[1]
Tarr AJ, Liu X, Reed NS, Quan N. Kinetic characteristics of euflammation: the induction of controlled inflammation without overt sickness behavior. Brain Behav Immun 2014; 42: 96-108.
[2]
Witkowski JM, Bryl E, Fulop T. Should we try to alleviate the immunosenescence and inflammaging - why, how and to what extent? Curr Pharm Des 2019; 25(39): 4150-62.
[3]
Cammarata G, Duro G, Di Chiara T, Lo Curto A, Taverna S, Candore G. Circulating miRNAs in successful and unsuccessful aging. A mini-review. Curr Pharm Des 2019; 25(39): 4150-3.
[4]
Banks WA. The blood-brain barrier in neuroimmunology: tales of separation and assimilation. Brain Behav Immun 2015; 44: 1-8.
[5]
Quan N, Banks WA. Brain-immune communication pathways. Brain Behav Immun 2007; 21: 727-35.
[6]
Otero-Losada M, Canepa L, Udovin L, et al. Long-term effects of hypoxia-reoxygenation on thioredoxins in rat central nervous system. Curr Pharm Des 2019; 25(39): 4168-74.
[7]
Gambino CM, Sasso BL, Bivona G, Agnello L, Ciaccio M. Aging and neuroinflammatory disorders: new biomarkers and therapeutic targets. Curr Pharm Des 2019.
[8]
Yuan Y, Wu C, Ling EA. Heterogeneity of microglia phenotypes: developmental, functional and some therapeutic considerations. Curr Pharm Des 2019; 25: 2375-93.
[9]
Varas R, Ortiz FC. Neuroinflammation in demyelinating diseases: oxidative stress as a modulator of glial cross-talk. Curr Pharm Des 2019; 25(45): 4755-62.
[10]
Ding Y, Wang R, Zhang J, et al. Potential regulation mechanisms of p-gp in the blood-brain barrier in hypoxia. Curr Pharm Des 2019; 25: 1041-51.
[11]
Begley DJ. ABC transporters and the blood-brain barrier. Curr Pharm Des 2004; 10: 1295-312.
[12]
Yu C, Argyropoulos G, Zhang Y, Kastin AJ, Hsuchou H, Pan W. Neuroinflammation activates Mdr1b efflux transport through NFkappaB: promoter analysis in BBB endothelia. Cell Physiol Biochem 2008; 22: 745-56.
[13]
Yu C, Kastin AJ, Tu H, Waters S, Pan W. TNF activates P-glycoprotein in cerebral microvascular endothelial cells. Cell Physiol Biochem 2007; 20: 853-8.
[14]
Caruso G, Spampinato SF, Cardaci V, Caraci F, Sortino MA, Merlo S. Beta-amyloid and oxidative stress: perspectives in drug development. Curr Pharm Des 2019; 25(45): 4771-81.
[15]
Cavestro C, Ferrero M, Mandrino S, Di Tavi M, Rota E. Novelty in inflammation and immunomodulation in migraine. Curr Pharm Des 2019; 25: 2919-36.
[16]
Gao D, Yu H, Li B, Chen L, Li X, Gu W. Cisplatin toxicology: the role of pro-inflammatory cytokines and GABA transporters in cochlear spiral ganglion. Curr Pharm Des 2019; 25(45): 4820-6.
[17]
Bujan GE, Serra HA, Molina SJ, Guelman LR. Prevention of brain damage triggered by alcohol consumption during adolescence: focus on oxidative stress. Curr Pharm Des 2019; 25(45): 4782-90.
[18]
Flores-Bastias O, Gomez GI, Orellana JA, Karahanian E. Activation of melanocortin-4 receptor by a synthetic agonist inhibits ethanol-induced neuroinflammation in rats. Curr Pharm Des 2019; 25(45): 4799-805.
[19]
Kardani A, Soltani A, Sewell RDE, Shahrani M, Rafieian-Kopaei M. Neurotransmitter, antioxidant and anti-neuroinflammatory mechanistic potentials of herbal medicines in ameliorating autism spectrum disorder. Curr Pharm Des 2019; 25(41): 4421-9.
[20]
Anderson G. Integrating pathophysiology in migraine: role of the gut microbiome and melatonin. Curr Pharm Des 2019; 25: 3550-62.
[21]
Thorne RG, Pronk GJ, Padmanabhan V, Frey WH II. Delivery of insulin-like growth factor-1 to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004; 127: 481-96.
[22]
Banks WA, Kastin AJ, Komaki G, Arimura A. Passage of pituitary adenylate cyclase activating polypeptide 1-27 and pituitary adenylate cyclase activating polypeptide 1-38 across the blood-brain barrier. J Pharmacol Exp Ther 1993; 267: 690-6.
[23]
Nonaka N, Farr SA, Nakamachi T, et al. Intranasal administration of PACAP: uptake by brain and brain region targeting with cyclodextrins. Peptides 2012; 36(2): 168-75.
[24]
Rafe T, Shawon PA, Salem L, et al. Preventive role of resveratrol against inflammatory cytokines and related diseases. Curr Pharm Des 2019; 25: 1345-71.
[25]
Pourhanifeh MH, Shafabakhsh R, Reiter RJ, Asemi Z. The effect of resveratrol on neurodegenerative disorders: possible protective actions against autophagy, apoptosis, inflammation and oxidative stress. Curr Pharm Des 2019; 25: 2178-91.
[26]
Sun L, Ji S, Xing J. Inhibition of microRNA-155 alleviates neurological deficits following transient global ischemia and contribution of neuroinflammation and oxidative stress in the hippocampus. Curr Pharm Des 2019; 25(40): 4310-7.
[27]
Yan Y, Tong F, Chen J. Endogenous BMP-4/ROS/COX-2 Mediated IPC and resveratrol alleviated brain damage. Curr Pharm Des 2019; 25: 1030-9.
[28]
Shayesteh MRH, Haghi-Aminjan H, Mousavi MJ, Momtaz S, Abdollahi M. The protective mechanism of cannabidiol in cardiac injury: a systematic review of non-clinical studies. Curr Pharm Des 2019; 25: 2499-507.
[29]
Ishibashi T. Molecular hydrogen: new antioxidant and anti-inflammatory therapy for rheumatoid arthritis and related diseases. Curr Pharm Des 2013; 19: 6375-81.
[30]
Dohi K, Kraemer BC, Erickson MA, et al. Molecular hydrogen in drinking water protects against neurodegenerative changes induced by traumatic brain injury. PLoS One 2014; 24: 9. e108034
[31]
Ishibashi T. Therapeutic efficacy of molecular hydrogen: a new mechanistic insight. Curr Pharm Des 2019; 25: 946-55.
[32]
Katsiki N, Anagnostis P, Kotsa K, Goulis DG, Mikhailidis DP. Obesity, metabolic syndrome and the risk of microvascular complications in patients with diabetes mellitus. Curr Pharm Des 2019; 25: 2051-9.
[33]
Ctoi AF, Vodnar DC, Corina A, et al. Gut microbiota, obesity and bariatric surgery: current knowledge and future perspectives. Curr Pharm Des 2019; 25: 2038-50.
[34]
Femlak M, Gluba-Brzozka A, Franczyk B, Rysz J. Diabetes-induced alterations in HDL subfractions distribution. Curr Pharm Des 2019. In Press
[35]
Gouni-Berthold I, Berthold HK. Current options for the pharmacotherapy of obesity. Curr Pharm Des 2019; 25: 2019-32.
[36]
Pastor R, Tur JA. Liraglutide for the treatment of obesity: analyzing published reviews. Curr Pharm Des 2019; 25: 1783-90.
[37]
Zuo L, Wang J, Zhang N, Wang J. Pioglitazone therapy decreases bone mass density and increases fat mass: a meta-analysis. Curr Pharm Des 2019; 25: 3590-6.
[38]
Joksic G, Trickovic JF, Joksic I. Potential of gentiana lutea for the treatment of obesity-associated diseases. Curr Pharm Des 2019; 25: 2071-6.
[39]
Guo W, Gong X, Li M. Quercetin actions on lipid profiles in overweight and obese individuals: a systematic review and meta-analysis. Curr Pharm Des 2019; 25: 3087-95.
[40]
Tamtaji OR, Milajerdi A, Dadgostar E, et al. The effects of quercetin supplementation on blood pressures and endothelial function among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Curr Pharm Des 2019; 25: 1372-84.
[41]
Zaric BL, Obradovic M, Sudar-Milovanovic E, Nedeljkovic J, Lazic V, Isenovic ER. Drug delivery systems for diabetes treatment. Curr Pharm Des 2019; 25: 166-73.
[42]
Rhea EM, Salameh TS, Banks WA. Routes for the delivery of insulin to the centeral nervous system: a comparative review. Exp Neurol 2019; 313: 10-5.
[43]
Khan S, Kamal MA. Wogonin alleviates hyperglycemia through increased glucose entry into cells Via AKT/GLUT4 pathway. Curr Pharm Des 2019; 25: 2602-6.
[44]
Usman B, Sharma N, Satija S, et al. Recent developments in alpha-glucosidase inhibitors for management of type-2 diabetes: an update. Curr Pharm Des 2019; 25: 2510-25.
[45]
Corina A, Abrudan MB, Nikolic D, et al. Effects of aging and diet on cardioprotection and cardiometabolic risk markers. Curr Pharm Des 2019; 25: 3704-14.
[46]
Frigerio B, Werba JP, Amato M, et al. Traditional risk factors are causally related to carotid intima-media thickness progression: inferences from observational cohort studies and interventional trials. Curr Pharm Des 2019.
[47]
Li J, Sun D, Li Y. Novel findings and therapeutic targets on cardioprotection of ischemia/ reperfusion injury in STEMI. Curr Pharm Des 2019; 25: 3726-39.
[48]
Veloso CD, Belew GD, Ferreira LL, et al. A mitochondrial approach to cardiovascular risk and disease. Curr Pharm Des 2019; 25: 3175-94.
[49]
Satta N, Frias MA, Vuilleumier N, Pagano S. Humoral immunity against HDL particle: a new perspective in cardiovascular diseases? Curr Pharm Des 2019; 25: 3128-46.
[50]
Zheng H, Zeng Z, Wen H, et al. Application of genome-wide association studies in coronary artery disease. Curr Pharm Des 2019.
[51]
Butta C, Tuttolomondo A, Petrantoni R, Miceli G, Pinto A. Old and new drugs for treatment of advanced heart failure. Curr Pharm Des 2019. In Press
[52]
Yamagata K. Polyphenols regulate endothelial functions and reduce the risk of cardiovascular disease. Curr Pharm Des 2019; 25: 2443-58.
[53]
Jiang H, Zhang B, Jia D, Yang W, Sun A, Ge J. Insights from exercise-induced cardioprotection-from clinical application to basic research. Curr Pharm Des 2019; 25: 3751-61.
[54]
Allen J, Sun Y, Woods JA. Exercise and the regulation of inflammatory responses. Prog Mol Biol Transl Sci 2015; 135: 337-54.
[55]
Melmed S. Acromegaly pathogenesis and treatment. J Clin Invest 2009; 119: 3189-202.
[56]
Obradovic M, Zafirovic S, Soskic S, et al. Effects of IGF-1 on the cardiovascular system. Curr Pharm Des 2019; 25: 3715-25.
[57]
Sun N, Li D, Chen X, et al. New applications of oleanolic acid and its derivatives as cardioprotective agents: a review of their therapeutic perspectives. Curr Pharm Des 2019; 25: 3740-50.
[58]
Bartman CM, Eckle T. Circadian-hypoxia link and its potential for treatment of cardiovascular disease. Curr Pharm Des 2019; 25: 1075-90.
[59]
Patras L, Banciu M. Intercellular crosstalk via extracellular vesicles in tumor milieu as emerging therapies for cancer progression. Curr Pharm Des 2019; 25: 1980-2006.
[60]
Li M, Jiang M, Meng J, Tao L. Exosomescarriers of pro-fibrotic signals and therapeutic targets in fibrosis. Curr Pharm Des 2019; 25(42): 4496-509.
[61]
Vecchie A, Montecucco F, Carbone F, Dallegri F, Bonaventura A. Diabetes and vascular disease: is it all about glycemia? Curr Pharm Des 2019; 25: 3112-27.
[62]
Park EJ, Appiah MG, Myint PK, Gaowa A, Kawamoto E, Shimaoka M. Exosomes in sepsis and inflammatory tissue injury. Curr Pharm Des 2019; 25(42): 4486-95.
[63]
Tu C, He J, Chen R, Li Z. The emerging role of exosomal non-coding RNAs in musculoskeletal diseases. Curr Pharm Des 2019; 25(42): 4523-35.
[64]
Shan SK, Lin X, Li F, et al. Exosomes and bone disease. Curr Pharm Des 2019; 25(42): 4536-49.
[65]
Zaheer U, Faheem M, Qadri I, et al. Expression profile of MicroRNA: an emerging hallmark of cancer. Curr Pharm Des 2019; 25(42): 642-53.
[66]
Kluszczynska K, Czernek L, Cypryk W, Peczek L, Duchler M. Methods for the determination of the purity of exosomes. Curr Pharm Des 2019; 25(42): 4464-85.
[67]
Surman M, Drozdz A, Stepien E, Przybylo M. Extracellular vesicles as drug delivery systems - methods of production and potential therapeutic applications. Curr Pharm Des 2019; 25(2): 132-54.
[68]
Upadhya D, Shetty AK. Extracellular vesicles as therapeutics for brain injury and disease. Curr Pharm Des 2019; 25(33): 3500-5.
[69]
Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J of Control Release 2015; 207: 18-30.
[70]
Yuan D, Zhao Y, Banks WA, et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 2017; 142: 1-12.
[71]
Longoni B, Fasciani I, Kolachalam S, et al. Neurotoxic and neuroprotective role of exosomes in parkinson’s disease. Curr Pharm Des 2019; 25(42): 4510-22.
[72]
Matsumoto J, Stewart T, Sheng L, et al. Transmission of alpha-synuclein-containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson’s disease. Acta Neurologica Communications 2017; 5: 71.
[73]
Shi M, Kovac A, Korff A, et al. CNS tau efflux via exosomes is likey decreased in parkinson disease but not in alzheimer disease. Alzheimers & Dement 2016; 12: 1125-31.
[74]
Nakashima S, Nacher JC, Song J, Akutsu T. An overview of bioinformatics methods for analyzing autism spectrum disorders. Curr Pharm Des 2019; 25(43): 4552-9.
[75]
Beversdorf DQ, Stevens HE, Margolis KG, Van de Water J. Prenatal stress and maternal immune dysregulation in autism spectrum disorders- potential points for intervention. Curr Pharm Des 2019; 25(41): 4331-43.
[76]
Alzghoul L. Role of vitamin D in autism spectrum disorder. Curr Pharm Des 2019; 25(41): 4357-67.
[77]
Banks WA. A vagina monologue: mom’s stress, bugs, and baby’s brain. Endocrinology 2015; 156: 3066-8.
[78]
Jasarevic E, Howerton CL, Howard CD, Bale TL. Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology 2015; 156: 3265-76.
[79]
Seo M, Anderson G. Gut-amygdala interactions in autism spectrum disorders: developmental roles via regulating mitochondria, exosomes, immunity and microRNAs. Curr Pharm Des 2019; 25(41): 4344-56.
[80]
Pinato L, Spilla CSG, Markus RP, da Silveira Cruz-Machado S. Dysregulation of circadian rhythms in autism spectrum disorders. Curr Pharm Des 2019; 25(41): 4379-93.
[81]
Vasu MM, Sumitha PS, Rahna P, Thanseem I, Anitha A. MicroRNAs in autism spectrum disorders. Curr Pharm Des 2019; 25(41): 4368-78.
[82]
Maes M, Anderson G, Betancort Medina SR, Seo M, Ojala JO. Integrating autism spectrum disorder pathophysiology: mitochondria, vitamin A, CD38, oxytocin, serotonin and melatonergic alterations in the placenta and gut. Curr Pharm Des 2019; 25(41): 4405-20.
[83]
Santos G, Borges JMP, Avila-Rodriguez M, et al. Copper and neurotoxicity in autism spectrum disorder. Curr Pharm Des 2019; 25(45): 4747-54.
[84]
Pacheva I, Ivanov I. Targeted biomedical treatment for autism spectrum disorders. Curr Pharm Des 2019; 25(41): 4430-53.
[85]
Ruggieri V, Gomez JLC, Martinez MM, Arberas C. Aging and autism: understanding, intervention, and proposals to improve quality of life. Curr Pharm Des 2019; 25(41): 4454-61.
[86]
Lee Y, Lee BH, Yip W, Chou P, Yip BS. Neurofilament proteins as prognostic biomarkers in neurological disorders. Curr Pharm Des 2019; 25(43): 4560-9.
[87]
Zhang L, Li X, Wang D, et al. Risk factors of recurrent ischemic events after acute noncardiogenic ischemic stroke. Curr Pharm Des 2019; 25(45): 4827-34.
[88]
Qi J, Liu C, Chen L, Chen J. Postoperative serum albumin decrease independently predicts delirium in elderly subjects after total joint arthroplasty. Curr Pharm Des 2019. In Press
[89]
Zhunina OA, Yabbarov NG, Grechko AV, Yet SF, Sobenin IA, Orekhov AN. Neurodegenerative diseases associated with mitochondrial DNA mutations. Curr Pharm Des 2019. In Press
[90]
Wang H. Anti-NMDA receptor encephalitis, vaccination and viruses. Curr Pharm Des 2019; 25(43): 4579-88.
[91]
Gigliobianco MR, Di Martino P, Deng S, Casadidio C, Censi R. New advanced strategies for the treatment of lysosomal diseases affecting the central nervous system. Curr Pharm Des 2019; 25: 1933-50.
[92]
Taliyan R, Chandran SK, Kakoty V. Therapeutic approaches to alzheimer’s type of dementia: a focus on FGF21 mediated neuroprotection. Curr Pharm Des 2019; 25: 2555-68.
[93]
Werner FM, Covenas R. Neural networks in generalized epilepsy and novel antiepileptic drugs. Curr Pharm Des 2019; 25: 396-400.
[94]
Gondim BLC, Catarino JDS, Dias de Sousa MA, et al. Nanoparticle-mediated drug delivery: blood-brain barrier as the main obstacle to treating infectious diseases in CNS. Curr Pharm Des 2019; 25(37): 3983-96.
[95]
Banks WA, Engelke K, Hansen KM, Bullock KM, Calias P. Modest blood-brain barrier permeability of the cyclodextrin kleptose: modification by efflux and luminal surface binding. J Pharmacol Exp Ther 2019; 371: 121-9.
[96]
Raut SY, Manne ASN, Kalthur G, Jain S, Mutalik S. Cyclodextrins as carriers in targeted delivery of therapeutic agents: focused review on traditional and inimitable applications. Curr Pharm Des 2019; 25: 444-54.
[97]
Calias P. 2-Hydroxypropyl-Beta-cyclodextrins and the blood-brain barrier: considerations for niemann-pick disease type C1. Curr Pharm Des 2017; 23: 6231-8.
[98]
Tang H, Zhu Q, Li W, et al. Neurophysiology and treatment of disorders of consciousness induced by traumatic brain injury: orexin signaling as a potential therapeutic target. Curr Pharm Des 2019; 25(39): 4208-20.
[99]
Kabir MT, Sufian MA, Uddin MS, et al. NMDA receptor antagonists: repositioning of memantine as a multitargeting agent for alzheimer’s therapy. Curr Pharm Des 2019; 25: 3506-18.
[100]
Kabir MT, Uddin MS, Begum MM, et al. Cholinesterase inhibitors for alzheimer’s disease: multitargeting strategy based on anti-alzheimer’s drugs repositioning. Curr Pharm Des 2019; 25: 3519-35.