Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

In silico Studies on the Interaction Between Bioactive Ligands and DPPIV: Insights on Potential Candidates for the Treatment of type 2 Diabetes Mellitus

Author(s): Michelle C.M.R. Martins, Simone Q. Pantaleao, Michell de Oliveira Almeida, Karen C. Weber and Kathia M. Honorio*

Volume 17, Issue 3, 2021

Published on: 29 January, 2020

Page: [247 - 263] Pages: 17

DOI: 10.2174/1573406416666200129151256

Price: $65

Abstract

Introduction: The enzyme called dipeptidyl peptidase IV (DPP-IV) is related to the glycemic control associated with the stimulation of the pancreas to produce insulin. So, its inhibition is a good strategy for the treatment of type 2 diabetes mellitus.

Methods: In this study, we have employed molecular modeling strategies such as CoMFA, molecular docking, molecular dynamics, and binding free energy calculations of a set of DPP-IV inhibitors in order to understand the main characteristics related to the biological activity of these ligands against the enzyme.

Results: The models obtained from CoMFA presented significant values of internal (0.768) and external (0.988) validations. Important interactions with some residues, such as Glu205, Tyr666, Arg125, Ser630, Phe357 and Tyr662, were also identified. In addition, calculations of the electronic properties allowed relating the LUMO and HOMO energies with the biological activity of the compounds studied. The results obtained from the molecular dynamics simulations and the SIE calculations (ΔG) indicated that the inhibitor 40 increases the stability of the DPP-IV target.

Conclusions: Therefore, from this study, it is possible to propose molecular modifications of these DPP-IV inhibitors in order to improve their potential to treat type 2 diabetes.

Keywords: Diabetes, DPP-IV, inhibitors, docking, CoMFA, molecular dynamics, binding free energy.

Graphical Abstract

[1]
Robbins, S.L.; Cotran, R.S.; Abbas, A.K.; Kumar, V.; Fausto, N. Patologia: Bases patológicas das doenças, 7th ed.; Elsevier: Rio de Janeiro; , 1999.
[2]
International Diabetes Federation. IDF Diabetes Atlas, 8rd; Bruxelas, 2017.
[3]
Erbely, L.E.; Cohen, J.D.; Prineas, R.; Yang, L. Impact of incident diabetes and nonfatal cardiovascular disease on 18 years mortality: the mutiple risk fator intervention trial research group. Diabetes Care, 2003, 26, 848-854.
[http://dx.doi.org/10.2337/diacare.26.3.848] [PMID: 12610048]
[4]
Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health, 2009, 9, 88.
[http://dx.doi.org/10.1186/1471-2458-9-88] [PMID: 19320986]
[5]
Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes: 2015/2016; AC Farmacêutica: São Paulo, 2015.
[6]
Nelson, D.L.; Cox, M. Princípios de Bioquímica de Lehninger, 4th ed; Sarvier: São Paulo, 2006.
[8]
Baynes, J. M.; Dominickzan, M. H. Bioquimica Basica2007,
[9]
Hildebrandt, M.; Reutter, W.; Petra, A.; Matthias, R.; Klapp, B.F. A guardian angel: the involvement of dipeptidyl peptidase IV in psychoneuroendocrine function, nutrition and imune defence. Clin. Sci. (Lond.), 1999, 200, 93-104.
[10]
Mulvihill, E.E.; Drucker, D.J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev., 2014, 35(6), 992-1019.
[http://dx.doi.org/10.1210/er.2014-1035] [PMID: 25216328]
[11]
UNIPROT KnowledgeBase - P27487. http://www.uniprot.org/uniprot/P27487
[12]
IUBMB–International Union of Biochemistry and Molecular Biology–Recommendations on Biochemical & Organic Nomenclature. Symbols & Terminology., Available at: http://www.chem.qmul.ac.uk/iubmb. (Accessed Jan 01, 2017).
[13]
Goodman & Gilman. Brunton, L.L.; Chabner, B.A.; Knollmann, B.C. As Bases Farmacológicas da Terapêutica, 12th ed.; MCGraw-Hill Brasil: São Paulo; , 2012.
[14]
Cox, J.M.; Chu, H.D.; Kuethe, J.T.; Gao, Y.D.; Scapin, G.; Eiermann, G.; He, H.; Li, X.; Lyons, K.A.; Metzger, J.; Petrov, A.; Wu, J.K.; Xu, S.; Sinha-Roy, R.; Weber, A.E.; Biftu, T. The discovery of novel 5,6,5- and 5,5,6-tricyclic pyrrolidines as potent and selective DPP-4 inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(11), 2622-2626.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.020] [PMID: 27106708]
[15]
Chen, P.; Feng, D.; Qian, X.; Apgar, J.; Wilkening, R.; Kuethe, J.T.; Gao, Y.D.; Scapin, G.; Cox, J.; Doss, G.; Eiermann, G.; He, H.; Li, X.; Lyons, K.A.; Metzger, J.; Petrov, A.; Wu, J.K.; Xu, S.; Weber, A.E.; Yan, Y.; Roy, R.S.; Biftu, T. Structure-activity-relationship of amide and sulfonamide analogs of omarigliptin. Bioorg. Med. Chem. Lett., 2015, 25(24), 5767-5771.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.070] [PMID: 26546218]
[16]
Durrant, J.D.; McCammon, J.A. BINANA: a novel algorithm for ligand-binding characterization. J. Mol. Graph. Model., 2011, 29(6), 888-893.
[http://dx.doi.org/10.1016/j.jmgm.2011.01.004] [PMID: 21310640]
[17]
SPARTAN, version 08. Wave function, Inc. 2008.
[18]
MATLAB- version 7,8,0 (R2009a), The MathWorks Inc. 2009.
[20]
SYBYL, version 8.1; Tripos Inc.: St. Louis, MO, 2008.
[21]
Stewart, J.P. http:/ / OpenMOPAC.net
[22]
RCSB Protein Data Bank. http://www.rcsb.org/pdb/home/home.do
[23]
Sutton, J.M.; Clark, D.E.; Dunsdon, S.J.; Fenton, G.; Fillmore, A.; Harris, N.V.; Higgs, C.; Hurley, C.A.; Krintel, S.L.; MacKenzie, R.E.; Duttaroy, A.; Gangl, E.; Maniara, W.; Sedrani, R.; Namoto, K.; Ostermann, N.; Gerhartz, B.; Sirockin, F.; Trappe, J.; Hassiepen, U.; Baeschlin, D.K. Novel heterocyclic DPP-4 inhibitors for the treatment of type 2 diabetes. Bioorg. Med. Chem. Lett., 2012, 22(3), 1464-1468.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.054] [PMID: 22177783]
[24]
Bjelke, J.R.; Christensen, J.; Branner, S.; Wagtmann, N.; Olsen, C.; Kanstrup, A.B.; Rasmussen, H.B. Tyrosine 547 constitutes an essential part of the catalytic mechanism of dipeptidyl peptidase IV. J. Biol. Chem., 2004, 279(33), 34691-34697.
[http://dx.doi.org/10.1074/jbc.M405400200] [PMID: 15175333]
[25]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[26]
Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110(18), 5959-5967.
[http://dx.doi.org/10.1021/ja00226a005] [PMID: 22148765]
[27]
Aparna, V.; Jeevan, J.; Ravi, M.; Desiraju, G.R.; Gopalakrishnan, B. 3D-QSAR studies on antitubercular thymidine monophosphate kinase inhibitors based on different alignment methods. Bioorg. Med. Chem. Lett., 2006, 16(4), 1014-1020.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.086] [PMID: 16290929]
[28]
Abdi, H. Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdiscip. Rev. Comput. Stat., 2010, 2, 97-106.
[http://dx.doi.org/10.1002/wics.51]
[29]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[30]
Arroio, A.; Honorio, K.M.; Silva, A.B.F. Quantum chemical properties used in structure-activity relationship studies. Quim. Nova, 2010, 33, 694-699.
[http://dx.doi.org/10.1590/S0100-40422010000300037]
[31]
Pedretti, A.; Vistoli, G. Virtual logP., http://nova.disfarm.unimi. it/vlogp.htm
[32]
Wang, J.; Cieplak, P.; Kollman, P. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem., 2000, 21, 1049-1074.
[http://dx.doi.org/10.1002/1096-987X(200009)21:12<1049::AIDJCC3>3.0.CO;2-F]
[33]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D. Gaussian 09: Wallingford CT; , 2009.
[34]
Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688.
[http://dx.doi.org/10.1002/jcc.20290] [PMID: 16200636]
[35]
Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 2006, 65(3), 712-725.
[http://dx.doi.org/10.1002/prot.21123] [PMID: 16981200]
[36]
Naïm, M.; Bhat, S.; Rankin, K.N.; Dennis, S.; Chowdhury, S.F.; Siddiqi, I.; Drabik, P.; Sulea, T.; Bayly, C.I.; Jakalian, A.; Purisima, E.O. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J. Chem. Inf. Model., 2007, 47(1), 122-133.
[http://dx.doi.org/10.1021/ci600406v] [PMID: 17238257]
[37]
Sulea, T.; Cui, Q.; Purisima, E.O. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 2. Benchmark in the CSAR-2010 scoring exercise. J. Chem. Inf. Model., 2011, 51(9), 2066-2081.
[http://dx.doi.org/10.1021/ci2000242] [PMID: 21714553]
[38]
Stierand, K.; Maass, P.C.; Rarey, M. Molecular complexes at a glance: automated generation of two-dimensional complex diagrams. Bioinformatics, 2006, 22(14), 1710-1716.[http://poseview.zbh.uni-hamburg.de.]
[http://dx.doi.org/10.1093/bioinformatics/btl150] [PMID: 16632493]
[39]
Pantaleão, S.Q.; Maltarollo, V.G.; Araujo, S.C.; Gertrudes, J.C.; Honorio, K.M. Molecular docking studies and 2D analyses of DPP-4 inhibitors as candidates in the treatment of diabetes. Mol. Biosyst., 2015, 11(11), 3188-3193.
[http://dx.doi.org/10.1039/C5MB00493D] [PMID: 26399297]
[40]
Pratim Roy, P.; Paul, S.; Mitra, I.; Roy, K. On two novel parameters for validation of predictive QSAR models. Molecules, 2009, 14(5), 1660-1701.
[http://dx.doi.org/10.3390/molecules14051660] [PMID: 19471190]
[41]
Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy