Abstract
The complexity of the central nervous system (CNS) exposes it to a number of different diseases, often caused by only small variations in gene sequence or expression level. Antisense oligonucleotides and RNA interference-mediated therapies hold great promise for the treatment of CNS diseases in which neurodegeneration is linked to overproduction of endogenous protein or to synthesis of aberrant proteins coded by dominant mutant alleles. Nevertheless, difficulties related to the crossing of the blood-brain barrier, expression vectors, molecule design and to the choosing of the correct target, should be effectively solved. This review summarizes some of the most recent findings concerning the administration of potential nucleic acid-based therapeutic drugs, as well as the most promising studies performed both in vitro and in animal models of disease. Finally, some current clinical trials involving antisense oligonucleotides or silencing RNA for therapy of neurological disorders are illustrated. Results of current studies and clinical trials are exciting, and further results will be certainly reached with increasing knowledge of blood-brain barrier transporters, of genes involved in neurological disease and in new vectors for efficient delivery to brain.
Keywords: antisense oligonucleotides, rna interference, small interfering rna, brain cancer, genetic disorders, gene delivery tools, blood brain barrier, clinical trials