Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Roles of Hematopoietic Stem and Progenitor Cells in Ischemic Cardiovascular Disease

Author(s): Cen Yan, Yu-Ze Li, Xiao-Min Luo, Xiao-Jiang Quan* and Ying-Mei Feng*

Volume 16, Issue 5, 2021

Published on: 30 January, 2020

Page: [589 - 598] Pages: 10

DOI: 10.2174/1574888X15666200130091858

Price: $65

Abstract

Macrophage proliferation and skewed myelopoiesis-induced monocytosis, as well as neutrophils, enhance the generation of atherogenic inflammatory cells in a lesion area, leading to plaque formation and Cardiovascular Disease (CVD). Among all risk factors, accumulated data have shown that hyperlipidemia activates Hematopoietic Stem/Progenitor Cells (HSPCs) in the Bone Marrow (BM) niche. Recently, proliferation of Granulocyte-Monocyte Progenitors (GMPs) has been demonstrated to drive skewed myelopoiesis, while HSPCs remain quiescent. In this review, we discuss how HSPCs and GMPs participate in atherosclerosis of mice in terms of proliferation and cell mobilization from BM to peripheral blood and the lesion area. We also describe how the spleen, an extramedullary organ, is involved in skewed myelopoiesis and inflammation in atherosclerosis. We further summarize the clinical evidence of the relationship of HSPCs with coronary stenoses in patients with CVD. Ultimately, this review facilitates understanding the pathological roles of HSPCs and GMPs in atherosclerosis for future treatments.

Keywords: Myelopoiesis, hematopoietic stem cells, atherosclerosis, hyperlipidemia, niche, progenitor cells.

[1]
Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 2017; 70(1): 1-25.
[http://dx.doi.org/10.1016/j.jacc.2017.04.052] [PMID: 28527533]
[2]
Yamane T. Mouse yolk sac hematopoiesis. Front Cell Dev Biol 2018; 6: 80.
[http://dx.doi.org/10.3389/fcell.2018.00080] [PMID: 30079337]
[3]
Fleury M, Petit-Cocault L, Clay D, Souyri M. Mpl receptor defect leads to earlier appearance of hematopoietic cells/hematopoietic stem cells in the Aorta-Gonad-Mesonephros region, with increased apoptosis. Int J Dev Biol 2010; 54(6-7): 1067-74.
[http://dx.doi.org/10.1387/ijdb.103104mf] [PMID: 20711984]
[4]
Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 2010; 464(7285): 108-11.
[http://dx.doi.org/10.1038/nature08738] [PMID: 20154733]
[5]
Uenishi GI, Jung HS, Kumar A, et al. NOTCH signaling specifies arterial-type definitive hemogenic endothelium from human pluripotent stem cells. Nat Commun 2018; 9(1): 1828.
[http://dx.doi.org/10.1038/s41467-018-04134-7] [PMID: 29739946]
[6]
Gao L, Tober J, Gao P, Chen C, Tan K, Speck NA. RUNX1 and the endothelial origin of blood. Exp Hematol 2018; 68: 2-9.
[http://dx.doi.org/10.1016/j.exphem.2018.10.009] [PMID: 30391350]
[7]
Giebel B, Bruns I. Self-renewal versus differentiation in hematopoietic stem and progenitor cells: A focus on asymmetric cell divisions. Curr Stem Cell Res Ther 2008; 3(1): 9-16.
[http://dx.doi.org/10.2174/157488808783489444] [PMID: 18220918]
[8]
Manesia JK, Xu Z, Broekaert D, et al. Highly proliferative primitive fetal liver hematopoietic stem cells are fueled by oxidative metabolic pathways. Stem Cell Res 2015; 15(3): 715-21.
[http://dx.doi.org/10.1016/j.scr.2015.11.001] [PMID: 26599326]
[9]
Zhao Y, Zhou J, Liu D, et al. ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver. Blood 2015; 126(21): 2383-91.
[http://dx.doi.org/10.1182/blood-2015-03-633354] [PMID: 26384355]
[10]
Hu M, Wang J. Mitochondrial metabolism and the maintenance of hematopoietic stem cell quiescence. Curr Opin Hematol 2019; 26(4): 228-34.
[http://dx.doi.org/10.1097/MOH.0000000000000507] [PMID: 31045643]
[11]
Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012; 481(7382): 457-62.
[http://dx.doi.org/10.1038/nature10783] [PMID: 22281595]
[12]
Winkler IG, Barbier V, Nowlan B, et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med 2012; 18(11): 1651-7.
[http://dx.doi.org/10.1038/nm.2969] [PMID: 23086476]
[13]
Lucas D. Leukocyte trafficking and regulation of murine hematopoietic stem cells and their niches. Front Immunol 2019; 10: 387.
[http://dx.doi.org/10.3389/fimmu.2019.00387] [PMID: 30891044]
[14]
Nakamura-Ishizu A, Takubo K, Kobayashi H, Suzuki-Inoue K, Suda T. CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow. J Exp Med 2015; 212(12): 2133-46.
[http://dx.doi.org/10.1084/jem.20150057] [PMID: 26552707]
[15]
Xu C, Gao X, Wei Q, et al. Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nat Commun 2018; 9(1): 2449.
[http://dx.doi.org/10.1038/s41467-018-04726-3] [PMID: 29934585]
[16]
Abbuehl JP, Tatarova Z, Held W, et al. Long-term engraftment of primary bone marrow stromal cells repairs niche damage and improves hematopoietic stem cell transplantation. Cell Stem Cell 2017; 21(2): 241-55.e6.
[http://dx.doi.org/10.1016/j.stem.2017.07.004]
[17]
Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118(4): 620-36.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[18]
Skålén K, Gustafsson M, Rydberg EK, et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 2002; 417(6890): 750-4.
[http://dx.doi.org/10.1038/nature00804] [PMID: 12066187]
[19]
Huang L, Chambliss KL, Gao X, et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 2019; 569(7757): 565-9.
[http://dx.doi.org/10.1038/s41586-019-1140-4] [PMID: 31019307]
[20]
Zheng J, Chen K, Zhu Y, et al. The neurokinin-1 receptor antagonist aprepitant ameliorates oxidized LDL-induced endothelial dysfunction via KLF2. Mol Immunol 2019; 106: 29-35.
[http://dx.doi.org/10.1016/j.molimm.2018.12.009] [PMID: 30576949]
[21]
Li W, Yang X, Xing S, et al. Endogenous ceramide contributes to the transcytosis of oxLDL across endothelial cells and promotes its subendothelial retention in vascular wall. Oxid Med Cell Longev 2014; 2014: 823071.
[http://dx.doi.org/10.1155/2014/823071] [PMID: 24817993]
[22]
Stewart CR, Stuart LM, Wilkinson K, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 2010; 11(2): 155-61.
[http://dx.doi.org/10.1038/ni.1836] [PMID: 20037584]
[23]
Sohrabi Y, Lagache SMM, Schnack L, et al. Mtor-dependent oxidative stress regulates oxldl-induced trained innate immunity in human monocytes. Front Immunol 2019; 9: 3155.
[http://dx.doi.org/10.3389/fimmu.2018.03155] [PMID: 30723479]
[24]
Miller YI, Viriyakosol S, Worrall DS, Boullier A, Butler S, Witztum JL. Toll-like receptor 4-dependent and -independent cytokine secretion induced by minimally oxidized low-density lipoprotein in macrophages. Arterioscler Thromb Vasc Biol 2005; 25(6): 1213-9.
[http://dx.doi.org/10.1161/01.ATV.0000159891.73193.31] [PMID: 15718493]
[25]
Bae YS, Lee JH, Choi SH, et al. Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: Toll-like receptor 4- and spleen tyrosine kinasedependent activation of nadph oxidase 2. Circ Res 2009; 104(2): 210-8. 21p following 18.
[26]
Linton MRF, Yancey PG, Davies SS, et al. The role of lipids and lipoproteins in atherosclerosis. Endotext. South Dartmouth, MA 2000.
[27]
Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting early atherosclerosis: A focus on oxidative stress and inflammation. Oxid Med Cell Longev 2019; 2019: 8563845.
[http://dx.doi.org/10.1155/2019/8563845] [PMID: 31354915]
[28]
Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464(7293): 1357-61.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[29]
Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol 2013; 13(6): 397-411.
[http://dx.doi.org/10.1038/nri3452] [PMID: 23702978]
[30]
Patel MN, Carroll RG, Galván-Peña S, et al. Inflammasome priming in sterile inflammatory disease. Trends Mol Med 2017; 23(2): 165-80.
[http://dx.doi.org/10.1016/j.molmed.2016.12.007] [PMID: 28109721]
[31]
Paramel Varghese G, Folkersen L, Strawbridge RJ, et al. Nlrp3 inflammasome expression and activation in human atherosclerosis. J Am Heart Assoc 2016; 5(5): e003031.
[http://dx.doi.org/10.1161/JAHA.115.003031] [PMID: 27207962]
[32]
Westerterp M, Fotakis P, Ouimet M, et al. Cholesterol efflux pathways suppress inflammasome activation, netosis, and atherogenesis. Circulation 2018; 138(9): 898-912.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.032636] [PMID: 29588315]
[33]
Bras JP, Silva AM, Calin GA, Barbosa MA, Santos SG, Almeida MI. miR-195 inhibits macrophages pro-inflammatory profile and impacts the crosstalk with smooth muscle cells. PLoS One 2017; 12(11): e0188530.
[http://dx.doi.org/10.1371/journal.pone.0188530] [PMID: 29166412]
[34]
Shankman LS, Gomez D, Cherepanova OA, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 2015; 21(6): 628-37.
[http://dx.doi.org/10.1038/nm.3866] [PMID: 25985364]
[35]
Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res 2016; 118(4): 692-702.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306361] [PMID: 26892967]
[36]
Kent ST, Rosenson RS, Avery CL, et al. Pcsk9 loss-of-function variants, low-density lipoprotein cholesterol, and risk of coronary heart disease and stroke: Data from 9 studies of blacks and whites. Circ Cardiovasc Genet 2017; 10(4): e001632.
[http://dx.doi.org/10.1161/CIRCGENETICS.116.001632] [PMID: 28768753]
[37]
Jiang X, Wang F, Wang Y, et al. Inflammasome-driven interleukin-1alpha and interleukin-1beta production in atherosclerotic plaques relates to hyperlipidemia and plaque complexity. JACC Basic Transl Sci 2019; 4(3): 304-17.
[http://dx.doi.org/10.1016/j.jacbts.2019.02.007] [PMID: 31312755]
[38]
Li Q, Park K, Xia Y, et al. Regulation of macrophage apoptosis and atherosclerosis by lipid-induced pkcdelta isoform activation. Circ Res 2017; 121(10): 1153-67.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311606] [PMID: 28855204]
[39]
Yvan-Charvet L, Pagler T, Gautier EL, et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 2010; 328(5986): 1689-93.
[http://dx.doi.org/10.1126/science.1189731] [PMID: 20488992]
[40]
Zanotti I, Pedrelli M, Potì F, et al. Macrophage, but not systemic, apolipoprotein E is necessary for macrophage reverse cholesterol transport in vivo. Arterioscler Thromb Vasc Biol 2011; 31(1): 74-80.
[http://dx.doi.org/10.1161/ATVBAHA.110.213892] [PMID: 20966401]
[41]
Murphy AJ, Akhtari M, Tolani S, et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest 2011; 121(10): 4138-49.
[http://dx.doi.org/10.1172/JCI57559] [PMID: 21968112]
[42]
Gao M, Zhao D, Schouteden S, et al. Regulation of high-density lipoprotein on hematopoietic stem/progenitor cells in atherosclerosis requires scavenger receptor type BI expression. Arterioscler Thromb Vasc Biol 2014; 34(9): 1900-9.
[http://dx.doi.org/10.1161/ATVBAHA.114.304006] [PMID: 24969774]
[43]
Linton MF, Tao H, Linton EF, Yancey PG. Sr-bi: A multifunctional receptor in cholesterol homeostasis and atherosclerosis. Trends Endocrinol Metab 2017; 28(6): 461-72.
[http://dx.doi.org/10.1016/j.tem.2017.02.001] [PMID: 28259375]
[44]
Pamir N, Hutchins P, Ronsein G, et al. Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol efflux capacity via the ABCA1 pathway. J Lipid Res 2016; 57(2): 246-57.
[http://dx.doi.org/10.1194/jlr.M063701] [PMID: 26673204]
[45]
Hafiane A, Bielicki JK, Johansson JO, Genest J. Apolipoprotein E derived HDL mimetic peptide ATI-5261 promotes nascent HDL formation and reverse cholesterol transport in vitro. Biochim Biophys Acta 2014; 1842(10): 1498-512.
[http://dx.doi.org/10.1016/j.bbalip.2014.07.018] [PMID: 25091998]
[46]
Getz GS, Reardon CA. Apoprotein e and reverse cholesterol transport. Int J Mol Sci 2018; 19(11): E3479.
[http://dx.doi.org/10.3390/ijms19113479] [PMID: 30404132]
[47]
Langer C, Gansz B, Goepfert C, et al. Testosterone up-regulates scavenger receptor BI and stimulates cholesterol efflux from macrophages. Biochem Biophys Res Commun 2002; 296(5): 1051-7.
[http://dx.doi.org/10.1016/S0006-291X(02)02038-7] [PMID: 12207878]
[48]
Badeau RM, Metso J, Wähälä K, Tikkanen MJ, Jauhiainen M. Human macrophage cholesterol efflux potential is enhanced by HDL-associated 17beta-estradiol fatty acyl esters. J Steroid Biochem Mol Biol 2009; 116(1-2): 44-9.
[http://dx.doi.org/10.1016/j.jsbmb.2009.04.008] [PMID: 19406243]
[49]
Kenakin TP. '7TM receptor allostery: putting numbers to shapeshifting proteins. Trends Pharmacol Sci 2009; 30(9): 460-9.
[http://dx.doi.org/10.1016/j.tips.2009.06.007] [PMID: 19729207]
[50]
Feng Y, Schouteden S, Geenens R, et al. Hematopoietic stem/progenitor cell proliferation and differentiation is differentially regulated by high-density and low-density lipoproteins in mice. PLoS One 2012; 7(11): e47286.
[http://dx.doi.org/10.1371/journal.pone.0047286] [PMID: 23144813]
[51]
Seijkens T, Hoeksema MA, Beckers L, et al. Hypercholesterolemia-induced priming of hematopoietic stem and progenitor cells aggravates atherosclerosis. FASEB J 2014; 28(5): 2202-13.
[http://dx.doi.org/10.1096/fj.13-243105] [PMID: 24481967]
[52]
Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta 2014; 1841(7): 919-33.
[http://dx.doi.org/10.1016/j.bbalip.2014.03.013] [PMID: 24721265]
[53]
Olivecrona G. Role of lipoprotein lipase in lipid metabolism. Curr Opin Lipidol 2016; 27(3): 233-41.
[http://dx.doi.org/10.1097/MOL.0000000000000297] [PMID: 27031275]
[54]
Young SG, Fong LG, Beigneux AP, et al. Gpihbp1 and lipoprotein lipase, partners in plasma triglyceride metabolism. Cell Metab 2019; 30(1): 51-65.
[http://dx.doi.org/10.1016/j.cmet.2019.05.023] [PMID: 31269429]
[55]
Zimmermann R, Panzenböck U, Wintersperger A, et al. Lipoprotein lipase mediates the uptake of glycated LDL in fibroblasts, endothelial cells, and macrophages. Diabetes 2001; 50(7): 1643-53.
[http://dx.doi.org/10.2337/diabetes.50.7.1643] [PMID: 11423487]
[56]
Chang CL, Garcia-Arcos I, Nyrén R, et al. Lipoprotein lipase deficiency impairs bone marrow myelopoiesis and reduces circulating monocyte levels. Arterioscler Thromb Vasc Biol 2018; 38(3): 509-19.
[http://dx.doi.org/10.1161/ATVBAHA.117.310607] [PMID: 29371243]
[57]
Gomes AL, Carvalho T, Serpa J, Torre C, Dias S. Hypercholesterolemia promotes bone marrow cell mobilization by perturbing the SDF-1:CXCR4 axis. Blood 2010; 115(19): 3886-94.
[http://dx.doi.org/10.1182/blood-2009-08-240580] [PMID: 20009035]
[58]
Westerterp M, Gourion-Arsiquaud S, Murphy AJ, et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 2012; 11(2): 195-206.
[http://dx.doi.org/10.1016/j.stem.2012.04.024] [PMID: 22862945]
[59]
Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL. Physiological migration of hematopoietic stem and progenitor cells. Science 2001; 294(5548): 1933-6.
[http://dx.doi.org/10.1126/science.1064081] [PMID: 11729320]
[60]
Massberg S, Schaerli P, Knezevic-Maramica I, et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 2007; 131(5): 994-1008.
[http://dx.doi.org/10.1016/j.cell.2007.09.047] [PMID: 18045540]
[61]
Fischer KD, Agrawal DK. Hematopoietic stem and progenitor cells in inflammation and allergy. Front Immunol 2013; 4: 428.
[http://dx.doi.org/10.3389/fimmu.2013.00428] [PMID: 24363657]
[62]
Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol 2005; 5(8): 606-16.
[http://dx.doi.org/10.1038/nri1669] [PMID: 16056254]
[63]
O’Neill HC, Griffiths KL, Periasamy P, et al. Spleen stroma maintains progenitors and supports long-term hematopoiesis. Curr Stem Cell Res Ther 2014; 9(4): 354-63.
[http://dx.doi.org/10.2174/1574888X09666140421115836] [PMID: 24745998]
[64]
Robbins CS, Chudnovskiy A, Rauch PJ, et al. Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 2012; 125(2): 364-74.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.061986] [PMID: 22144566]
[65]
Zhang LJ, Yan C, Schouteden S, et al. The impact of integrin beta2 on granulocyte/macrophage progenitor proliferation. Stem Cells 2019; 37(3): 430-40.
[http://dx.doi.org/10.1002/stem.2961] [PMID: 30537419]
[66]
Hidalgo A, Robledo MM, Teixidó J. CD44-mediated hematopoietic progenitor cell adhesion and its complex role in myelopoiesis. J Hematother Stem Cell Res 2002; 11(3): 539-47.
[http://dx.doi.org/10.1089/15258160260091004] [PMID: 12183839]
[67]
Nagareddy PR, Murphy AJ, Stirzaker RA, et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab 2013; 17(5): 695-708.
[http://dx.doi.org/10.1016/j.cmet.2013.04.001] [PMID: 23663738]
[68]
Hudson BI, Lippman ME. Targeting rage signaling in inflammatory disease. Annu Rev Med 2018; 69: 349-64.
[http://dx.doi.org/10.1146/annurev-med-041316-085215] [PMID: 29106804]
[69]
Falcone C, Emanuele E, D’Angelo A, et al. Plasma levels of soluble receptor for advanced glycation end products and coronary artery disease in nondiabetic men. Arterioscler Thromb Vasc Biol 2005; 25(5): 1032-7.
[http://dx.doi.org/10.1161/01.ATV.0000160342.20342.00] [PMID: 15731496]
[70]
Yu W, Tao M, Zhao Y, Hu X, Wang M. 4′-methoxyresveratrol alleviated age-induced inflammation via rage-mediated nf-kappab and nlrp3 inflammasome pathway. Molecules 2018; 23(6): E1447.
[http://dx.doi.org/10.3390/molecules23061447] [PMID: 29903983]
[71]
Al-Sharea A, Murphy AJ, Huggins LA, Hu Y, Goldberg IJ, Nagareddy PR. SGLT2 inhibition reduces atherosclerosis by enhancing lipoprotein clearance in Ldlr-/- type 1 diabetic mice. Atherosclerosis 2018; 271: 166-76.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.02.028] [PMID: 29518749]
[72]
Miller MB, Leavens EL, Meier E, Lombardi N, Leffingwell TR. Enhancing the efficacy of computerized feedback interventions for college alcohol misuse: An exploratory randomized trial. J Consult Clin Psychol 2016; 84(2): 122-33.
[http://dx.doi.org/10.1037/ccp0000066] [PMID: 26689302]
[73]
Litwinowicz R, Kapelak B, Sadowski J, Kędziora A, Bartus K. The use of stem cells in ischemic heart disease treatment. Kardiochir Torakochirurgia Pol 2018; 15(3): 196-9.
[http://dx.doi.org/10.5114/kitp.2018.78446] [PMID: 30310400]
[74]
Hou Y, Li C. Stem/progenitor cells and their therapeutic application in cardiovascular disease. Front Cell Dev Biol 2018; 6: 139.
[http://dx.doi.org/10.3389/fcell.2018.00139] [PMID: 30406100]
[75]
Feng Y, Jacobs F, Van Craeyveld E, et al. Human ApoA-I transfer attenuates transplant arteriosclerosis via enhanced incorporation of bone marrow-derived endothelial progenitor cells. Arterioscler Thromb Vasc Biol 2008; 28(2): 278-83.
[http://dx.doi.org/10.1161/ATVBAHA.107.158741] [PMID: 18063807]
[76]
Akiyama M, Ginsberg HJ, Munoz D. Spinal epidural cavernous hemangioma in an HIV-positive patient. Spine J 2009; 9(2): e6-8.
[http://dx.doi.org/10.1016/j.spinee.2007.10.041] [PMID: 18282813]
[77]
Wara AK, Croce K, Foo S, et al. Bone marrow-derived CMPs and GMPs represent highly functional proangiogenic cells: implications for ischemic cardiovascular disease. Blood 2011; 118(24): 6461-4.
[http://dx.doi.org/10.1182/blood-2011-06-363457] [PMID: 21828132]
[78]
Favre J, Terborg N, Horrevoets AJ. The diverse identity of angiogenic monocytes. Eur J Clin Invest 2013; 43(1): 100-7.
[http://dx.doi.org/10.1111/eci.12009] [PMID: 23083351]
[79]
Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119-31.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[80]
van der Valk FM, Kuijk C, Verweij SL, et al. Increased haematopoietic activity in patients with atherosclerosis. Eur Heart J 2017; 38(6): 425-32.
[PMID: 27357356]
[81]
Gu Q, Yang X, Lv J, et al. AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate. Science 2019; 363(6431): 1085-8.
[http://dx.doi.org/10.1126/science.aav1749] [PMID: 30705153]
[82]
Zhu FL, Zhang N, Ma XJ, et al. Circulating hematopoietic stem/progenitor cells are associated with coronary stenoses in patients with coronary heart disease. Sci Rep 2019; 9(1): 1680.
[http://dx.doi.org/10.1038/s41598-018-38298-5] [PMID: 30737465]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy