Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Bacterial Resistance: Antibiotics of Last Generation used in Clinical Practice and the Arise of Natural Products as New Therapeutic Alternatives

Author(s): Rúbia C.G. Corrêa, Sandrina A. Heleno*, Maria J. Alves and Isabel C.F.R. Ferreira*

Volume 26, Issue 8, 2020

Page: [815 - 837] Pages: 23

DOI: 10.2174/1381612826666200224105153

Price: $65

conference banner
Abstract

Bacterial resistance to therapeutical drugs has been a serious issue over the last decades. In fact, the quick development of resistance mechanisms by the microorganisms has been fatal for millions of people around the world, turning into a public health issue. The major cause of the resistance mechanisms is the overuse of antimicrobials. European countries try to implement mechanisms to overcome antimicrobial resistance in the community through the rational use of antimicrobials. The scientific community has been exhaustively dedicated to the discovering of new, safer and efficient drugs, being the exploitation of natural resources, mainly plants and fungi, considered as a hot topic in the field of antimicrobial agents. Innumerous reports have already shown the promising capacity of natural products or molecules extracted from these natural resources, to act as bacteriostatic and bactericidal agents. More importantly, these natural agents present significantly lower harmful effects. Bearing that in mind, this review aims at giving a contribution to the knowledge about the synthetic antibiotics of the last generation. Moreover, it is intended to provide information about the last advances regarding the discovery of new antimicrobial agents. Thus, a compilation of the chemical characteristics, efficiency, harmful outcomes and resistance mechanisms developed by the microorganisms can be consulted in the following sections together with a critical discussion, in line with the recent approaches. Furthermore, modern strategies for the prospection of novel anti-infective compounds for tackling resistant bacteria have been considered as also a current synopsis of plants and mushrooms with relevant antimicrobial potentials.

Keywords: Antibiotics of last generation, microbial resistance, natural antimicrobial agents, mechanisms of action, multiresistant microorganisms, antimicrobial therapeutics.

[1]
Radić N, Bratkovič T. Future antibiotic agents: turning to nature for inspiration. In: Antimicrobial Agents IntechOpen. 2012; pp. 25-50.
[2]
Etebu E, Arikekpar I. Antibiotics: classification and mechanisms of action with emphasis on molecular perspectives. IJAMBR 2016; 4: 90-101.
[3]
Bacanlı M, Başaran N. Importance of antibiotic residues in animal food. Food Chem Toxicol 2019; 125: 462-6.
[http://dx.doi.org/10.1016/j.fct.2019.01.033] [PMID: 30710599]
[4]
Ben Y, Fu C, Hu M, Liu L, Wong MH, Zheng C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ Res 2019; 169: 483-93.
[http://dx.doi.org/10.1016/j.envres.2018.11.040] [PMID: 30530088]
[5]
Reis FS, Martins A, Vasconcelos MH, Morales P, Ferreira IC. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci Technol 2017; 66: 48-62.
[http://dx.doi.org/10.1016/j.tifs.2017.05.010]
[6]
Percival KM. Antibiotic classification and indication review for the infusion nurse. J Infus Nurs 2017; 40(1): 55-63.
[http://dx.doi.org/10.1097/NAN.0000000000000207] [PMID: 28030483]
[7]
Surovtsev IV, Jacobs-Wagner C. Subcellular organization: a critical feature of bacterial cell replication. Cell 2018; 172(6): 1271-93.
[http://dx.doi.org/10.1016/j.cell.2018.01.014] [PMID: 29522747]
[8]
Govindarajan S, Amster-Choder O. Where are things inside a bacterial cell? Curr Opin Microbiol 2016; 33: 83-90.
[http://dx.doi.org/10.1016/j.mib.2016.07.003] [PMID: 27450542]
[9]
Coleman JP, Smith CJ. Structure and composition of microbes. In: xpharm: the comprehensive pharmacology reference. Elsevier 2008; pp. 1-7.
[10]
Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2016; 40(1): 133-59.
[http://dx.doi.org/10.1093/femsre/fuv008] [PMID: 25862689]
[11]
Cabeen MT, Jacobs-Wagner C. Bacterial cell shape. Nat Rev Microbiol 2005; 3(8): 601.
[http://dx.doi.org/10.1038/nrmicro1205]
[12]
Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2010; 2(5) a000414
[http://dx.doi.org/10.1101/cshperspect.a000414] [PMID: 20452953]
[13]
Miller SI. Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. MBio 2016; 7(5): e01541-16.
[http://dx.doi.org/10.1128/mBio.01541-16] [PMID: 27677793]
[14]
Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Med 2006; 119(6)(Suppl. 1): S3-S10.
[http://dx.doi.org/10.1016/j.amjmed.2006.03.011] [PMID: 16735149]
[15]
Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 2010; 8(6): 423.
[http://dx.doi.org/10.1038/nrmicro2333]
[16]
Calvo J, Martínez-Martínez L. Mecanismos de acción de los antimicrobianos. Enferm Infecc Microbiol Clin 2009; 27(1): 44-52.
[http://dx.doi.org/10.1016/j.eimc.2008.11.001] [PMID: 19218003]
[17]
O’Neill J, Davies S, Rex J, White LJ, Murray R. Review on antimicrobial resistance, tackling drug-resistant infections globally: final report and recommendations. London: Wellcome Trust and UK Government 2016.
[18]
Singh SB, Young K, Silver LL. What is an “ideal” antibiotic? Discovery challenges and path forward. Biochem Pharmacol 2017; 133: 63-73.
[http://dx.doi.org/10.1016/j.bcp.2017.01.003] [PMID: 28087253]
[19]
De Mol ML, Snoeck N, De Maeseneire SL, Soetaert WK. Hidden antibiotics: Where to uncover? Biotechnol Adv 2018; 36(8): 2201-18.
[http://dx.doi.org/10.1016/j.biotechadv.2018.10.008] [PMID: 30342083]
[20]
Kenny CR, Furey A, Lucey B. A post-antibiotic era looms: can plant natural product research fill the void? Br J Biomed Sci 2015; 72(4): 191-200.
[http://dx.doi.org/10.1080/09674845.2015.11665752] [PMID: 26738402]
[21]
Li H, Wang Q, Wang R, Zhang Y, Wang X, Wang H. Global regulator SoxR is a negative regulator of efflux pump gene expression and affects antibiotic resistance and fitness in Acinetobacter baumannii. Medicine (Baltimore) 2017; 96(24) e7188
[http://dx.doi.org/10.1097/MD.0000000000007188] [PMID: 28614259]
[22]
Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res Int 2016; 2016 2475067
[http://dx.doi.org/10.1155/2016/2475067] [PMID: 27274985]
[23]
Rossiter SE, Fletcher MH, Wuest WM. Natural products as platforms to overcome antibiotic resistance. Chem Rev 2017; 117(19): 12415-74.
[http://dx.doi.org/10.1021/acs.chemrev.7b00283] [PMID: 28953368]
[24]
Tagliabue A, Rappuoli R. Changing priorities in vaccinology: antibiotic resistance moving to the top. Front Immunol 2018; 9: 1068.
[http://dx.doi.org/10.3389/fimmu.2018.01068] [PMID: 29910799]
[25]
Mo Y, Lorenzo M, Farghaly S, Kaur K, Housman ST. What’s new in the treatment of multidrug-resistant gram-negative infections? Diagn Microbiol Infect Dis 2019; 93(2): 171-81.
[http://dx.doi.org/10.1016/j.diagmicrobio.2018.08.007] [PMID: 30224228]
[26]
Tagliaferri TL, Jansen M, Horz HP. Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front Cell Infect Microbiol 2019; 9: 22.
[http://dx.doi.org/10.3389/fcimb.2019.00022] [PMID: 30834237]
[27]
Caniça M, Manageiro V, Abriouel H, Moran-Gilad J, Franz CM. Antibiotic resistance in foodborne bacteria. Trends Food Sci Technol 2018; 84: 41-4.
[http://dx.doi.org/10.1016/j.tifs.2018.08.001]
[28]
Danner MC, Robertson A, Behrends V, Reiss J. Antibiotic pollution in surface fresh waters: Occurrence and effects. Sci Total Environ 2019; 664: 793-804.
[http://dx.doi.org/10.1016/j.scitotenv.2019.01.406] [PMID: 30763859]
[29]
Lim SM, Webb SAR. Nosocomial bacterial infections in Intensive Care Units. I: Organisms and mechanisms of antibiotic resistance. Anaesthesia 2005; 60(9): 887-902.
[http://dx.doi.org/10.1111/j.1365-2044.2005.04220.x] [PMID: 16115251]
[30]
Fuchs FD, Wanmacher L, Ferreira MBC. Farmacologia clínica fundamentos da terapêutica racional 3. rio de janeiro: guanabara Koogan 2004; 42(4): 1074.
[31]
Epand RM, Walker C, Epand RF, Magarvey NA. Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta 2016; 1858(5): 980-7.
[http://dx.doi.org/10.1016/j.bbamem.2015.10.018] [PMID: 26514603]
[32]
Dzidic S, Suskovic J, Kos B. Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technol Biotechnol 2008; 46: 11-21.
[33]
Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 2009; 1794(5): 808-16.
[http://dx.doi.org/10.1016/j.bbapap.2008.11.005] [PMID: 19100346]
[34]
Fluit AC, Visser MR, Schmitz FJ. Molecular detection of antimicrobial resistance. Clin Microbiol Rev 2001; 14(4): 836-71.
[http://dx.doi.org/10.1128/CMR.14.4.836-871.2001] [PMID: 11585788]
[35]
Rice L, Bonomo R. Genetic and Biochemical mechanisms of bacterial Antibiotics in laboratory medicine. 5th ed. Philadelphia: Williams & Wilkins 2005.
[36]
Archer GL, Climo MW. Antimicrobial susceptibility of coagulase-negative staphylococci. Antimicrob Agents Chemother 1994; 38(10): 2231-7.
[http://dx.doi.org/10.1128/AAC.38.10.2231] [PMID: 7840550]
[37]
Hiramatsu K. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect Dis 2001; 1(3): 147-55.
[http://dx.doi.org/10.1016/S1473-3099(01)00091-3] [PMID: 11871491]
[38]
Benveniste R, Davies J. Mechanisms of antibiotic resistance in bacteria. Annu Rev Biochem 1973; 42: 471-506.
[http://dx.doi.org/10.1146/annurev.bi.42.070173.002351] [PMID: 4581231]
[39]
Infarmed - autoridade nacional do medicamento e produtos de saúde - serviço nacional de saúde. Available at:. http://www.infarmed.pt/
[40]
Sousa JC. Manual de antibióticos antibacterianos. Universidade Feranado Pessoa. Porto Edições 2006; p. 686.
[41]
Talaga-Ćwiertnia K, Krzyściak P, Bulanda M. Do bacteria isolated from ICU patients ‘ESKAPE’ antibiotic treatment? In vitro susceptibility of the Enterobacteriaceae family to tigecycline. Anaesthesiol Intensive Ther 2017; 49(3): 210-4.
[http://dx.doi.org/10.5603/AIT.a2017.0034] [PMID: 28712104]
[42]
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 2019; 10: 539.
[http://dx.doi.org/10.3389/fmicb.2019.00539] [PMID: 30988669]
[43]
Founou RC, Founou LL, Essack SY. Extended spectrum beta-lactamase mediated resistance in carriage and clinical gram-negative ESKAPE bacteria: a comparative study between a district and tertiary hospital in South Africa. Antimicrob Resist Infect Control 2018; 7: 134.
[http://dx.doi.org/10.1186/s13756-018-0423-0] [PMID: 30473784]
[44]
Zhou Z, Wei D, Lu Y. Polyhexamethylene guanidine hydrochloride shows bactericidal advantages over chlorhexidine digluconate against ESKAPE bacteria. Biotechnol Appl Biochem 2015; 62(2): 268-74.
[http://dx.doi.org/10.1002/bab.1255] [PMID: 24888899]
[45]
Budhathoki-Uprety J, Peng L, Melander C, Novak BM. Synthesis of guanidinium functionalized polycarbodiimides and their antibacterial activities. ACS Macro Lett 2012; 1: 370-4.
[http://dx.doi.org/10.1021/mz200116k]
[46]
Mandal SM, Roy A, Ghosh AK, Hazra TK, Basak A, Franco OL. Challenges and future prospects of antibiotic therapy: from peptides to phages utilization. Front Pharmacol 2014; 5: 105.
[http://dx.doi.org/10.3389/fphar.2014.00105] [PMID: 24860506]
[47]
Kaur I. Novel strategies to combat antimicrobial resistance. J Infect Dis Ther 2016; 4: 4.
[http://dx.doi.org/10.4172/2332-0877.1000292]
[48]
Ghosh C, Sarkar P, Issa R, Haldar J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol 2019; 27(4): 323-38.
[http://dx.doi.org/10.1016/j.tim.2018.12.010] [PMID: 30683453]
[49]
McConnell MJ. Where are we with monoclonal antibodies for multidrug-resistant infections? Drug Discov Today 2019; 24(5): 1132-8.
[http://dx.doi.org/10.1016/j.drudis.2019.03.002] [PMID: 30853568]
[50]
Pelfrene E, Willebrand E, Cavaleiro Sanches A, Sebris Z, Cavaleri M. Bacteriophage therapy: a regulatory perspective. J Antimicrob Chemother 2016; 71(8): 2071-4.
[http://dx.doi.org/10.1093/jac/dkw083] [PMID: 27068400]
[51]
Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 2019; 25(2): 219-32.
[http://dx.doi.org/10.1016/j.chom.2019.01.014] [PMID: 30763536]
[52]
Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 2016; 6: 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[53]
Torres LMFC, Braga NA, Gomes IP, et al. Nanobiostructure of fibrous-like alumina functionalized with an analog of the BP100 peptide: Synthesis, characterization and biological applications. Colloids Surf B Biointerfaces 2018; 163: 275-83.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.001] [PMID: 29329073]
[54]
Torres LMFC, Almeida MT, Santos TL, et al. Antimicrobial alumina nanobiostructures of disulfide- and triazole-linked peptides: Synthesis, characterization, membrane interactions and biological activity. Colloids Surf B Biointerfaces 2019; 177: 94-104.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.052] [PMID: 30711763]
[55]
Zhao P, Xue Y, Li X, et al. Fungi-derived lipopeptide antibiotics developed since 2000. Peptides 2019; 113: 52-65.
[http://dx.doi.org/10.1016/j.peptides.2019.02.002] [PMID: 30738838]
[56]
Ghosh C, Haldar J. Membrane-active small molecules: designs inspired by antimicrobial peptides. ChemMedChem 2015; 10(10): 1606-24.
[http://dx.doi.org/10.1002/cmdc.201500299] [PMID: 26386345]
[57]
Sheard DE, O’Brien-Simpson NM, Wade JD, Separovic F. Combating bacterial resistance by combination of antibiotics with antimicrobial peptides. Pure Appl Chem 2019; 91: 199-209.
[http://dx.doi.org/10.1515/pac-2018-0707]
[58]
Martinez-Klimova E, Rodríguez-Peña K, Sánchez S. Endophytes as sources of antibiotics. Biochem Pharmacol 2017; 134: 1-17.
[http://dx.doi.org/10.1016/j.bcp.2016.10.010] [PMID: 27984002]
[59]
Dubey N, Mishra V, Thakur D. Plant-based antimicrobial formulations Postharvest disinfection of fruits and vegetables. Academic Press 2018; pp. 211-30.
[http://dx.doi.org/10.1016/B978-0-12-812698-1.00011-X]
[60]
Soković M, Glamočlija J, Ćirić A, Petrović J, Stojković D. Mushrooms as sources of therapeutic foods Therapeutic foods. Academic Press 2018; pp. 141-78.
[http://dx.doi.org/10.1016/B978-0-12-811517-6.00005-2]
[61]
Ling LL, Schneider T, Peoples AJ, et al. A new antibiotic kills pathogens without detectable resistance. Nature 2015; 517(7535): 455-9.
[http://dx.doi.org/10.1038/nature14098] [PMID: 25561178]
[62]
Lewis K. New approaches to antimicrobial discovery. Biochem Pharmacol 2017; 134: 87-98.
[http://dx.doi.org/10.1016/j.bcp.2016.11.002] [PMID: 27823963]
[63]
Tyers M, Wright GD. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol 2019; 17(3): 141-55.
[http://dx.doi.org/10.1038/s41579-018-0141-x] [PMID: 30683887]
[64]
Borthagaray G, Mondelli M, Facchin G, Torre MH. Silver-containing nanoparticles in the research of new antimicrobial agents against ESKAPE pathogens Inorganic frameworks as smart nanomedicines. Elsevier 2018; pp. 317-86.
[http://dx.doi.org/10.1016/B978-0-12-813661-4.00008-0]
[65]
Foulston L. Genome mining and prospects for antibiotic discovery. Curr Opin Microbiol 2019; 51: 1-8.
[http://dx.doi.org/10.1016/j.mib.2019.01.001] [PMID: 30776510]
[66]
Moloney MG. Natural products as a source for novel antibiotics. Trends Pharmacol Sci 2016; 37(8): 689-701.
[http://dx.doi.org/10.1016/j.tips.2016.05.001] [PMID: 27267698]
[67]
Wright GD. Opportunities for natural products in 21st century antibiotic discovery. Nat Prod Rep 2017; 34(7): 694-701.
[http://dx.doi.org/10.1039/C7NP00019G] [PMID: 28569300]
[68]
Cragg GM, Katz F, Newman DJ, Rosenthal J. The impact of the United Nations Convention on Biological Diversity on natural products research. Nat Prod Rep 2012; 29(12): 1407-23.
[http://dx.doi.org/10.1039/c2np20091k] [PMID: 23037777]
[69]
Biondi S, Chugunova E, Panunzio M. From natural products to drugs: glyco-and lipoglycopeptides, a new generation of potent cell wall biosynthesis inhibitors Studies in natural products chemistry. Elsevier 2016; pp. 249-97.
[70]
Roulland E, Tiacumicin B. An antibiotic of prime importance and a natural product with an inspiring complex structure. Synthesis 2018; 50: 4189-200.
[http://dx.doi.org/10.1055/s-0037-1609933]
[71]
Atkinson DJ, Naysmith BJ, Furkert DP, Brimble MA. Enduracididine, a rare amino acid component of peptide antibiotics: Natural products and synthesis. Beilstein J Org Chem 2016; 12: 2325-42.
[http://dx.doi.org/10.3762/bjoc.12.226] [PMID: 28144300]
[72]
Garland M, Loscher S, Bogyo M. Chemical strategies to target bacterial virulence. Chem Rev 2017; 117(5): 4422-61.
[http://dx.doi.org/10.1021/acs.chemrev.6b00676] [PMID: 28234447]
[73]
Brackman G, Breyne K, De Rycke R, et al. The quorum sensing inhibitor hamamelitannin increases antibiotic susceptibility of staphylococcus aureus biofilms by affecting peptidoglycan biosynthesis and eDNA release. Sci Rep 2016; 6: 20321.
[http://dx.doi.org/10.1038/srep20321] [PMID: 26828772]
[74]
Tam J, Beilhartz GL, Auger A, Gupta P, Therien AG, Melnyk RA. Small molecule inhibitors of Clostridium difficile toxin B-induced cellular damage. Chem Biol 2015; 22(2): 175-85.
[http://dx.doi.org/10.1016/j.chembiol.2014.12.010] [PMID: 25619932]
[75]
Muhs A, Lyles JT, Parlet CP, et al. Virulence inhibitors from Brazilian peppertree block quorum sensing and abate dermonecrosis in skin infection models. Sci Rep 2017; 7: 42275.
[http://dx.doi.org/10.1038/srep42275] [PMID: 28186134]
[76]
Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control 2014; 46: 412-29.
[http://dx.doi.org/10.1016/j.foodcont.2014.05.047]
[77]
Bocquet L, Sahpaz S, Bonneau N, et al. Phenolic compounds from humulus lupulus as natural antimicrobial products: new weapons in the fight against methicillin resistant Staphylococcus aureus, Leishmania mexicana and Trypanosoma brucei strains. Molecules 2019; 24(6): 1024.
[http://dx.doi.org/10.3390/molecules24061024] [PMID: 30875854]
[78]
Corrêa RCG, Brugnari T, Bracht A, Peralta RM, Ferreira IC. Biotechnological, nutritional and therapeutic uses of pleurotus spp. (Oyster mushroom) related with its chemical composition: a review on the past decade findings. Trends Food Sci Technol 2016; 50: 103-17.
[http://dx.doi.org/10.1016/j.tifs.2016.01.012]
[79]
Taofiq O, Martins A, Barreiro MF, Ferreira IC. Anti-inflammatory potential of mushroom extracts and isolated metabolites. Trends Food Sci Technol 2016; 50: 193-210.
[http://dx.doi.org/10.1016/j.tifs.2016.02.005]
[80]
Martins N, Barros L, Henriques M, Silva S, Ferreira IC. Activity of phenolic compounds from plant origin against candida species. Ind Crops Prod 2015; 74: 648-70.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.067]
[81]
Upadhyay A, Karumathil DP, Upadhyaya I, Bhattaram V, Venkitanarayanan K. Controlling bacterial antibiotic resistance using plant-derived antimicrobialsantibiotic resistance. Academic Press 2016; pp. 205-26.
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00010-1]
[82]
Chen CH, Yin HB, Upadhayay A, Brown S, Venkitanarayanan K. Efficacy of plant-derived antimicrobials for controlling Salmonella Schwarzengrund on dry pet food. Int J Food Microbiol 2019; 296: 1-7.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2019.02.007] [PMID: 30818250]
[83]
Nabet N, Boudries H, Loupassaki S, Souagui S, Madani K, Carbonell-Barrachina ÁA. Chemical composition, antimicrobial and antioxidant activities of thymus fontanesii Boiss. et Reut. and Origanum glandulosum Desf. Essential oils. Int Food Res J 2017; 24: 2518-25.
[84]
Kamran U, Bhatti HN, Iqbal M, Jamil S, Zahid M. Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from cinnamomum verum bark extract. J Mol Struct 2019; 1179: 532-9.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.006]
[85]
Karumathil DP, Nair MS, Gaffney J, Kollanoor-Johny A, Venkitanarayanan K. Trans-cinnamaldehyde and eugenol increase acinetobacter baumannii sensitivity to beta-lactam antibiotics. Front Microbiol 2018; 9: 1011.
[http://dx.doi.org/10.3389/fmicb.2018.01011] [PMID: 29875743]
[86]
Upadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K. Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes. Food Microbiol 2013; 36(1): 79-89.
[http://dx.doi.org/10.1016/j.fm.2013.04.010] [PMID: 23764223]
[87]
Gomes F, Martins N, Barros L, et al. Plant phenolic extracts as an effective strategy to control Staphylococcus aureus, the dairy industry pathogen. Ind Crops Prod 2018; 112: 515-20.
[http://dx.doi.org/10.1016/j.indcrop.2017.12.027]
[88]
Petropoulos SA, Fernandes Â, Tzortzakis N, et al. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Res Int 2019; 119: 859-68.
[http://dx.doi.org/10.1016/j.foodres.2018.10.069] [PMID: 30884726]
[89]
Martins N, Ferreira IC. Wastes and by-products: upcoming sources of carotenoids for biotechnological purposes and health-related applications. Trends Food Sci Technol 2017; 62: 33-48.
[http://dx.doi.org/10.1016/j.tifs.2017.01.014]
[90]
Pinela J, Prieto MA, Barreiro MF, et al. Valorisation of tomato wastes for development of nutrient-rich antioxidant ingredients: a sustainable approach towards the needs of the today’s society. Innov Food Sci Emerg Technol 2017; 41: 160-71.
[http://dx.doi.org/10.1016/j.ifset.2017.02.004]
[91]
Corrêa RCG, Barros L, Fernandes Â, et al. A natural food ingredient based on ergosterol: optimization of the extraction from Agaricus blazei, evaluation of bioactive properties and incorporation in yogurts. Food Funct 2018; 9(3): 1465-74.
[http://dx.doi.org/10.1039/C7FO02007D] [PMID: 29488518]
[92]
Peixoto CM, Dias MI, Alves MJ, et al. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem 2018; 253: 132-8.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.163] [PMID: 29502813]
[93]
Melgar B, Dias MI, Ciric A, et al. Bioactive characterization of Persea americana mill. By-products: a rich source of inherent antioxidants. Ind Crops Prod 2018; 111: 212-8.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.024]
[94]
Alves MJ, Ferreira IC, Dias J, Teixeira V, Martins A, Pintado M. A review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds. Curr Top Med Chem 2013; 13(21): 2648-59.
[http://dx.doi.org/10.2174/15680266113136660191] [PMID: 24083794]
[95]
Taofiq O, Heleno SA, Calhelha RC, et al. The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food Chem Toxicol 2017; 108(Pt. A): 139-47.
[http://dx.doi.org/10.1016/j.fct.2017.07.051 ] [PMID: 28760544]
[96]
Stojković D, Reis FS, Glamočlija J, et al. Cultivated strains of Agaricus bisporus and A. brasiliensis: chemical characterization and evaluation of antioxidant and antimicrobial properties for the final healthy product--natural preservatives in yoghurt. Food Funct 2014; 5(7): 1602-12.
[http://dx.doi.org/10.1039/c4fo00054d] [PMID: 24881564]
[97]
Poverenov E, Arnon-Rips H, Zaitsev Y, et al. Potential of chitosan from mushroom waste to enhance quality and storability of fresh-cut melons. Food Chem 2018; 268: 233-41.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.045] [PMID: 30064752]
[98]
Bunbamrung N, Intaraudom C, Dramae A, et al. Antimicrobial activity of illudalane and alliacane sesquiterpenes from the mushroom Gloeostereum incarnatum BCC41461. Phytochem Lett 2017; 20: 274-81.
[http://dx.doi.org/10.1016/j.phytol.2017.05.017]
[99]
Liu K, Xiao X, Wang J, Chen CYO, Hu H. Polyphenolic composition and antioxidant, antiproliferative, and antimicrobial activities of mushroom Inonotus sanghuang. Lebensm Wiss Technol 2017; 82: 154-61.
[http://dx.doi.org/10.1016/j.lwt.2017.04.041]
[100]
Corrêa RCG, de Souza AHP, Calhelha RC, et al. Bioactive formulations prepared from fruiting bodies and submerged culture mycelia of the Brazilian edible mushroom Pleurotus ostreatoroseus Singer. Food Funct 2015; 6(7): 2155-64.
[http://dx.doi.org/10.1039/C5FO00465A] [PMID: 26065398]
[101]
Pereira C, Barros L, José Alves M, Santos-Buelga C, Ferreira IC. Artichoke and milk thistle pills and syrups as sources of phenolic compounds with antimicrobial activity. Food Funct 2016; 7(7): 3083-90.
[http://dx.doi.org/10.1039/C6FO00512H] [PMID: 27273551]
[102]
Corrêa RC, Haminiuk CW, Barros L, et al. Stability and biological activity of Merlot (Vitis vinifera) grape pomace phytochemicals after simulated in vitro gastrointestinal digestion and colonic fermentation. J Funct Foods 2017; 36: 410-7.
[http://dx.doi.org/10.1016/j.jff.2017.07.030]
[103]
Senio S, Pereira C, Vaz J, Sokovic M, Barros L, Ferreira IC. Dehydration process influences the phenolic profile, antioxidant and antimicrobial properties of Galium aparine L. Ind Crops Prod 2018; 120: 97-103.
[http://dx.doi.org/10.1016/j.indcrop.2018.04.054]
[104]
Ren L, Hemar Y, Perera CO, Lewis G, Krissansen GW, Buchanan PK. Antibacterial and antioxidant activities of aqueous extracts of eight edible mushrooms. Bioact Carbohy Dietary Fibre 2014; 3: 41-51.
[http://dx.doi.org/10.1016/j.bcdf.2014.01.003]
[105]
Llauradó G, Morris HJ, Ferrera L, et al. In-vitro antimicrobial activity and complement/macrophage stimulating effects of a hot-water extract from mycelium of the oyster mushroom pleurotus sp. Innov Food Sci Emerg Technol 2015; 30: 177-83.
[http://dx.doi.org/10.1016/j.ifset.2015.05.002]
[106]
Kungel PTAN, Correa VG, Corrêa RCG, et al. Antioxidant and antimicrobial activities of a purified polysaccharide from yerba mate (Ilex paraguariensis). Int J Biol Macromol 2018; 114: 1161-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.020] [PMID: 29627472]
[107]
Vunduk J, Wan WAAQI, Mohamad SA, et al. Polysaccharides of Pleurotus flabellatus strain Mynuk produced by submerged fermentation as a promising novel tool against adhesion and biofilm formation of foodborne pathogens. Lebensm Wiss Technol 2019; 112108221
[http://dx.doi.org/10.1016/j.lwt.2019.05.119]
[108]
Petrović J, Stojković D, Soković M. Terpene core in selected aromatic and edible plants: Natural health improving agents. Adv Food Nutr Res 2019; 90: 423-51.
[http://dx.doi.org/10.1016/bs.afnr.2019.02.009] [PMID: 31445600]
[109]
Ferreira ICFR, Martins N, Barros L. Phenolic compounds and its bioavailabilityadvances in food and nutrition research. Elsevier 2017; pp. 1-44.
[110]
Carocho M, Morales P, Ferreira IC. Antioxidants: reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci Technol 2018; 71: 107-20.
[http://dx.doi.org/10.1016/j.tifs.2017.11.008]
[111]
Carocho M, Ferreira IC. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 2013; 51: 15-25.
[http://dx.doi.org/10.1016/j.fct.2012.09.021] [PMID: 23017782]
[112]
Heleno SA, Martins A, Queiroz MJR, Ferreira IC. Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem 2015; 173: 501-13.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.057] [PMID: 25466052]
[113]
Martins N, Barros L, Ferreira IC. In vivo antioxidant activity of phenolic compounds: facts and gaps. Trends Food Sci Technol 2016; 48: 1-12.
[http://dx.doi.org/10.1016/j.tifs.2015.11.008]
[114]
Ferreira IC, Heleno SA, Reis FS, et al. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry 2015; 114: 38-55.
[http://dx.doi.org/10.1016/j.phytochem.2014.10.011] [PMID: 25457487]
[115]
Fernandes Â, Petrović J, Stojković D, et al. Polyporus squamosus (Huds.) Fr from different origins: chemical characterization, screening of the bioactive properties and specific antimicrobial effects against Pseudomonas aeruginosa. Lebensm Wiss Technol 2016; 69: 91-7.
[http://dx.doi.org/10.1016/j.lwt.2016.01.037]
[116]
Pires TCSP, Dias MI, Barros L, et al. Antioxidant and antimicrobial properties of dried Portuguese apple variety (Malus domestica Borkh. cv Bravo de Esmolfe). Food Chem 2018; 240: 701-6.
[http://dx.doi.org/10.1016/j.foodchem.2017.08.010] [PMID: 28946332]
[117]
Pereira C, Barros L, Alves MJ, Pereira L, Santos-Buelga C, Ferreira IC. Phenolic profile and antimicrobial activity of different dietary supplements based on Cochlospermum angolensis Welw. Ind Crops Prod 2015; 74: 412-6.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.056]
[118]
Fotopoulou T, Ćirić A, Kritsi E, et al. Antimicrobial/antibiofilm activity and cytotoxic studies of β-thujaplicin derivatives. Arch Pharm (Weinheim) 2016; 349(9): 698-709.
[http://dx.doi.org/10.1002/ardp.201600095] [PMID: 27400808]
[119]
Petropoulos S, Fernandes Â, Barros L, Ciric A, Sokovic M, Ferreira ICFR. The chemical composition, nutritional value and antimicrobial properties of Abelmoschus esculentus seeds. Food Funct 2017; 8(12): 4733-43.
[http://dx.doi.org/10.1039/C7FO01446E] [PMID: 29165457]
[120]
Petropoulos S, Fernandes Â, Barros L, Ciric A, Sokovic M, Ferreira ICFR. Antimicrobial and antioxidant properties of various Greek garlic genotypes. Food Chem 2018; 245: 7-12.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.078] [PMID: 29287429]
[121]
Rached W, Zeghada FZ, Bennaceur M, et al. Phytochemical analysis and assessment of antioxidant, antimicrobial, anti-inflammatory and cytotoxic properties of Tetraclinis articulata (Vahl) masters leaves. Ind Crops Prod 2018; 112: 460-6.
[http://dx.doi.org/10.1016/j.indcrop.2017.12.037]
[122]
Roriz CL, Barros L, Prieto MA, et al. Enhancing the antimicrobial and antifungal activities of a coloring extract agent rich in betacyanins obtained from Gomphrena globosa L. flowers. Food Funct 2018; 9(12): 6205-17.
[http://dx.doi.org/10.1039/C8FO01829D] [PMID: 30467561]
[123]
Smiljković M, Dias MI, Stojković D, et al. Characterization of phenolic compounds in tincture of edible Nepeta nuda: development of antimicrobial mouthwash. Food Funct 2018; 9(10): 5417-25.
[http://dx.doi.org/10.1039/C8FO01466C] [PMID: 30280149]
[124]
Alonso-Esteban JI, Pinela J, Barros L, et al. Phenolic acomposition and antioxidant, antimicrobial and cytotoxic properties of hop (Humulus lupulus L.) Seeds. Ind Crops Prod 2019; 134: 154-9.
[http://dx.doi.org/10.1016/j.indcrop.2019.04.001]
[125]
Vazirian M, Hamidian K, Noorollah M, Manayi A. Enhancement of antibiotic activity and reversal of resistance in clinically isolated methicillin-resistant Staphylococcus aureus by Trachyspermum ammi essential oil. Res J Pharmacogn 2019; 6: 1-10.
[126]
Finimundy TC, Barros L, Calhelha RC, et al. Multifunctions of Pleurotus sajor-caju (Fr.) Singer: A highly nutritious food and a source for bioactive compounds. Food Chem 2018; 245: 150-8.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.088] [PMID: 29287356]
[127]
Heleno SA, Barros L, Martins A, et al. Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. Lebensm Wiss Technol 2015; 63: 799-806.a.
[http://dx.doi.org/10.1016/j.lwt.2015.04.028]
[128]
Smolskaitė L, Venskutonis PR, Talou T. Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. Lebensm Wiss Technol 2015; 60: 462-71.
[http://dx.doi.org/10.1016/j.lwt.2014.08.007]
[129]
Chandrasekaran G, Lee YC, Park H, Wu Y, Shin HJ. Antibacterial and antifungal activities of lectin extracted from fruiting bodies of the Korean cauliflower medicinal mushroom, sparassis latifolia (Agaricomycetes). Int J Med Mushrooms 2016; 18(4): 291-9.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v18.i4.20] [PMID: 27481295]
[130]
Bach F, Zielinski AAF, Helm CV, et al. Bio compounds of edible mushrooms: in vitro antioxidant and antimicrobial activities. LWT 2019; 107: 214-20.
[http://dx.doi.org/10.1016/j.lwt.2019.03.017]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy