E805
[http://dx.doi.org/10.3390/ijms19030805] [PMID: 29534471]
[17]
Iavicoli, I.; Fontana, L.; Nordberg, G. The effects of nanoparticles on the renal system. Crit. Rev. Toxicol., 2016, 46(6), 490-560.
[http://dx.doi.org/10.1080/10408444.2016.1181047] [PMID: 27195425]
[18]
Iavicoli, I.; Leso, V.; Fontana, L.; Bergamaschi, A. Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mam-malian studies. Eur. Rev. Med. Pharmacol. Sci., 2011, 15(5), 481-508.
[PMID: 21744743]
[19]
Iavicoli, I.; Farina, M.; Fontana, L.; Lucchetti, D.; Leso, V.; Fanali, C.; Cufino, V.; Boninsegna, A.; Leopold, K.; Schindl, R.; Brucker, D.; Sgambato, A. In vitro evaluation of the potential toxic effects of palladium nanoparticles on fibroblasts and lung epithelial cells. Toxicol. In Vitro, 2017, 42, 191-199.
[http://dx.doi.org/10.1016/j.tiv.2017.04.024] [PMID: 28473196]
[20]
Leso, V.; Fontana, L.; Iavicoli, I. Nanomaterial exposure and sterile inflammatory reactions. Toxicol. Appl. Pharmacol., 2018, 355, 80-92.
[http://dx.doi.org/10.1016/j.taap.2018.06.021] [PMID: 29959027]
[21]
Pietroiusti, A.; Stockmann-Juvala, H.; Lucaroni, F.; Savolainen, K. Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2018.
[http://dx.doi.org/10.1002/wnan.1513] [PMID: 29473695]
[22]
Spinazzè, A.; Cattaneo, A.; Del Buono, L.; Fontana, L.; Iavicoli, I.; Cavallo, D.M. Engineered nanomaterials: current status of occupa-tional exposure assessment. Ital. J. Occup. Environ. Hyg., 2016, 7(2), 81-98.
[23]
Asbach, C.; Alexander, C.; Clavaguera, S.; Dahmann, D.; Dozol, H.; Faure, B.; Fierz, M.; Fontana, L.; Iavicoli, I.; Kaminski, H.; MacCalman, L.; Meyer-Plath, A.; Simonow, B.; van Tongeren, M.; Todea, A.M. Review of measurement techniques and methods for assessing personal exposure to airborne nanomaterials in workplaces. Sci. Total Environ., 2017, 603-604, 793-806.
[http://dx.doi.org/10.1016/j.scitotenv.2017.03.049] [PMID: 28431758]
[24]
Iavicoli, I.; Leso, V.; Schulte, P.A. Biomarkers of susceptibility: state of the art and implications for occupational exposure to engineered nanomaterials. Toxicol. Appl. Pharmacol., 2016, 299, 112-124.
[http://dx.doi.org/10.1016/j.taap.2015.12.018] [PMID: 26724381]
[25]
Schulte, P.; Leso, V.; Niang, M.; Iavicoli, I. Biological monitoring of workers exposed to engineered nanomaterials. Toxicol. Lett., 2018, 298, 112-124.
[http://dx.doi.org/10.1016/j.toxlet.2018.06.003] [PMID: 29920308]
[26]
Bergamaschi, E.; Poland, C.; Guseva Canu, I.; Prina-Mello, A. The role of biological monitoring in nano-safety. Nano Today, 2015, 10(3), 274-277.
[http://dx.doi.org/10.1016/j.nantod.2015.02.001]
[27]
Liou, S.H.; Tsai, C.S.; Pelclova, D.; Schubauer-Berigan, M.K.; Schulte, P.A. Assessing the first wave of epidemiological studies of nanomaterial workers. J. Nanopart. Res., 2015, 17(10), 413.
[http://dx.doi.org/10.1007/s11051-015-3219-7] [PMID: 26635494]
[28]
Schulte, P.A.; Leso, V.; Niang, M.; Iavicoli, I. Current state of knowledge on the health effects of engineered nanomaterials in workers: a systematic review of human studies and epidemiological investigations. Scand. J. Work Environ. Health, 2019, 45(3), 217-238.
[http://dx.doi.org/10.5271/sjweh.3800] [PMID: 30653633]
[29]
Wu, W.T.; Liao, H.Y.; Chung, Y.T.; Li, W.F.; Tsou, T.C.; Li, L.A.; Lin, M.H.; Ho, J.J.; Wu, T.N.; Liou, S.H. Effect of nanoparticles exposure on fractional exhaled nitric oxide (FENO) in workers exposed to nanomaterials. Int. J. Mol. Sci., 2014, 15(1), 878-894.
[http://dx.doi.org/10.3390/ijms15010878] [PMID: 24413755]
[30]
Eckel, S.P.; Berhane, K.; Salam, M.T.; Rappaport, E.B.; Linn, W.S.; Bastain, T.M.; Zhang, Y.; Lurmann, F.; Avol, E.L.; Gilliland, F.D. Residential traffic-related pollution exposures and exhaled nitric oxide in the children’s health study. Environ. Health Perspect., 2011, 119(10), 1472-1477.
[http://dx.doi.org/10.1289/ehp.1103516] [PMID: 21708511]
[31]
Workshop Proceedings, A.T.S. American thoracic society workshop. ATS workshop proceedings: exhaled nitric oxide and nitric oxide oxidative metabolism in exhaled breath condensate: executive summary. Am. J. Respir. Crit. Care Med., 2006, 173(7), 811-813.
[http://dx.doi.org/10.1164/rccm.2601014] [PMID: 16556701]
[32]
Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.C.; Plummer, A.L.; Taylor, D.R. Ameri-can thoracic society committee on interpretation of exhaled nitric oxide levels (FENO) for clinical applications. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med., 2011, 184(5), 602-615.
[http://dx.doi.org/10.1164/rccm.9120-11ST] [PMID: 21885636]
[33]
Lane, C.; Knight, D.; Burgess, S.; Franklin, P.; Horak, F.; Legg, J.; Moeller, A.; Stick, S. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax, 2004, 59(9), 757-760.
[http://dx.doi.org/10.1136/thx.2003.014894] [PMID: 15333851]
[34]
Guo, F.H.; Comhair, S.A.; Zheng, S.; Dweik, R.A.; Eissa, N.T.; Thomassen, M.J.; Calhoun, W.; Erzurum, S.C. Molecular mechanisms of increased nitric oxide (NO) in asthma: evidence for transcriptional and post-translational regulation of NO synthesis. J. Immunol., 2000, 164(11), 5970-5980.
[http://dx.doi.org/10.4049/jimmunol.164.11.5970] [PMID: 10820280]
[35]
Hansel, T.T.; Kharitonov, S.A.; Donnelly, L.E.; Erin, E.M.; Currie, M.G.; Moore, W.M.; Manning, P.T.; Recker, D.P.; Barnes, P.J. A selective inhibitor of inducible nitric oxide synthase inhibits exhaled breath nitric oxide in healthy volunteers and asthmatics. FASEB J., 2003, 17(10), 1298-1300.
[http://dx.doi.org/10.1096/fj.02-0633fje] [PMID: 12738811]
[36]
Dupont, L.J.; Demedts, M.G.; Verleden, G.M. Prospective evaluation of the validity of exhaled nitric oxide for the diagnosis of asthma. Chest, 2003, 123(3), 751-756.
[http://dx.doi.org/10.1378/chest.123.3.751] [PMID: 12628874]
[37]
Shaw, D.E.; Berry, M.A.; Thomas, M.; Green, R.H.; Brightling, C.E.; Wardlaw, A.J.; Pavord, I.D. The use of exhaled nitric oxide to guide asthma management: a randomized controlled trial. Am. J. Respir. Crit. Care Med., 2007, 176(3), 231-237.
[http://dx.doi.org/10.1164/rccm.200610-1427OC] [PMID: 17496226]
[38]
Porsbjerg, C.; Lund, T.K.; Pedersen, L.; Backer, V. Inflammatory subtypes in asthma are related to airway hyperresponsiveness to mannitol and exhaled NO. J. Asthma, 2009, 46(6), 606-612.
[http://dx.doi.org/10.1080/02770900903015654] [PMID: 19657904]
[39]
Smith, A.D.; Cowan, J.O.; Brassett, K.P.; Filsell, S.; McLachlan, C.; Monti-Sheehan, G.; Peter Herbison, G.; Robin Taylor, D. Exhaled nitric oxide: a predictor of steroid response. Am. J. Respir. Crit. Care Med., 2005, 172(4), 453-459.
[http://dx.doi.org/10.1164/rccm.200411-1498OC] [PMID: 15901605]
[40]
Szefler, S.J.; Phillips, B.R.; Martinez, F.D.; Chinchilli, V.M.; Lemanske, R.F.; Strunk, R.C.; Zeiger, R.S.; Larsen, G.; Spahn, J.D.; Bacharier, L.B.; Bloomberg, G.R.; Guilbert, T.W.; Heldt, G.; Morgan, W.J.; Moss, M.H.; Sorkness, C.A.; Taussig, L.M. Characteriza-tion of within-subject responses to fluticasone and montelukast in childhood asthma. J. Allergy Clin. Immunol., 2005, 115(2), 233-242.
[http://dx.doi.org/10.1016/j.jaci.2004.11.014] [PMID: 15696076]
[41]
Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. PRISMA-P Group Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev., 2015, 4(1), 1.
[http://dx.doi.org/10.1186/2046-4053-4-1] [PMID: 25554246]
[42]
Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. PRISMA-P group Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ, 2015, 350, g7647.
[http://dx.doi.org/10.1136/bmj.g7647] [PMID: 25555855]
[43]
Liou, S.H.; Tsou, T.C.; Wang, S.L. Epidemiological study of health hazards among workers handling engineered nanomaterials. J. Nanopart. Res., 2012, 14, 878-882.
[http://dx.doi.org/10.1007/s11051-012-0878-5]
[44]
Liao, H-Y.; Chung, Y-T.; Lai, C-H.; Wang, S-L.; Chiang, H-C.; Li, L-A.; Tsou, T-C.; Li, W-F.; Lee, H-L.; Wu, W-T.; Lin, M-H.; Hsu, J-H.; Ho, J-J.; Chen, C-J.; Shih, T-S.; Lin, C-C.; Liou, S-H. Six-month follow-up study of health markers of nanomaterials among workers handling engineered nanomaterials. Nanotoxicology, 2014, 8(Suppl. 1), 100-110.
[http://dx.doi.org/10.3109/17435390.2013.858793] [PMID: 24295335]
[45]
Pelclova, D.; Zdimal, V.; Kacer, P.; Fenclova, Z.; Vlckova, S.; Komarc, M.; Navratil, T.; Schwarz, J.; Zikova, N.; Makes, O.; Syslova, K.; Belacek, J.; Zakharov, S. Leukotrienes in exhaled breath condensate and fractional exhaled nitric oxide in workers exposed to TiO2 nanoparticles. J. Breath Res., 2016, 10(3)036004
[http://dx.doi.org/10.1088/1752-7155/10/3/036004] [PMID: 27356965]
[46]
Glass, D.C.; Mazhar, M.; Xiang, S.; Dean, P.; Simpson, P.; Priestly, B.; Plebanski, M.; Abramson, M.; Sim, M.R.; Dennekamp, M. Immunological effects among workers who handle engineered nanoparticles. Occup. Environ. Med., 2017, 74(12), 868-876.
[http://dx.doi.org/10.1136/oemed-2016-104111] [PMID: 28847906]
[47]
NanoIndEx Project, 2016: assessment of personal exposure to airborne nanomaterials - a guidance. Available at: https://nanopartikel.info/files/projekte/NanoIndEx/NanoIndEx-GuidanceDocument-2016.pdf (Accessed Date: 2nd February, 2020).
[48]
Vlaanderen, J.; Pronk, A.; Rothman, N.; Hildesheim, A.; Silverman, D.; Hosgood, H.D.; Spaan, S.; Kuijpers, E.; Godderis, L.; Hoet, P.; Lan, Q.; Vermeulen, R. A cross-sectional study of changes in markers of immunological effects and lung health due to exposure to multi-walled carbon nanotubes. Nanotoxicology, 2017, 11(3), 395-404.
[http://dx.doi.org/10.1080/17435390.2017.1308031] [PMID: 28301273]
[49]
Pelclova, D.; Zdimal, V.; Komarc, M.; Vlckova, S.; Fenclova, Z.; Ondracek, J.; Schwarz, J.; Kostejn, M.; Kacer, P.; Dvorackova, S.; Popov, A.; Klusackova, P.; Zakharov, S.; Bello, D. Deep airway inflammation and respiratory disorders in nanocomposite workers. Nanomaterials (Basel), 2018, 8(9)E731
[http://dx.doi.org/10.3390/nano8090731] [PMID: 30223600]
[50]
Pelclova, D.; Zdimal, V.; Fenclova, Z.; Vlckova, S.; Turci, F.; Corazzari, I.; Kacer, P.; Schwarz, J.; Zikova, N.; Makes, O.; Syslova, K.; Komarc, M.; Belacek, J.; Navratil, T.; Machajova, M.; Zakharov, S. Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles. Occup. Environ. Med., 2016, 73(2), 110-118.
[http://dx.doi.org/10.1136/oemed-2015-103161] [PMID: 26644454]
[51]
Pelclova, D.; Zdimal, V.; Kacer, P.; Zikova, N.; Komarc, M.; Fenclova, Z.; Vlckova, S.; Schwarz, J.; Makeš, O.; Syslova, K.; Navratil, T.; Turci, F.; Corazzari, I.; Zakharov, S.; Bello, D. Markers of lipid oxidative damage in the exhaled breath condensate of nano TiO2 production workers. Nanotoxicology, 2017, 11(1), 52-63.
[http://dx.doi.org/10.1080/17435390.2016.1262921] [PMID: 27855548]
[52]
Lee, J.S.; Choi, Y.C.; Shin, J.H.; Lee, J.H.; Lee, Y.; Park, S.Y.; Baek, J.E.; Park, J.D.; Ahn, K.; Yu, I.J. Health surveillance study of workers who manufacture multi-walled carbon nanotubes. Nanotoxicology, 2015, 9(6), 802-811.
[http://dx.doi.org/10.3109/17435390.2014.978404] [PMID: 25395166]
[53]
de Abreu, F.C.; da Silva, J.L.R. Jr.; Rabahi, M.F. The fraction exhaled nitric oxide as a biomarker of asthma control. Biomark. Insights, 2019, 141177271919826550
[http://dx.doi.org/10.1177/1177271919826550] [PMID: 30728712]
[54]
Zhang, X.; Staimer, N.; Gillen, D.L.; Tjoa, T.; Schauer, J.J.; Shafer, M.M.; Hasheminassab, S.; Pakbin, P.; Vaziri, N.D.; Sioutas, C.; Delfino, R.J. Associations of oxidative stress and inflammatory biomarkers with chemically-characterized air pollutant exposures in an elderly cohort. Environ. Res., 2016, 150, 306-319.
[http://dx.doi.org/10.1016/j.envres.2016.06.019] [PMID: 27336235]
[55]
Buonanno, G.; Marks, G.B.; Morawska, L. Health effects of daily airborne particle dose in children: direct association between personal dose and respiratory health effects. Environ. Pollut., 2013, 180, 246-250.
[http://dx.doi.org/10.1016/j.envpol.2013.05.039] [PMID: 23792384]
[56]
Gümperlein, I.; Fischer, E.; Dietrich-Gümperlein, G.; Karrasch, S.; Nowak, D.; Jörres, R.A.; Schierl, R. Acute health effects of desktop 3D printing (fused deposition modeling) using acrylonitrile butadiene styrene and polylactic acid materials: An experimental exposure study in human volunteers. Indoor Air, 2018, 28(4), 611-623.
[http://dx.doi.org/10.1111/ina.12458] [PMID: 29500848]
[57]
Groso, A.; Petri-Fink, A.; Rothen-Rutishauser, B.; Hofmann, H.; Meyer, T. Engineered nanomaterials: toward effective safety man-agement in research laboratories. J. Nanobiotechnology, 2016, 14, 21.
[http://dx.doi.org/10.1186/s12951-016-0169-x] [PMID: 26979818]
[58]
Methner, M.; Hodson, L.; Geraci, C. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials--part A. J. Occup. Environ. Hyg., 2010, 7(3), 127-132.
[http://dx.doi.org/10.1080/15459620903476355] [PMID: 20017054]
[59]
Methner, M.; Hodson, L.; Dames, A.; Geraci, C. Nanoparticle emission assessment technique (NEAT) for the identification and meas-urement of potential inhalation exposure to engineered nanomaterials--part B: results from 12 field studies. J. Occup. Environ. Hyg., 2010, 7(3), 163-176.
[http://dx.doi.org/10.1080/15459620903508066] [PMID: 20063229]
[60]
Eastlake, A.C.; Beaucham, C.; Martinez, K.F.; Dahm, M.M.; Sparks, C.; Hodson, L.L.; Geraci, C.L. Refinement of the nanoparticle emission assessment technique into the nanomaterial exposure assessment technique (NEAT 2.0). J. Occup. Environ. Hyg., 2016, 13(9), 708-717.
[http://dx.doi.org/10.1080/15459624.2016.1167278] [PMID: 27027845]
[61]
Romero-Franco, M.; Godwin, H.A.; Bilal, M.; Cohen, Y. Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs). Beilstein J. Nanotechnol., 2017, 8, 989-1014.
[http://dx.doi.org/10.3762/bjnano.8.101] [PMID: 28546894]
[62]
Borrill, Z.; Clough, D.; Truman, N.; Morris, J.; Langley, S.; Singh, D. A comparison of exhaled nitric oxide measurements performed using three different analysers. Respir. Med., 2006, 100(8), 1392-1396.
[http://dx.doi.org/10.1016/j.rmed.2005.11.018] [PMID: 16431095]
[63]
Grob, N.M.; Dweik, R.A. Exhaled nitric oxide in asthma. From diagnosis, to monitoring, to screening: are we there yet? Chest, 2008, 133(4), 837-839.
[http://dx.doi.org/10.1378/chest.07-2743] [PMID: 18398112]
[64]
Persson, M.G.; Zetterström, O.; Agrenius, V.; Ihre, E.; Gustafsson, L.E. Single-breath nitric oxide measurements in asthmatic patients and smokers. Lancet, 1994, 343(8890), 146-147.
[http://dx.doi.org/10.1016/S0140-6736(94)90935-0] [PMID: 7904005]
[65]
Dressel, H.; de la Motte, D.; Reichert, J.; Ochmann, U.; Petru, R.; Angerer, P.; Holz, O.; Nowak, D.; Jörres, R.A. Exhaled nitric oxide: independent effects of atopy, smoking, respiratory tract infection, gender and height. Respir. Med., 2008, 102(7), 962-969.
[http://dx.doi.org/10.1016/j.rmed.2008.02.012] [PMID: 18396030]
[66]
Gratziou, C.; Lignos, M.; Dassiou, M.; Roussos, C. Influence of atopy on exhaled nitric oxide in patients with stable asthma and rhinitis. Eur. Respir. J., 1999, 14(4), 897-901.
[http://dx.doi.org/10.1034/j.1399-3003.1999.14d28.x] [PMID: 10573239]
[67]
Ho, L.P.; Wood, F.T.; Robson, A.; Innes, J.A.; Greening, A.P. Atopy influences exhaled nitric oxide levels in adult asthmatics. Chest, 2000, 118(5), 1327-1331.
[http://dx.doi.org/10.1378/chest.118.5.1327] [PMID: 11083682]
[68]
Buchvald, F.; Hermansen, M.N.; Nielsen, K.G.; Bisgaard, H. Exhaled nitric oxide predicts exercise-induced bronchoconstriction in asthmatic school children. Chest, 2005, 128(4), 1964-1967.
[http://dx.doi.org/10.1378/chest.128.4.1964] [PMID: 16236842]
[69]
Jacinto, T.; Malinovschi, A.; Janson, C.; Fonseca, J.; Alving, K. Differential effect of cigarette smoke exposure on exhaled nitric oxide and blood eosinophils in healthy and asthmatic individuals. J. Breath Res., 2017, 11(3)036006
[http://dx.doi.org/10.1088/1752-7163/aa746b] [PMID: 28825404]
[70]
Ricciardolo, F.L.; Sterk, P.J.; Gaston, B.; Folkerts, G. Nitric oxide in health and disease of the respiratory system. Physiol. Rev., 2004, 84(3), 731-765.
[http://dx.doi.org/10.1152/physrev.00034.2003] [PMID: 15269335]
[71]
Jang, W.N.; Park, I.S.; Choi, C.H.; Bauer, S.; Harmin, S.; Seo, S.C.; Choi, I.S.; Choung, J.T.; Yoo, Y. Relationships between exhaled nitric oxide and atopy profiles in children with asthma. Allergy Asthma Immunol. Res., 2013, 5(3), 155-161.
[http://dx.doi.org/10.4168/aair.2013.5.3.155] [PMID: 23638314]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy