Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Review on Epidermal Growth Factor Receptor (EGFR) Structure, Signaling Pathways, Interactions, and Recent Updates of EGFR Inhibitors

Author(s): Dima A. Sabbah*, Rima Hajjo and Kamal Sweidan

Volume 20, Issue 10, 2020

Page: [815 - 834] Pages: 20

DOI: 10.2174/1568026620666200303123102

Price: $65

Abstract

The epidermal growth factor receptor (EGFR) belongs to the ERBB family of tyrosine kinase receptors. EGFR signaling cascade is a key regulator in cell proliferation, differentiation, division, survival, and cancer development. In this review, the EGFR structure and its mutations, signaling pathway, ligand binding and EGFR dimerization, EGF/EGFR interaction, and the progress in the development of EGFR inhibitors have been explored.

Keywords: EGFR, HER-1, ERBB-1, Tyrosine kinase, EGF, TGF-α, mAbs, Inhibitors, cancer.

Graphical Abstract

[1]
Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 127-137.
[http://dx.doi.org/10.1038/35052073] [PMID: 11252954]
[2]
Gschwind, A.; Fischer, O.M.; Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat. Rev. Cancer, 2004, 4(5), 361-370.
[http://dx.doi.org/10.1038/nrc1360] [PMID: 15122207]
[3]
Burgess, A.W. EGFR family: structure physiology signalling and therapeutic targets. Growth Factors, 2008, 26(5), 263-274.
[http://dx.doi.org/10.1080/08977190802312844] [PMID: 18800267]
[4]
Yan, G.E.; Efferth, T. Broad-spectrum cross-resistance to anticancer drugs mediated by epidermal growth factor receptor. Anticancer Res., 2019, 39(7), 3585-3593.
[http://dx.doi.org/10.21873/anticanres.13505] [PMID: 31262883]
[5]
Schlessinger, J.; Lemmon, M.A. Nuclear signaling by receptor tyrosine kinases: the first robin of spring. Cell, 2006, 127(1), 45-48.
[http://dx.doi.org/10.1016/j.cell.2006.09.013] [PMID: 17018275]
[6]
Scaltriti, M.; Baselga, J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin. Cancer Res., 2006, 12(18), 5268-5272.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1554] [PMID: 17000658]
[7]
Mendelsohn, J.; Baselga, J. Epidermal growth factor receptor targeting in cancer. Semin. Oncol., 2006, 33(4), 369-385.
[http://dx.doi.org/10.1053/j.seminoncol.2006.04.003] [PMID: 16890793]
[8]
Hynes, N.E.; MacDonald, G. ErbB receptors and signaling pathways in cancer. Curr. Opin. Cell Biol., 2009, 21(2), 177-184.
[http://dx.doi.org/10.1016/j.ceb.2008.12.010] [PMID: 19208461]
[9]
Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer, 2005, 5(5), 341-354.
[http://dx.doi.org/10.1038/nrc1609] [PMID: 15864276]
[10]
Klapper, L.N.; Kirschbaum, M.H.; Seta, M.; Yarden, Y. Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors.Adv. Cancer Res; Elsevier, 1999, Vol. 77, pp. 25-79.
[http://dx.doi.org/10.1016/S0065-230X(08)60784-8]
[11]
Heldin, C-H. Dimerization of cell surface receptors in signal transduction. Cell, 1995, 80(2), 213-223.
[http://dx.doi.org/10.1016/0092-8674(95)90404-2] [PMID: 7834741]
[12]
Yarden, Y.; Schlessinger, J. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry, 1987, 26(5), 1443-1451.
[http://dx.doi.org/10.1021/bi00379a035] [PMID: 3494473]
[13]
Press, M.F.; Lenz, H-J. EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs, 2007, 67(14), 2045-2075.
[http://dx.doi.org/10.2165/00003495-200767140-00006] [PMID: 17883287]
[14]
Salomon, D.S.; Brandt, R.; Ciardiello, F.; Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol., 1995, 19(3), 183-232.
[http://dx.doi.org/10.1016/1040-8428(94)00144-I] [PMID: 7612182]
[15]
Gazdar, A.F. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene, 2009, 28(S1)(Suppl. 1), S24-S31.
[http://dx.doi.org/10.1038/onc.2009.198] [PMID: 19680293]
[16]
Salomon, D.S.; Kim, N.; Saeki, T.; Ciardiello, F. Transforming growth factor-alpha: an oncodevelopmental growth factor. Cancer Cells, 1990, 2(12), 389-397.
[PMID: 2088454]
[17]
Campbell, I.D.; Bork, P. Epidermal growth factor-like modules. Curr. Opin. Struct. Biol., 1993, 3(3), 385-392.
[http://dx.doi.org/10.1016/S0959-440X(05)80111-3]
[18]
Sharma, S.V.; Bell, D.W.; Settleman, J.; Haber, D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer, 2007, 7(3), 169-181.
[http://dx.doi.org/10.1038/nrc2088] [PMID: 17318210]
[19]
Yatabe, Y.; Mitsudomi, T. Epidermal growth factor receptor mutations in lung cancers. Pathol. Int., 2007, 57(5), 233-244.
[http://dx.doi.org/10.1111/j.1440-1827.2007.02098.x] [PMID: 17493170]
[20]
Herbst, R.S.; Langer, C.J. Epidermal growth factor receptors as a target for cancer treatment: the emerging role of IMC-C225 in the treatment of lung and head and neck cancers. Semin. Oncol., 2002, 29(1)(Suppl. 4), 27-36.
[http://dx.doi.org/10.1053/sonc.2002.31525] [PMID: 11894011]
[21]
Normanno, N.; Bianco, C.; De Luca, A.; Salomon, D.S. The role of EGF-related peptides in tumor growth. Front. Biosci., 2001, 6(1), D685-D707.
[http://dx.doi.org/10.2741/Normano] [PMID: 11333208]
[22]
Craven, R.J.; Lightfoot, H.; Cance, W.G. A decade of tyrosine kinases: from gene discovery to therapeutics. Surg. Oncol., 2003, 12(1), 39-49.
[http://dx.doi.org/10.1016/S0960-7404(03)00004-5] [PMID: 12689669]
[23]
Arteaga, C. Targeting HER1/EGFR: a molecular approach to cancer therapy. Semin. Oncol., 2003, 30(3)(Suppl. 7), 3-14.
[http://dx.doi.org/10.1016/S0093-7754(03)70010-4] [PMID: 12840796]
[24]
Mendelsohn, J.; Baselga, J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol., 2003, 21(14), 2787-2799.
[http://dx.doi.org/10.1200/JCO.2003.01.504] [PMID: 12860957]
[25]
Zaczek, A.; Brandt, B.; Bielawski, K.P. The diverse signaling network of EGFR, HER2, HER3 and HER4 tyrosine kinase receptors and the consequences for therapeutic approaches. Histol. Histopathol., 2005, 20(3), 1005-1015.
[PMID: 15944951]
[26]
Foley, J.; Nickerson, N.K.; Nam, S.; Allen, K.T.; Gilmore, J.L.; Nephew, K.P.; Riese, D.J. II EGFR signaling in breast cancer: bad to the bone. Semin. Cell Dev. Biol., 2010, 21(9), 951-960.
[http://dx.doi.org/10.1016/j.semcdb.2010.08.009] [PMID: 20813200]
[27]
Cohen, S.; Ushiro, H.; Stoscheck, C.; Chinkers, M. A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J. Biol. Chem., 1982, 257(3), 1523-1531.
[PMID: 6276390]
[28]
Voldborg, B.R.; Damstrup, L.; Spang-Thomsen, M.; Poulsen, H.S. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann. Oncol., 1997, 8(12), 1197-1206.
[http://dx.doi.org/10.1023/A:1008209720526] [PMID: 9496384]
[29]
Hackel, P.O.; Zwick, E.; Prenzel, N.; Ullrich, A. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr. Opin. Cell Biol., 1999, 11(2), 184-189.
[http://dx.doi.org/10.1016/S0955-0674(99)80024-6] [PMID: 10209149]
[30]
Klein, P.; Mattoon, D.; Lemmon, M.A.; Schlessinger, J. A structure-based model for ligand binding and dimerization of EGF receptors. Proc. Natl. Acad. Sci. USA, 2004, 101(4), 929-934.
[http://dx.doi.org/10.1073/pnas.0307285101] [PMID: 14732694]
[31]
Oda, K.; Matsuoka, Y.; Funahashi, A.; Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol.Syst. Biol., 2005, 1(1) , 0010.
[http://dx.doi.org/10.1038/msb4100014 ] [PMID: 16729045]
[32]
Singh, D.; Attri, B.K.; Gill, R.K.; Bariwal, J. Review on EGFR inhibitors: critical updates. Mini Rev. Med. Chem., 2016, 16(14), 1134-1166.
[http://dx.doi.org/10.2174/1389557516666160321114917] [PMID: 26996617]
[33]
Bakker, J.; Spits, M.; Neefjes, J.; Berlin, I. The EGFR odyssey - from activation to destruction in space and time. J. Cell Sci., 2017, 130(24), 4087-4096.
[http://dx.doi.org/10.1242/jcs.209197] [PMID: 29180516]
[34]
Carpenter, G.; Cohen, S. Epidermal growth factor. J. Biol. Chem., 1990, 265(14), 7709-7712.
[PMID: 2186024]
[35]
Normanno, N.; Maiello, M.R.; De Luca, A. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs): simple drugs with a complex mechanism of action? J. Cell. Physiol., 2003, 194(1), 13-19.
[http://dx.doi.org/10.1002/jcp.10194] [PMID: 12447985]
[36]
Yewale, C.; Baradia, D.; Vhora, I.; Patil, S.; Misra, A. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials, 2013, 34(34), 8690-8707.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.100] [PMID: 23953842]
[37]
Levitzki, A.; Gazit, A. Tyrosine kinase inhibition: an approach to drug development. Science, 1995, 267(5205), 1782-1788.
[http://dx.doi.org/10.1126/science.7892601] [PMID: 7892601]
[38]
Ciardiello, F. Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents. Drugs, 2000, 60(1)(Suppl. 1), 25-32.
[http://dx.doi.org/10.2165/00003495-200060001-00003] [PMID: 11129169]
[39]
Ciardiello, F.; Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med., 2008, 358(11), 1160-1174.
[http://dx.doi.org/10.1056/NEJMra0707704] [PMID: 18337605]
[40]
Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(2)(Suppl.), 21-26.
[http://dx.doi.org/10.1016/j.ijrobp.2003.11.041] [PMID: 15142631]
[41]
Beech, J.; Germetaki, T.; Judge, M.; Paton, N.; Collins, J.; Garbutt, A.; Braun, M.; Fenwick, J.; Saunders, M.P. Management and grading of EGFR inhibitor-induced cutaneous toxicity. Future Oncol., 2018, 14(24), 2531-2541.
[http://dx.doi.org/10.2217/fon-2018-0187] [PMID: 29727211]
[42]
Arena, C.; Troiano, G.; Zhurakivska, K.; Nocini, R.; Muzio, L. Stomatitis and EGFR-tyrosine kinase inhibitors: a review of current literature in 4353 patients. Clin. Oncol. (R. Coll. Radiol.), 2018, 3, 1549-1555.
[43]
Castillo, L.; Etienne-Grimaldi, M.C.; Fischel, J.L.; Formento, P.; Magné, N.; Milano, G. Pharmacological background of EGFR targeting. Ann. Oncol., 2004, 15(7), 1007-1012.
[http://dx.doi.org/10.1093/annonc/mdh257] [PMID: 15205192]
[44]
Hartmann, J.T.; Haap, M.; Kopp, H-G.; Lipp, H-P. Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr. Drug Metab., 2009, 10(5), 470-481.
[http://dx.doi.org/10.2174/138920009788897975] [PMID: 19689244]
[45]
Shchemelinin, I.; Sefc, L.; Necas, E. Protein kinase inhibitors. Folia Biol. (Praha), 2006, 52(4), 137-148.
[PMID: 17116285]
[46]
Hirsh, V. Turning EGFR mutation-positive non-small-cell lung cancer into a chronic disease: optimal sequential therapy with EGFR tyrosine kinase inhibitors. Ther. Adv. Med. Oncol., 2018, 101758834017753338
[http://dx.doi.org/10.1177/1758834017753338] [PMID: 29383041]
[47]
Holleman, M.S.; van Tinteren, H.; Groen, H.J.; Al, M.J.; Uyl-de Groot, C.A. First-line tyrosine kinase inhibitors in EGFR mutation-positive non-small-cell lung cancer: a network meta-analysis. OncoTargets Ther., 2019, 12, 1413-1421.
[http://dx.doi.org/10.2147/OTT.S189438] [PMID: 30863108]
[48]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[49]
Ou, S-H.I. Second-generation irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs): a better mousetrap? A review of the clinical evidence. Crit. Rev. Oncol. Hematol., 2012, 83(3), 407-421.
[http://dx.doi.org/10.1016/j.critrevonc.2011.11.010] [PMID: 22257651]
[50]
Shawver, L.K.; Slamon, D.; Ullrich, A. Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell, 2002, 1(2), 117-123.
[http://dx.doi.org/10.1016/S1535-6108(02)00039-9] [PMID: 12086869]
[51]
International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature, 2004, 431(7011), 931-945.
[http://dx.doi.org/10.1038/nature03001] [PMID: 15496913]
[52]
Hillier, L.W.; Fulton, R.S.; Fulton, L.A.; Graves, T.A.; Pepin, K.H.; Wagner-McPherson, C.; Layman, D.; Maas, J.; Jaeger, S.; Walker, R.; Wylie, K.; Sekhon, M.; Becker, M.C.; O’Laughlin, M.D.; Schaller, M.E.; Fewell, G.A.; Delehaunty, K.D.; Miner, T.L.; Nash, W.E.; Cordes, M.; Du, H.; Sun, H.; Edwards, J.; Bradshaw-Cordum, H.; Ali, J.; Andrews, S.; Isak, A.; Vanbrunt, A.; Nguyen, C.; Du, F.; Lamar, B.; Courtney, L.; Kalicki, J.; Ozersky, P.; Bielicki, L.; Scott, K.; Holmes, A.; Harkins, R.; Harris, A.; Strong, C.M.; Hou, S.; Tomlinson, C.; Dauphin-Kohlberg, S.; Kozlowicz-Reilly, A.; Leonard, S.; Rohlfing, T.; Rock, S.M.; Tin-Wollam, A.M.; Abbott, A.; Minx, P.; Maupin, R.; Strowmatt, C.; Latreille, P.; Miller, N.; Johnson, D.; Murray, J.; Woessner, J.P.; Wendl, M.C.; Yang, S.P.; Schultz, B.R.; Wallis, J.W.; Spieth, J.; Bieri, T.A.; Nelson, J.O.; Berkowicz, N.; Wohldmann, P.E.; Cook, L.L.; Hickenbotham, M.T.; Eldred, J.; Williams, D.; Bedell, J.A.; Mardis, E.R.; Clifton, S.W.; Chissoe, S.L.; Marra, M.A.; Raymond, C.; Haugen, E.; Gillett, W.; Zhou, Y.; James, R.; Phelps, K.; Iadanoto, S.; Bubb, K.; Simms, E.; Levy, R.; Clendenning, J.; Kaul, R.; Kent, W.J.; Furey, T.S.; Baertsch, R.A.; Brent, M.R.; Keibler, E.; Flicek, P.; Bork, P.; Suyama, M.; Bailey, J.A.; Portnoy, M.E.; Torrents, D.; Chinwalla, A.T.; Gish, W.R.; Eddy, S.R.; McPherson, J.D.; Olson, M.V.; Eichler, E.E.; Green, E.D.; Waterston, R.H.; Wilson, R.K. The DNA sequence of human chromosome 7. Nature, 2003, 424(6945), 157-164.
[http://dx.doi.org/10.1038/nature01782] [PMID: 12853948]
[53]
O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; Astashyn, A.; Badretdin, A.; Bao, Y.; Blinkova, O.; Brover, V.; Chetvernin, V.; Choi, J.; Cox, E.; Ermolaeva, O.; Farrell, C.M.; Goldfarb, T.; Gupta, T.; Haft, D.; Hatcher, E.; Hlavina, W.; Joardar, V.S.; Kodali, V.K.; Li, W.; Maglott, D.; Masterson, P.; McGarvey, K.M.; Murphy, M.R.; O’Neill, K.; Pujar, S.; Rangwala, S.H.; Rausch, D.; Riddick, L.D.; Schoch, C.; Shkeda, A.; Storz, S.S.; Sun, H.; Thibaud-Nissen, F.; Tolstoy, I.; Tully, R.E.; Vatsan, A.R.; Wallin, C.; Webb, D.; Wu, W.; Landrum, M.J.; Kimchi, A.; Tatusova, T.; DiCuccio, M.; Kitts, P.; Murphy, T.D.; Pruitt, K.D. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res., 2016, 44(D1), D733-D745.
[http://dx.doi.org/10.1093/nar/gkv1189] [PMID: 26553804]
[54]
Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res., 2016, 44(14), 6614-6624.
[http://dx.doi.org/10.1093/nar/gkw569] [PMID: 27342282]
[55]
Brister, J.R.; Ako-Adjei, D.; Bao, Y.; Blinkova, O. NCBI viral genomes resource. Nucleic Acids Res., 2015, 43(Database issue), D571-D577.
[http://dx.doi.org/10.1093/nar/gku1207] [PMID: 25428358]
[56]
Ullrich, A.; Coussens, L.; Hayflick, J.S.; Dull, T.J.; Gray, A.; Tam, A.W.; Lee, J.; Yarden, Y.; Libermann, T.A.; Schlessinger, J. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature, 1984, 309(5967), 418-425.
[http://dx.doi.org/10.1038/309418a0] [PMID: 6328312]
[57]
Bajaj, M.; Waterfield, M.D.; Schlessinger, J.; Taylor, W.R.; Blundell, T. On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors. Biochim. Biophys. Acta, 1987, 916(2), 220-226.
[http://dx.doi.org/10.1016/0167-4838(87)90112-9] [PMID: 3676333]
[58]
Ward, C.W.; Hoyne, P.A.; Flegg, R.H. Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumor necrosis factor receptor. Proteins, 1995, 22(2), 141-153.
[http://dx.doi.org/10.1002/prot.340220207] [PMID: 7567962]
[59]
Ullrich, A.; Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell, 1990, 61(2), 203-212.
[http://dx.doi.org/10.1016/0092-8674(90)90801-K] [PMID: 2158859]
[60]
Huang, H.S.; Nagane, M.; Klingbeil, C.K.; Lin, H.; Nishikawa, R.; Ji, X-D.; Huang, C-M.; Gill, G.N.; Wiley, H.S.; Cavenee, W.K. The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J. Biol. Chem., 1997, 272(5), 2927-2935.
[http://dx.doi.org/10.1074/jbc.272.5.2927] [PMID: 9006938]
[61]
Haley, J.D.; Hsuan, J.J.; Waterfield, M.D. Analysis of mammalian fibroblast transformation by normal and mutated human EGF receptors. Oncogene, 1989, 4(3), 273-283.
[PMID: 2784850]
[62]
Brown, P.M.; Debanne, M.T.; Grothe, S.; Bergsma, D.; Caron, M.; Kay, C.; O’Connor-McCourt, M.D. The extracellular domain of the epidermal growth factor receptor. Studies on the affinity and stoichiometry of binding, receptor dimerization and a binding-domain mutant. Eur. J. Biochem., 1994, 225(1), 223-233.
[http://dx.doi.org/10.1111/j.1432-1033.1994.00223.x] [PMID: 7925442]
[63]
Lemmon, M.A.; Bu, Z.; Ladbury, J.E.; Zhou, M.; Pinchasi, D.; Lax, I.; Engelman, D.M.; Schlessinger, J. Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO J., 1997, 16(2), 281-294.
[http://dx.doi.org/10.1093/emboj/16.2.281] [PMID: 9029149]
[64]
Odaka, M.; Kohda, D.; Lax, I.; Schlessinger, J.; Inagaki, F. Ligand-binding enhances the affinity of dimerization of the extracellular domain of the epidermal growth factor receptor. J. Biochem., 1997, 122(1), 116-121.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021718] [PMID: 9276679]
[65]
Domagala, T.; Konstantopoulos, N.; Smyth, F.; Jorissen, R.N.; Fabri, L.; Geleick, D.; Lax, I.; Schlessinger, J.; Sawyer, W.; Howlett, G.J.; Burgess, A.W.; Nice, E.C. Stoichiometry, kinetic and binding analysis of the interaction between epidermal growth factor (EGF) and the extracellular domain of the EGF receptor. Growth Factors, 2000, 18(1), 11-29.
[http://dx.doi.org/10.3109/08977190009003231] [PMID: 10831070]
[66]
Engler, D.A.; Campion, S.R.; Hauser, M.R.; Cook, J.S.; Niyogi, S.K. Critical functional requirement for the guanidinium group of the arginine 41 side chain of human epidermal growth factor as revealed by mutagenic inactivation and chemical reactivation. J. Biol. Chem., 1992, 267(4), 2274-2281.
[PMID: 1733935]
[67]
Koide, H.; Muto, Y.; Kasai, H.; Kohri, K.; Hoshi, K.; Takahashi, S.; Tsukumo, K.; Sasaki, T.; Oka, T.; Miyake, T. A site-directed mutagenesis study on the role of isoleucine-23 of human epidermal growth factor in the receptor binding. Biochim. Biophys. Acta, 1992, 1120(3), 257-261.
[http://dx.doi.org/10.1016/0167-4838(92)90245-9] [PMID: 1576151]
[68]
Tadaki, D.K.; Niyogi, S.K. The functional importance of hydrophobicity of the tyrosine at position 13 of human epidermal growth factor in receptor binding. J. Biol. Chem., 1993, 268(14), 10114-10119.
[PMID: 8486681]
[69]
Derynck, R.; Roberts, A.B.; Winkler, M.E.; Chen, E.Y.; Goeddel, D.V. Human transforming growth factor-α: precursor structure and expression in E. coli. Cell, 1984, 38(1), 287-297.
[http://dx.doi.org/10.1016/0092-8674(84)90550-6] [PMID: 6088071]
[70]
Marquardt, H.; Hunkapiller, M.W.; Hood, L.E.; Todaro, G.J. Rat transforming growth factor type 1: structure and relation to epidermal growth factor. Science, 1984, 223(4640), 1079-1082.
[http://dx.doi.org/10.1126/science.6320373] [PMID: 6320373]
[71]
Ogiso, H.; Ishitani, R.; Nureki, O.; Fukai, S.; Yamanaka, M.; Kim, J-H.; Saito, K.; Sakamoto, A.; Inoue, M.; Shirouzu, M.; Yokoyama, S. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell, 2002, 110(6), 775-787.
[http://dx.doi.org/10.1016/S0092-8674(02)00963-7] [PMID: 12297050]
[72]
Lax, I.; Bellot, F.; Howk, R.; Ullrich, A.; Givol, D.; Schlessinger, J. Functional analysis of the ligand binding site of EGF-receptor utilizing chimeric chicken/human receptor molecules. EMBO J., 1989, 8(2), 421-427.
[http://dx.doi.org/10.1002/j.1460-2075.1989.tb03393.x] [PMID: 2785915]
[73]
Wu, D.G.; Wang, L.H.; Sato, G.H.; West, K.A.; Harris, W.R.; Crabb, J.W.; Sato, J.D. Human epidermal growth factor (EGF) receptor sequence recognized by EGF competitive monoclonal antibodies. Evidence for the localization of the EGF-binding site. J. Biol. Chem., 1989, 264(29), 17469-17475.
[PMID: 2477372]
[74]
Wu, D.G.; Wang, L.H.; Chi, Y.; Sato, G.H.; Sato, J.D. Human epidermal growth factor receptor residue covalently cross-linked to epidermal growth factor. Proc. Natl. Acad. Sci. USA, 1990, 87(8), 3151-3155.
[http://dx.doi.org/10.1073/pnas.87.8.3151] [PMID: 1691502]
[75]
Woltjer, R.L.; Lukas, T.J.; Staros, J.V. Direct identification of residues of the epidermal growth factor receptor in close proximity to the amino terminus of bound epidermal growth factor. Proc. Natl. Acad. Sci. USA, 1992, 89(16), 7801-7805.
[http://dx.doi.org/10.1073/pnas.89.16.7801] [PMID: 1380167]
[76]
Kohda, D.; Odaka, M.; Lax, I.; Kawasaki, H.; Suzuki, K.; Ullrich, A.; Schlessinger, J.; Inagaki, F.A. 40-kDa epidermal growth factor/transforming growth factor alpha-binding domain produced by limited proteolysis of the extracellular domain of the epidermal growth factor receptor. J. Biol. Chem., 1993, 268(3), 1976-1981.
[PMID: 8420971]
[77]
Summerfield, A.E.; Hudnall, A.K.; Lukas, T.J.; Guyer, C.A.; Staros, J.V. Identification of residues of the epidermal growth factor receptor proximal to residue 45 of bound epidermal growth factor. J. Biol. Chem., 1996, 271(33), 19656-19659.
[http://dx.doi.org/10.1074/jbc.271.33.19656] [PMID: 8702666]
[78]
Sako, Y.; Minoghchi, S.; Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol., 2000, 2(3), 168-172.
[http://dx.doi.org/10.1038/35004044] [PMID: 10707088]
[79]
Garrett, T.P.; McKern, N.M.; Lou, M.; Elleman, T.C.; Adams, T.E.; Lovrecz, G.O.; Zhu, H-J.; Walker, F.; Frenkel, M.J.; Hoyne, P.A.; Jorissen, R.N.; Nice, E.C.; Burgess, A.W.; Ward, C.W. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor α. Cell, 2002, 110(6), 763-773.
[http://dx.doi.org/10.1016/S0092-8674(02)00940-6] [PMID: 12297049]
[80]
Lu, H-S.; Chai, J-J.; Li, M.; Huang, B-R.; He, C-H.; Bi, R-C. Crystal structure of human epidermal growth factor and its dimerization. J. Biol. Chem., 2001, 276(37), 34913-34917.
[http://dx.doi.org/10.1074/jbc.M102874200] [PMID: 11438527]
[81]
Abe, Y.; Odaka, M.; Inagaki, F.; Lax, I.; Schlessinger, J.; Kohda, D. Disulfide bond structure of human epidermal growth factor receptor. J. Biol. Chem., 1998, 273(18), 11150-11157.
[http://dx.doi.org/10.1074/jbc.273.18.11150] [PMID: 9556602]
[82]
Groenen, L.C.; Nice, E.C.; Burgess, A.W. Structure-function relationships for the EGF/TGF-α family of mitogens. Growth Factors, 1994, 11(4), 235-257.
[http://dx.doi.org/10.3109/08977199409010997] [PMID: 7779404]
[83]
Kohda, D.; Inagaki, F. Three-dimensional nuclear magnetic resonance structures of mouse epidermal growth factor in acidic and physiological pH solutions. Biochemistry, 1992, 31(47), 11928-11939.
[http://dx.doi.org/10.1021/bi00162a036] [PMID: 1445923]
[84]
Garrett, T.P.; McKern, N.M.; Lou, M.; Frenkel, M.J.; Bentley, J.D.; Lovrecz, G.O.; Elleman, T.C.; Cosgrove, L.J.; Ward, C.W. Crystal structure of the first three domains of the type-1 insulin-like growth factor receptor. Nature, 1998, 394(6691), 395-399.
[http://dx.doi.org/10.1038/28668] [PMID: 9690478]
[85]
Arkhipov, A.; Shan, Y.; Das, R.; Endres, N.F.; Eastwood, M.P.; Wemmer, D.E.; Kuriyan, J.; Shaw, D.E. Architecture and membrane interactions of the EGF receptor. Cell, 2013, 152(3), 557-569.
[http://dx.doi.org/10.1016/j.cell.2012.12.030] [PMID: 23374350]
[86]
Björkelund, H.; Gedda, L.; Malmqvist, M.; Andersson, K. Resolving the EGF-EGFR interaction characteristics through a multiple-temperature, multiple-inhibitor, real-time interaction analysis approach. Mol. Clin. Oncol., 2013, 1(2), 343-352.
[http://dx.doi.org/10.3892/mco.2012.37] [PMID: 24649173]
[87]
Liu, P.; Cleveland, T.E., IV; Bouyain, S.; Byrne, P.O.; Longo, P.A.; Leahy, D.J. A single ligand is sufficient to activate EGFR dimers. Proc. Natl. Acad. Sci. USA, 2012, 109(27), 10861-10866.
[http://dx.doi.org/10.1073/pnas.1201114109] [PMID: 22699492]
[88]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C.V. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[89]
Jensen, L. J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 2008, 37(suppl_1), D412-D416.
[90]
Chatr-Aryamontri, A.; Ceol, A.; Palazzi, L. M.; Nardelli, G.; Schneider, M. V.; Castagnoli, L.; Cesareni, G. MINT: the Molecular INTeraction database. Nucleic Acids Res., 2006, 35(suppl_1), D572-D574.
[91]
Mishra, G. R.; Suresh, M.; Kumaran, K.; Kannabiran, N.; Suresh, S.; Bala, P.; Shivakumar, K.; Anuradha, N.; Reddy, R.; Raghavan, T. M. Human protein reference database—2006 update. Nucleic Acids Res., 2006, 34(suppl_1), D411-D414.
[92]
Alfarano, C.; Andrade, C.; Anthony, K.; Bahroos, N.; Bajec, M.; Bantoft, K.; Betel, D.; Bobechko, B.; Boutilier, K.; Burgess, E. The biomolecular interaction network database and related tools 2005 update. Nucleic Acids Res.,, 2005, 33(suppl_1), D418-D424.
[93]
Salwinski, L.; Miller, C. S.; Smith, A. J.; Pettit, F. K.; Bowie, J. U.; Eisenberg, D. The database of interacting proteins: 2004 update. Nucleic Acids Res., 2004, 32(suppl_1), D449-D451.
[94]
Breitkreutz, B.-J.; Stark, C.; Reguly, T.; Boucher, L.; Breitkreutz, A.; Livstone, M.; Oughtred, R.; Lackner, D. H.; Bähler, J.; Wood, V. The BioGRID interaction database: 2008 update. Nucleic Acids Res., 2007, 36(suppl_1), D637-D640.
[95]
Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T. KEGG for linking genomes to life and the environment. Nucleic Acids Res., 2007, 36(suppl_1), D480-D484.
[http://dx.doi.org/10.1093/nar/gkm882]
[96]
Vastrik, I.; D’Eustachio, P.; Schmidt, E.; Gopinath, G.; Croft, D.; de Bono, B.; Gillespie, M.; Jassal, B.; Lewis, S.; Matthews, L.; Wu, G.; Birney, E.; Stein, L. Reactome: a knowledge base of biologic pathways and processes. Genome Biol., 2007, 8(3), R39.
[http://dx.doi.org/10.1186/gb-2007-8-3-r39] [PMID: 17367534]
[97]
Kerrien, S.; Alam-Faruque, Y.; Aranda, B.; Bancarz, I.; Bridge, A.; Derow, C.; Dimmer, E.; Feuermann, M.; Friedrichsen, A.; Huntley, R. IntAct—open source resource for molecular interaction data. Nucleic Acids Res., 2006, 35(suppl_1), D561-D565.
[98]
Keseler, I. M.; Collado-Vides, J.; Gama-Castro, S.; Ingraham, J.; Paley, S.; Paulsen, I. T.; Peralta-Gil, M.; Karp, P. D. EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res., 2005, 33(suppl_1), D334-D337.
[99]
Schaefer, C. F.; Anthony, K.; Krupa, S.; Buchoff, J.; Day, M.; Hannay, T.; Buetow, K. H. PID: the pathway interaction database. Nucleic Acids Res., 2008, 37(suppl_1), D674-D679.
[http://dx.doi.org/10.1038/npre.2008.2243.1]
[100]
Mi, H.; Muruganujan, A.; Ebert, D.; Huang, X.; Thomas, P.D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res., 2019, 47(D1), D419-D426.
[http://dx.doi.org/10.1093/nar/gky1038] [PMID: 30407594]
[101]
Galperin, M. Y.; Cochrane, G. R. Nucleic acids research annual database issue and the NAR online molecular biology database collection in 2009. Nucleic Acids Res., 2008, 37(suppl_1), D1-D4.
[102]
Wilken, J.A.; Badri, T.; Cross, S.; Raji, R.; Santin, A.D.; Schwartz, P.; Branscum, A.J.; Baron, A.T.; Sakhitab, A.I.; Maihle, N.J. EGFR/HER-targeted therapeutics in ovarian cancer. Future Med. Chem., 2012, 4(4), 447-469.
[http://dx.doi.org/10.4155/fmc.12.11] [PMID: 22416774]
[103]
Shi, T.; Niepel, M.; McDermott, J.E.; Gao, Y.; Nicora, C.D.; Chrisler, W.B.; Markillie, L.M.; Petyuk, V.A.; Smith, R.D.; Rodland, K.D.; Sorger, P.K.; Qian, W.J.; Wiley, H.S. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway. Sci. Signal., 2016, 9(436), rs6-rs6.
[http://dx.doi.org/10.1126/scisignal.aaf0891] [PMID: 27405981]
[104]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[105]
Wheeler, D.L.; Dunn, E.F.; Harari, P.M. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat. Rev. Clin. Oncol., 2010, 7(9), 493-507.
[http://dx.doi.org/10.1038/nrclinonc.2010.97] [PMID: 20551942]
[106]
Huang, L.; Fu, L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm. Sin. B, 2015, 5(5), 390-401.
[http://dx.doi.org/10.1016/j.apsb.2015.07.001] [PMID: 26579470]
[107]
Hrustanovic, G.; Lee, B.J.; Bivona, T.G. Mechanisms of resistance to EGFR targeted therapies. Cancer Biol. Ther., 2013, 14(4), 304-314.
[http://dx.doi.org/10.4161/cbt.23627] [PMID: 23358468]
[108]
Gomez, G.G.; Wykosky, J.; Zanca, C.; Furnari, F.B.; Cavenee, W.K. Therapeutic resistance in cancer: microRNA regulation of EGFR signaling networks. Cancer Biol. Med., 2013, 10(4), 192-205.
[PMID: 24349829]
[109]
Abbasi, M.; Gupta, V.; Chitranshi, N.; You, Y.; Dheer, Y.; Mirzaei, M.; Graham, S.L. Regulation of brain-derived neurotrophic factor and growth factor signaling pathways by tyrosine phosphatase shp2 in the retina: A brief review. Front. Cell. Neurosci., 2018, 12, 85.
[http://dx.doi.org/10.3389/fncel.2018.00085] [PMID: 29636665]
[110]
Karachaliou, N.; Rosell, R.; Morales-Espinosa, D.; Viteri, S. Systemic treatment in EGFR-ALK NSCLC patients: second line therapy and beyond. Expert Rev. Anticancer Ther., 2014, 14(7), 807-815.
[http://dx.doi.org/10.1586/14737140.2014.896210] [PMID: 24611674]
[111]
Willmarth, N.E.; Baillo, A.; Dziubinski, M.L.; Wilson, K.; Riese, D.J., II; Ethier, S.P. Altered EGFR localization and degradation in human breast cancer cells with an amphiregulin/EGFR autocrine loop. Cell. Signal., 2009, 21(2), 212-219.
[http://dx.doi.org/10.1016/j.cellsig.2008.10.003] [PMID: 18951974]
[112]
Fabregat, A.; Sidiropoulos, K.; Garapati, P.; Gillespie, M.; Hausmann, K.; Haw, R.; Jassal, B.; Jupe, S.; Korninger, F.; McKay, S.; Matthews, L.; May, B.; Milacic, M.; Rothfels, K.; Shamovsky, V.; Webber, M.; Weiser, J.; Williams, M.; Wu, G.; Stein, L.; Hermjakob, H.; D’Eustachio, P. The reactome pathway knowledgebase. Nucleic Acids Res., 2016, 44(D1), D481-D487.
[http://dx.doi.org/10.1093/nar/gkv1351] [PMID: 26656494]
[113]
Fabregat, A.; Sidiropoulos, K.; Viteri, G.; Forner, O.; Marin-Garcia, P.; Arnau, V.; D’Eustachio, P.; Stein, L.; Hermjakob, H. Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics, 2017, 18(1), 142.
[http://dx.doi.org/10.1186/s12859-017-1559-2] [PMID: 28249561]
[114]
Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc., 1995, 57(1), 289-300.
[115]
Campion, S.R.; Matsunami, R.K.; Engler, D.A.; Niyogi, S.K. Biochemical properties of site-directed mutants of human epidermal growth factor: importance of solvent-exposed hydrophobic residues of the amino-terminal domain in receptor binding. Biochemistry, 1990, 29(42), 9988-9993.
[http://dx.doi.org/10.1021/bi00494a032] [PMID: 2271634]
[116]
Harvey, T.S.; Wilkinson, A.J.; Tappin, M.J.; Cooke, R.M.; Campbell, I.D. The solution structure of human transforming growth factor α. Eur. J. Biochem., 1991, 198(3), 555-562.
[http://dx.doi.org/10.1111/j.1432-1033.1991.tb16050.x] [PMID: 2050136]
[117]
McInnes, C.; Grothe, S.; O’Connor-McCourt, M.; Sykes, B.D. NMR study of the differential contributions of residues of transforming growth factor alpha to association with its receptor. Protein Eng., 2000, 13(3), 143-147.
[http://dx.doi.org/10.1093/protein/13.3.143] [PMID: 10775655]
[118]
Barbacci, E.G.; Guarino, B.C.; Stroh, J.G.; Singleton, D.H.; Rosnack, K.J.; Moyer, J.D.; Andrews, G.C. The structural basis for the specificity of epidermal growth factor and heregulin binding. J. Biol. Chem., 1995, 270(16), 9585-9589.
[http://dx.doi.org/10.1074/jbc.270.16.9585] [PMID: 7721889]
[119]
Mohammadi, M.; McMahon, G.; Sun, L.; Tang, C.; Hirth, P.; Yeh, B.K.; Hubbard, S.R.; Schlessinger, J. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science, 1997, 276(5314), 955-960.
[http://dx.doi.org/10.1126/science.276.5314.955] [PMID: 9139660]
[120]
Hubbard, S.R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J., 1997, 16(18), 5572-5581.
[http://dx.doi.org/10.1093/emboj/16.18.5572] [PMID: 9312016]
[121]
Garton, N.S.; Barker, M.D.; Davis, R.P.; Douault, C.; Hooper-Greenhill, E.; Jones, E.; Lewis, H.D.; Liddle, J.; Lugo, D.; McCleary, S.; Preston, A.G.S.; Ramirez-Molina, C.; Neu, M.; Shipley, T.J.; Somers, D.O.; Watson, R.J.; Wilson, D.M. Optimisation of a novel series of potent and orally bioavailable azanaphthyridine SYK inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(19), 4606-4612.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.070] [PMID: 27578246]
[122]
Guy, P.M.; Platko, J.V.; Cantley, L.C.; Cerione, R.A.; Carraway, K.L. III Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc. Natl. Acad. Sci. USA, 1994, 91(17), 8132-8136.
[http://dx.doi.org/10.1073/pnas.91.17.8132] [PMID: 8058768]
[123]
Kamath, S.; Buolamwini, J.K. Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development. Med. Res. Rev., 2006, 26(5), 569-594.
[http://dx.doi.org/10.1002/med.20070] [PMID: 16788977]
[124]
Tebbutt, N.; Pedersen, M.W.; Johns, T.G. Targeting the ERBB family in cancer: couples therapy. Nat. Rev. Cancer, 2013, 13(9), 663-673.
[http://dx.doi.org/10.1038/nrc3559] [PMID: 23949426]
[125]
Ono, M.; Kuwano, M. Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin. Cancer Res., 2006, 12(24), 7242-7251.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0646] [PMID: 17189395]
[126]
Schrevel, M.; Gorter, A.; Kolkman-Uljee, S.M.; Trimbos, J.B.M.; Fleuren, G.J.; Jordanova, E.S. Molecular mechanisms of epidermal growth factor receptor overexpression in patients with cervical cancer. Mod. Pathol., 2011, 24(5), 720-728.
[http://dx.doi.org/10.1038/modpathol.2010.239] [PMID: 21252859]
[127]
Grandis, J.R.; Sok, J.C. Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol. Ther., 2004, 102(1), 37-46.
[http://dx.doi.org/10.1016/j.pharmthera.2004.01.002] [PMID: 15056497]
[128]
Quesnelle, K.M.; Boehm, A.L.; Grandis, J.R. STAT-mediated EGFR signaling in cancer. J. Cell. Biochem., 2007, 102(2), 311-319.
[http://dx.doi.org/10.1002/jcb.21475] [PMID: 17661350]
[129]
Peipp, M.; Schneider-Merck, T.; Dechant, M.; Beyer, T.; Lammerts van Bueren, J.J.; Bleeker, W.K.; Parren, P.W.; van de Winkel, J.G.; Valerius, T. Tumor cell killing mechanisms of epidermal growth factor receptor (EGFR) antibodies are not affected by lung cancer-associated EGFR kinase mutations. J. Immunol., 2008, 180(6), 4338-4345.
[http://dx.doi.org/10.4049/jimmunol.180.6.4338] [PMID: 18322248]
[130]
Baselga, J.; Arteaga, C.L. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J. Clin. Oncol., 2005, 23(11), 2445-2459.
[http://dx.doi.org/10.1200/JCO.2005.11.890] [PMID: 15753456]
[131]
Goldstein, N.I.; Prewett, M.; Zuklys, K.; Rockwell, P.; Mendelsohn, J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin. Cancer Res., 1995, 1(11), 1311-1318.
[PMID: 9815926]
[132]
Rubin, M.; Shin, D.; Pasmantier, M.; Falcey, J.; Paulter, V.; Fetzer, K.; Waksal, H.; Mendelsohn, J.; Hong, W. Monoclonal antibody (MoAb) IMC-C225, an anti-epidermal growth factor receptor (EGFR), for patients (pts) with EGFR-positive tumors refractory to or in relapse from previous therapeutic regimens. Proc. Am. Soc. Clin. Oncol., 2000, 19, 1860.
[133]
Perrotte, P.; Matsumoto, T.; Inoue, K.; Kuniyasu, H.; Eve, B.Y.; Hicklin, D.J.; Radinsky, R.; Dinney, C.P. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin. Cancer Res., 1999, 5(2), 257-265.
[PMID: 10037173]
[134]
Aboud-Pirak, E.; Hurwitz, E.; Pirak, M.E.; Bellot, F.; Schlessinger, J.; Sela, M. Efficacy of antibodies to epidermal growth factor receptor against KB carcinoma in vitro and in nude mice. J. Natl. Cancer Inst., 1988, 80(20), 1605-1611.
[http://dx.doi.org/10.1093/jnci/80.20.1605] [PMID: 3193478]
[135]
Baselga, J.; Norton, L.; Masui, H.; Pandiella, A.; Coplan, K.; Miller, W.H., Jr; Mendelsohn, J. Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J. Natl. Cancer Inst., 1993, 85(16), 1327-1333.
[http://dx.doi.org/10.1093/jnci/85.16.1327] [PMID: 8340945]
[136]
Fan, Z.; Baselga, J.; Masui, H.; Mendelsohn, J. Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res., 1993, 53(19), 4637-4642.
[PMID: 8402640]
[137]
Recombinant humanized anti-HER2 antibody (HerceptinTM) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neuoverexpressing human breast cancer xenografts. Cancer Res., 1998, 58, 2825-2831.
[138]
Ciardiello, F.; Bianco, R.; Damiano, V.; De Lorenzo, S.; Pepe, S.; De Placido, S.; Fan, Z.; Mendelsohn, J.; Bianco, A.R.; Tortora, G. Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clin. Cancer Res., 1999, 5(4), 909-916.
[PMID: 10213228]
[139]
Prewett, M.C.; Hooper, A.T.; Bassi, R.; Ellis, L.M.; Waksal, H.W.; Hicklin, D.J. Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts. Clin. Cancer Res., 2002, 8(5), 994-1003.
[PMID: 12006511]
[140]
Saltz, L. Cetyxunab (IMC-C225) plus irinotecan (CPT-11) is active in CPT-11-refractory colorectal cancer (CRC) that express epidermal growth factor receptor (EGFR). Proc. Am. Soc. Clin. Oncol., 2001, 20, 3a.
[141]
Saltz, L.B.; Meropol, N.J.; Loehrer, P.J., Sr; Needle, M.N.; Kopit, J.; Mayer, R.J. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol., 2004, 22(7), 1201-1208.
[http://dx.doi.org/10.1200/JCO.2004.10.182] [PMID: 14993230]
[142]
Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; Chau, I.; Van Cutsem, E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med., 2004, 351(4), 337-345.
[http://dx.doi.org/10.1056/NEJMoa033025] [PMID: 15269313]
[143]
Franklin, W.A. Epidermal growth factor receptor family in lung cancer and premalignancy. Semin. Oncol., 2002, 29(1)(Suppl. 4), 3-14.
[144]
Mendelsohn, J. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin. Cancer Res., 1997, 3(12 Pt 2), 2703-2707.
[PMID: 10068277]
[145]
Wu, X.; Fan, Z.; Masui, H.; Rosen, N.; Mendelsohn, J. Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin. J. Clin. Invest., 1995, 95(4), 1897-1905.
[http://dx.doi.org/10.1172/JCI117871] [PMID: 7706497]
[146]
Raben, D.; Helfrich, B.; Chan, D.; Kee, A.; Zhao, T. C225 anti-EGFR antibody potentiates radiation (RT) and chemotherapy (CT) cytotoxicity in human non-small cell lung cancer (NSCLC) cells in vitro and in vivo. Proc. Am. Soc. Clin. Oncol., 2001, 257a.
[147]
Vanhoefer, U.; Tewes, M.; Rojo, F.; Dirsch, O.; Schleucher, N.; Rosen, O.; Tillner, J.; Kovar, A.; Braun, A.H.; Trarbach, T.; Seeber, S.; Harstrick, A.; Baselga, J. Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumors that express the epidermal growth factor receptor. J. Clin. Oncol., 2004, 22(1), 175-184.
[http://dx.doi.org/10.1200/JCO.2004.05.114] [PMID: 14701780]
[148]
Hecht, J.; Patnaik, A.; Malik, I.; Venook, A.; Berlin, J.; Croghan, G.; Wiens, B.; Visonneau, S.; Jerian, S.; Meropol, N. ABX-EGF monotherapy in patients (pts) with metastatic colorectal cancer (mCRC): an updated analysis. J. Clin. Oncol., 2004, 22(14_suppl), 3511-3511.
[149]
Lynch, D.H. Yang, X.-D. Therapeutic potential of ABX-EGF: a fully human anti-epidermal growth factor receptor monoclonal antibody for cancer treatment. Semin. Oncol., 2002, 29(1)(Suppl. 4), 47-50.
[150]
Hoffmann, T.; Hafner, D.; Ballo, H.; Haas, I.; Bier, H. Antitumor activity of anti-epidermal growth factor receptor monoclonal antibodies and cisplatin in ten human head and neck squamous cell carcinoma lines. Anticancer Res., 1997, 17(6D), 4419-4425.
[PMID: 9494544]
[151]
Crombet, T.; Osorio, M.; Cruz, T.; Roca, C.; del Castillo, R.; Mon, R.; Iznaga-Escobar, N.; Figueredo, R.; Koropatnick, J.; Renginfo, E.; Fernández, E.; Alvárez, D.; Torres, O.; Ramos, M.; Leonard, I.; Pérez, R.; Lage, A. Use of the humanized anti-epidermal growth factor receptor monoclonal antibody h-R3 in combination with radiotherapy in the treatment of locally advanced head and neck cancer patients. J. Clin. Oncol., 2004, 22(9), 1646-1654.
[http://dx.doi.org/10.1200/JCO.2004.03.089] [PMID: 15117987]
[152]
Agus, D.B.; Akita, R.W.; Fox, W.D.; Lewis, G.D.; Higgins, B.; Pisacane, P.I.; Lofgren, J.A.; Tindell, C.; Evans, D.P.; Maiese, K.; Scher, H.I.; Sliwkowski, M.X. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell, 2002, 2(2), 127-137.
[http://dx.doi.org/10.1016/S1535-6108(02)00097-1] [PMID: 12204533]
[153]
Mohsin, S.K.; Weiss, H.L.; Gutierrez, M.C.; Chamness, G.C.; Schiff, R.; Digiovanna, M.P.; Wang, C-X.; Hilsenbeck, S.G.; Osborne, C.K.; Allred, D.C.; Elledge, R.; Chang, J.C. Neoadjuvant trastuzumab induces apoptosis in primary breast cancers. J. Clin. Oncol., 2005, 23(11), 2460-2468.
[http://dx.doi.org/10.1200/JCO.2005.00.661] [PMID: 15710948]
[154]
Moore, M.J.; Goldstein, D.; Hamm, J.; Figer, A.; Hecht, J.R.; Gallinger, S.; Au, H.J.; Murawa, P.; Walde, D.; Wolff, R.A.; Campos, D.; Lim, R.; Ding, K.; Clark, G.; Voskoglou-Nomikos, T.; Ptasynski, M.; Parulekar, W. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol., 2007, 25(15), 1960-1966.
[http://dx.doi.org/10.1200/JCO.2006.07.9525] [PMID: 17452677]
[155]
Bruns, C.J.; Solorzano, C.C.; Harbison, M.T.; Ozawa, S.; Tsan, R.; Fan, D.; Abbruzzese, J.; Traxler, P.; Buchdunger, E.; Radinsky, R.; Fidler, I.J. Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res., 2000, 60(11), 2926-2935.
[PMID: 10850439]
[156]
Petit, A.M.; Rak, J.; Hung, M-C.; Rockwell, P.; Goldstein, N.; Fendly, B.; Kerbel, R.S. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am. J. Pathol., 1997, 151(6), 1523-1530.
[PMID: 9403702]
[157]
Ciardiello, F.; Caputo, R.; Bianco, R.; Damiano, V.; Fontanini, G.; Cuccato, S.; De Placido, S.; Bianco, A.R.; Tortora, G. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin. Cancer Res., 2001, 7(5), 1459-1465.
[PMID: 11350918]
[158]
Kris, M.G.; Natale, R.B.; Herbst, R.S.; Lynch, T.J., Jr; Prager, D.; Belani, C.P.; Schiller, J.H.; Kelly, K.; Spiridonidis, H.; Sandler, A.; Albain, K.S.; Cella, D.; Wolf, M.K.; Averbuch, S.D.; Ochs, J.J.; Kay, A.C. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA, 2003, 290(16), 2149-2158.
[http://dx.doi.org/10.1001/jama.290.16.2149] [PMID: 14570950]
[159]
Fukuoka, M.; Yano, S.; Giaccone, G.; Tamura, T.; Nakagawa, K.; Douillard, J-Y.; Nishiwaki, Y.; Vansteenkiste, J.; Kudoh, S.; Rischin, D.; Eek, R.; Horai, T.; Noda, K.; Takata, I.; Smit, E.; Averbuch, S.; Macleod, A.; Feyereislova, A.; Dong, R.P.; Baselga, J. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial). [corrected] J. Clin. Oncol., 2003, 21(12), 2237-2246.
[http://dx.doi.org/10.1200/JCO.2003.10.038] [PMID: 12748244]
[160]
Baselga, J.; Rischin, D.; Ranson, M.; Calvert, H.; Raymond, E.; Kieback, D.G.; Kaye, S.B.; Gianni, L.; Harris, A.; Bjork, T.; Averbuch, S.D.; Feyereislova, A.; Swaisland, H.; Rojo, F.; Albanell, J. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J. Clin. Oncol., 2002, 20(21), 4292-4302.
[http://dx.doi.org/10.1200/JCO.2002.03.100] [PMID: 12409327]
[161]
Hidalgo, M.; Siu, L.L.; Nemunaitis, J.; Rizzo, J.; Hammond, L.A.; Takimoto, C.; Eckhardt, S.G.; Tolcher, A.; Britten, C.D.; Denis, L.; Ferrante, K.; Von Hoff, D.D.; Silberman, S.; Rowinsky, E.K. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J. Clin. Oncol., 2001, 19(13), 3267-3279.
[http://dx.doi.org/10.1200/JCO.2001.19.13.3267] [PMID: 11432895]
[162]
Woodburn, J.; Barker, A.; Gibson, K.; Ashton, S.; Wakeling, A.; Curry, B.; Scarlett, L.; Henthorn, L. ZD1839, an epidermal growth factor tyrosine kinase inhibitor selected for clinical development. Immunotherapy, 1997, 20(5), 408.
[http://dx.doi.org/10.1097/00002371-199709000-00044]
[163]
Ciardiello, F.; Caputo, R.; Bianco, R.; Damiano, V.; Pomatico, G.; De Placido, S.; Bianco, A.R.; Tortora, G. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin. Cancer Res., 2000, 6(5), 2053-2063.
[PMID: 10815932]
[164]
Sirotnak, F.M.; Zakowski, M.F.; Miller, V.A.; Scher, H.I.; Kris, M.G. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin. Cancer Res., 2000, 6(12), 4885-4892.
[PMID: 11156248]
[165]
Baselga, J.; Averbuch, S.D. ZD1839 (‘Iressa’) as an anticancer agent. Drugs, 2000, 60(1)(Suppl. 1), 33-40.
[http://dx.doi.org/10.2165/00003495-200060001-00004] [PMID: 11129170]
[166]
Pollack, V.A.; Savage, D.M.; Baker, D.A.; Tsaparikos, K.E.; Sloan, D.E.; Moyer, J.D.; Barbacci, E.G.; Pustilnik, L.R.; Smolarek, T.A.; Davis, J.A.; Vaidya, M.P.; Arnold, L.D.; Doty, J.L.; Iwata, K.K.; Morin, M.J. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J. Pharmacol. Exp. Ther., 1999, 291(2), 739-748.
[PMID: 10525095]
[167]
Moyer, J.D.; Barbacci, E.G.; Iwata, K.K.; Arnold, L.; Boman, B.; Cunningham, A.; DiOrio, C.; Doty, J.; Morin, M.J.; Moyer, M.P.; Neveu, M.; Pollack, V.A.; Pustilnik, L.R.; Reynolds, M.M.; Sloan, D.; Theleman, A.; Miller, P. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res., 1997, 57(21), 4838-4848.
[PMID: 9354447]
[168]
Rusnak, D.W.; Lackey, K.; Affleck, K.; Wood, E.R.; Alligood, K.J.; Rhodes, N.; Keith, B.R.; Murray, D.M.; Knight, W.B.; Mullin, R.J.; Gilmer, T.M. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol. Cancer Ther., 2001, 1(2), 85-94.
[PMID: 12467226]
[169]
Wood, E.R.; Truesdale, A.T.; McDonald, O.B.; Yuan, D.; Hassell, A.; Dickerson, S.H.; Ellis, B.; Pennisi, C.; Horne, E.; Lackey, K.; Alligood, K.J.; Rusnak, D.W.; Gilmer, T.M.; Shewchuk, L. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res., 2004, 64(18), 6652-6659.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1168] [PMID: 15374980]
[170]
Spector, N.L.; Xia, W.; Burris, H., III; Hurwitz, H.; Dees, E.C.; Dowlati, A.; O’Neil, B.; Overmoyer, B.; Marcom, P.K.; Blackwell, K.L.; Smith, D.A.; Koch, K.M.; Stead, A.; Mangum, S.; Ellis, M.J.; Liu, L.; Man, A.K.; Bremer, T.M.; Harris, J.; Bacus, S. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J. Clin. Oncol., 2005, 23(11), 2502-2512.
[http://dx.doi.org/10.1200/JCO.2005.12.157] [PMID: 15684311]
[171]
Malik, S.N.; Siu, L.L.; Rowinsky, E.K.; deGraffenried, L.; Hammond, L.A.; Rizzo, J.; Bacus, S.; Brattain, M.G.; Kreisberg, J.I.; Hidalgo, M. Pharmacodynamic evaluation of the epidermal growth factor receptor inhibitor OSI-774 in human epidermis of cancer patients. Clin. Cancer Res., 2003, 9(7), 2478-2486.
[PMID: 12855621]
[172]
Zinner, R.; Nemunaitis, J.; Donato, N.; Shin, H.; Myers, J.; Zhang, P.; Zentgraft, R.; Lee, J.; Khuri, F.; Glisson, B. A phase 1 clinical and biomarker study of the novel pan-erbB tyrosine kinase inhibitor, CI-1033, in patients with solid tumors. In: Clin. Cancer Res; AMER ASSOC CANCER RESEARCH PO BOX 11806, BIRMINGHAM, AL 35202 USA . , 2001, pp. 3767S-3768S.
[173]
Lawrence, T.S.; Nyati, M.K. Small-molecule tyrosine kinase inhibitors as radiosensitizers. Semin. Radiat. Oncol., 2002, 12(3)(Suppl. 2), 33-36.
[174]
Traxler, P.; Allegrini, P.R.; Brandt, R.; Brueggen, J.; Cozens, R.; Fabbro, D.; Grosios, K.; Lane, H.A.; McSheehy, P.; Mestan, J.; Meyer, T.; Tang, C.; Wartmann, M.; Wood, J.; Caravatti, G. AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res., 2004, 64(14), 4931-4941.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3681] [PMID: 15256466]
[175]
Cross, D.A.; Ashton, S.E.; Ghiorghiu, S.; Eberlein, C.; Nebhan, C.A.; Spitzler, P.J.; Orme, J.P.; Finlay, M.R.V.; Ward, R.A.; Mellor, M.J.; Hughes, G.; Rahi, A.; Jacobs, V.N.; Red Brewer, M.; Ichihara, E.; Sun, J.; Jin, H.; Ballard, P.; Al-Kadhimi, K.; Rowlinson, R.; Klinowska, T.; Richmond, G.H.; Cantarini, M.; Kim, D.W.; Ranson, M.R.; Pao, W. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov., 2014, 4(9), 1046-1061.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0337] [PMID: 24893891]
[176]
Carmi, C.; Mor, M.; Petronini, P.G.; Alfieri, R.R. Clinical perspectives for irreversible tyrosine kinase inhibitors in cancer. Biochem. Pharmacol., 2012, 84(11), 1388-1399.
[http://dx.doi.org/10.1016/j.bcp.2012.07.031] [PMID: 22885287]
[177]
Soria, J-C.; Cortes, J.; Massard, C.; Armand, J-P.; De Andreis, D.; Ropert, S.; Lopez, E.; Catteau, A.; James, J.; Marier, J-F.; Beliveau, M.; Martell, R.E.; Baselga, J. Phase I safety, pharmacokinetic and pharmacodynamic trial of BMS-599626 (AC480), an oral pan-HER receptor tyrosine kinase inhibitor, in patients with advanced solid tumors. Ann. Oncol., 2012, 23(2), 463-471.
[http://dx.doi.org/10.1093/annonc/mdr137] [PMID: 21576284]
[178]
Schroeder, R.L.; Stevens, C.L.; Sridhar, J. Small molecule tyrosine kinase inhibitors of ErbB2/HER2/Neu in the treatment of aggressive breast cancer. Molecules, 2014, 19(9), 15196-15212.
[http://dx.doi.org/10.3390/molecules190915196] [PMID: 25251190]
[179]
Tjulandin, S.; Moiseyenko, V.; Semiglazov, V.; Manikhas, G.; Learoyd, M.; Saunders, A.; Stuart, M.; Keilholz, U. Phase I, dose-finding study of AZD8931, an inhibitor of EGFR (erbB1), HER2 (erbB2) and HER3 (erbB3) signaling, in patients with advanced solid tumors. Invest. New Drugs, 2014, 32(1), 145-153.
[http://dx.doi.org/10.1007/s10637-013-9963-6] [PMID: 23589215]
[180]
Walter, A.O.; Sjin, R.T.T.; Haringsma, H.J.; Ohashi, K.; Sun, J.; Lee, K.; Dubrovskiy, A.; Labenski, M.; Zhu, Z.; Wang, Z.; Sheets, M.; St Martin, T.; Karp, R.; van Kalken, D.; Chaturvedi, P.; Niu, D.; Nacht, M.; Petter, R.C.; Westlin, W.; Lin, K.; Jaw-Tsai, S.; Raponi, M.; Van Dyke, T.; Etter, J.; Weaver, Z.; Pao, W.; Singh, J.; Simmons, A.D.; Harding, T.C.; Allen, A. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov., 2013, 3(12), 1404-1415.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0314] [PMID: 24065731]
[181]
Steuer, C.E.; Khuri, F.R.; Ramalingam, S.S. The next generation of epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of lung cancer. Cancer, 2015, 121(8), E1-E6.
[http://dx.doi.org/10.1002/cncr.29139] [PMID: 25521095]
[182]
Sequist, L.V.; Yang, J.C-H.; Yamamoto, N.; O’Byrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C-M.; Boyer, M.; Su, W.C.; Bennouna, J.; Kato, T.; Gorbunova, V.; Lee, K.H.; Shah, R.; Massey, D.; Zazulina, V.; Shahidi, M.; Schuler, M. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol., 2013, 31(27), 3327-3334.
[http://dx.doi.org/10.1200/JCO.2012.44.2806] [PMID: 23816960]
[183]
Ellis, A.G.; Doherty, M.M.; Walker, F.; Weinstock, J.; Nerrie, M.; Vitali, A.; Murphy, R.; Johns, T.G.; Scott, A.M.; Levitzki, A.; McLachlan, G.; Webster, L.K.; Burgess, A.W.; Nice, E.C. Preclinical analysis of the analinoquinazoline AG1478, a specific small molecule inhibitor of EGF receptor tyrosine kinase. Biochem. Pharmacol., 2006, 71(10), 1422-1434.
[http://dx.doi.org/10.1016/j.bcp.2006.01.020] [PMID: 16522318]
[184]
Zhou, W.; Ercan, D.; Chen, L.; Yun, C-H.; Li, D.; Capelletti, M.; Cortot, A.B.; Chirieac, L.; Iacob, R.E.; Padera, R.; Engen, J.R.; Wong, K.K.; Eck, M.J.; Gray, N.S.; Jänne, P.A. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature, 2009, 462(7276), 1070-1074.
[http://dx.doi.org/10.1038/nature08622] [PMID: 20033049]
[185]
Fry, D.W.; Bridges, A.J.; Denny, W.A.; Doherty, A.; Greis, K.D.; Hicks, J.L.; Hook, K.E.; Keller, P.R.; Leopold, W.R.; Loo, J.A.; McNamara, D.J.; Nelson, J.M.; Sherwood, V.; Smaill, J.B.; Trumpp-Kallmeyer, S.; Dobrusin, E.M. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor. Proc. Natl. Acad. Sci. USA, 1998, 95(20), 12022-12027.
[http://dx.doi.org/10.1073/pnas.95.20.12022] [PMID: 9751783]
[186]
Fry, D.W.; Kraker, A.J.; McMichael, A.; Ambroso, L.A.; Nelson, J.M.; Leopold, W.R.; Connors, R.W.; Bridges, A.J. A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science, 1994, 265(5175), 1093-1095.
[http://dx.doi.org/10.1126/science.8066447] [PMID: 8066447]
[187]
Ogawara, H.; Akiyama, T.; Ishida, J.; Watanabe, S.; Suzuki, K. A specific inhibitor for tyrosine protein kinase from Pseudomonas. J. Antibiot. (Tokyo), 1986, 39(4), 606-608.
[http://dx.doi.org/10.7164/antibiotics.39.606] [PMID: 3710920]
[188]
Akiyama, T.; Ishida, J.; Nakagawa, S.; Ogawara, H.; Watanabe, S.; Itoh, N.; Shibuya, M.; Fukami, Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem., 1987, 262(12), 5592-5595.
[PMID: 3106339]
[189]
Spinozzi, F.; Pagliacci, M.C.; Migliorati, G.; Moraca, R.; Grignani, F.; Riccardi, C.; Nicoletti, I. The natural tyrosine kinase inhibitor genistein produces cell cycle arrest and apoptosis in Jurkat T-leukemia cells. Leuk. Res., 1994, 18(6), 431-439.
[http://dx.doi.org/10.1016/0145-2126(94)90079-5] [PMID: 8207961]
[190]
Sweidan, K.; Sabbah, D.A.; Bardaweel, S.; Dush, K.A.; Sheikha, G.A.; Mubarak, M.S. Computer-aided design, synthesis, and biological evaluation of new indole-2-carboxamide derivatives as PI3Kα/EGFR inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(11), 2685-2690.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.011] [PMID: 27084677]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy