Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Impact of Epigenetic Alterations in the Development of Oral Diseases

Author(s): Rodopi Emfietzoglou, Evangelos Pachymanolis and Christina Piperi*

Volume 28, Issue 6, 2021

Published on: 14 January, 2020

Page: [1091 - 1103] Pages: 13

DOI: 10.2174/0929867327666200114114802

Price: $65

Abstract

Background: Epigenetic mechanisms alter gene expression and regulate vital cellular processes that contribute to the onset and progression of major dental diseases. Their reversible character may prove beneficial for therapeutic targeting. This review aims to provide an update on the main epigenetic changes that contribute to the pathogenesis of Oral Squamous Cell Carcinoma (OSCC), pulpitis and periodontitis as well as dental caries and congenital orofacial malformations, in an effort to identify potential therapeutic targets.

Methods: We undertook a structured search of bibliographic databases (PubMed and MEDLINE) for peer-reviewed epigenetic research studies focused on oral diseases in the last ten years. A qualitative content analysis was performed in screened papers and a critical discussion of main findings is provided.

Results: Several epigenetic modifications have been associated with OSCC pathogenesis, including promoter methylation of genes involved in DNA repair, cell cycle regulation and proliferation leading to malignant transformation. Additionally, epigenetic inactivation of tumor suppressor genes, overexpression of histone chaperones and several microRNAs are implicated in OSCC aggressiveness. Changes in the methylation patterns of IFN-γ and trimethylation of histone Η3Κ27 have been detected in pulpitis, along with an aberrant expression of several microRNAs, mainly affecting cytokine production. Chronic periodontal disease has been associated with modifications in the methylation patterns of Toll-Like Receptor 2, Prostaglandin synthase 2, E-cadherin and some inflammatory cytokines, along with the overexpression of miR-146a and miR155. Furthermore, DNA methylation was found to regulate amelogenesis and has been implicated in the pathogenesis of dental caries as well as in several congenital orofacial malformations.

Conclusion: Strong evidence indicates that epigenetic changes participate in the pathogenesis of oral diseases and epigenetic targeting may be considered as a complementary therapeutic scheme to the current management of oral health.

Keywords: Epigenetics, oral diseases, OSCC, periodontitis, DNA methylation, dental caries.

[1]
Seo, J.Y.; Park, Y.J.; Yi, Y.A.; Hwang, J.Y.; Lee, I.B.; Cho, B.H.; Son, H.H.; Seo, D.G. Epigenetics: general characteristics and implications for oral health. Restor. Dent. Endod, 2015, 40(1), 14-22.
[http://dx.doi.org/10.5395/rde.2015.40.1.14] [PMID: 25671208]
[2]
Li, Y.; Li, Z.; Zhu, W.G. Molecular mechanisms of epigenetic regulators as activatable targets in cancer theranostics. Curr. Med. Chem., 2019, 26(8), 1328-1350.
[http://dx.doi.org/10.2174/0929867324666170921101947] [PMID: 28933282]
[3]
Manikandan, P.; Nagini, S. Cytochrome P450 structure, function and clinical significance: a review. Curr. Drug Targets, 2018, 19(1), 38-54.
[http://dx.doi.org/10.2174/1389450118666170125144557] [PMID: 28124606]
[4]
Williams, S.D.; Hughes, T.E.; Adler, C.J.; Brook, A.H.; Townsend, G.C. Epigenetics: a new frontier in dentistry. Aust. Dent. J., 2014, 59(1)(Suppl. 1), 23-33.
[http://dx.doi.org/10.1111/adj.12155] [PMID: 24611746]
[5]
Singh, N.N.; Peer, A.; Nair, S.; Chaturvedi, R.K. Epigenetics: a possible answer to the undeciphered etiopathogenesis and behavior of oral lesions. J. Oral Maxillofac. Pathol., 2016, 20(1), 122-128.
[http://dx.doi.org/10.4103/0973-029X.180967] [PMID: 27194874]
[6]
Sun, C.; Duan, P.; Luan, C. CEBP epigenetic dysregulation as a drug target for the treatment of hematologic and gynecologic malignancies. Curr. Drug Targets, 2017, 18(10), 1142-1151.
[http://dx.doi.org/10.2174/1389450117666161228160455] [PMID: 28031014]
[7]
Bhargava, A.; Bunkar, N.; Aglawe, A.; Pandey, K.C.; Tiwari, R.; Chaudhury, K.; Goryacheva, I.Y.; Mishra, P.K. Epigenetic biomarkers for risk assessment of particulate matter associated lung cancer. Curr. Drug Targets, 2018, 19(10), 1127-1147.
[http://dx.doi.org/10.2174/1389450118666170911114342] [PMID: 28891455]
[8]
Raghuwanshi, S.; Dahariya, S.; Kandi, R.; Gutti, U.; Undi, R.B.; Sharma, D.S.; Sahu, I.; Kovuru, N.; Yarla, N.S.; Saladi, R.G.V.; Gutti, R.K. Epigenetic mechanisms: role in hematopoietic stem cell lineage commitment and differentiation. Curr. Drug Targets, 2018, 19(14), 1683-1695.
[http://dx.doi.org/10.2174/1389450118666171122141821] [PMID: 29173164]
[9]
Yao, Q.; Chen, Y.; Zhou, X. The roles of microRNAs in epigenetic regulation. Curr. Opin. Chem. Biol., 2019, 51, 11-17.
[http://dx.doi.org/10.1016/j.cbpa.2019.01.024] [PMID: 30825741]
[10]
Josko-Ochojska, J.; Rygiel, K.; Postek-Stefanska, L. Diseases of the oral cavity in light of the newest epigenetic research: possible implications for stomatology. Adv. Clin. Exp. Med., 2019, 28(3), 397-406.
[http://dx.doi.org/10.17219/acem/76060]] [PMID: 30277670]
[11]
Almadori, G.; Bussu, F.; Galli, J.; Cadoni, G.; Zappacosta, B.; Persichilli, S.; Minucci, A.; Giardina, B.; Maurizi, M. Serum levels of folate, homocysteine, and vitamin B12 in head and neck squamous cell carcinoma and in laryngeal leukoplakia. Cancer, 2005, 103(2), 284-292.
[http://dx.doi.org/10.1002/cncr.20772] [PMID: 15593092]
[12]
Bebek, G.; Bennett, K.L.; Funchain, P.; Campbell, R.; Seth, R.; Scharpf, J.; Burkey, B.; Eng, C. Microbiomic subprofiles and MDR1 promoter methylation in head and neck squamous cell carcinoma. Hum. Mol. Genet., 2012, 21(7), 1557-1565.
[http://dx.doi.org/10.1093/hmg/ddr593] [PMID: 22180460]
[13]
Galbiatti, A.L.; Ruiz, M.T.; Biselli-Chicote, P.M.; Raposo, L.S.; Maniglia, J.V.; Pavarino-Bertelli, E.C.; Goloni-Bertollo, E.M. 5-Methyltetrahydrofolate-homocysteine methyltransferase gene polymorphism (MTR) and risk of head and neck cancer. Braz. J. Med. Biol. Res., 2010, 43(5), 445-450.
[http://dx.doi.org/10.1590/S0100-879X2010007500034] [PMID: 20490431]
[14]
Mascolo, M.; Siano, M.; Ilardi, G.; Russo, D.; Merolla, F.; De Rosa, G.; Staibano, S. Epigenetic disregulation in oral cancer. Int. J. Mol. Sci., 2012, 13(2), 2331-2353.
[http://dx.doi.org/10.3390/ijms13022331] [PMID: 22408457]
[15]
Lingen, M.W.; Pinto, A.; Mendes, R.A.; Franchini, R.; Czerninski, R.; Tilakaratne, W.M.; Partridge, M.; Peterson, D.E.; Woo, S.B. Genetics/epigenetics of oral premalignancy: current status and future research. Oral Dis., 2011, 17(Suppl. 1), 7-22.
[http://dx.doi.org/10.1111/j.1601-0825.2011.01789.x] [PMID: 21382136]
[16]
Zhong, L.; Liu, Y.; Wang, K.; He, Z.; Gong, Z.; Zhao, Z.; Yang, Y.; Gao, X.; Li, F.; Wu, H.; Zhang, S.; Chen, L. Biomarkers: paving stones on the road towards the personalized precision medicine for oral squamous cell carcinoma. BMC Cancer, 2018, 18(1), 911.
[http://dx.doi.org/10.1186/s12885-018-4806-7] [PMID: 30241505]
[17]
Jithesh, P.V.; Risk, J.M.; Schache, A.G.; Dhanda, J.; Lane, B.; Liloglou, T.; Shaw, R.J. The epigenetic landscape of oral squamous cell carcinoma. Br. J. Cancer, 2013, 108(2), 370-379.
[http://dx.doi.org/10.1038/bjc.2012.568] [PMID: 23287992]
[18]
Bravi, F.; Bosetti, C.; Filomeno, M.; Levi, F.; Garavello, W.; Galimberti, S.; Negri, E.; La Vecchia, C. Foods, nutrients and the risk of oral and pharyngeal cancer. Br. J. Cancer, 2013, 109(11), 2904-2910.
[http://dx.doi.org/10.1038/bjc.2013.667] [PMID: 24149181]
[19]
de Ávila, M.B.; Xavier, M.M.; Pintro, V.O.; de Azevedo, W.F. Jr. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 305-310.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.035] [PMID: 29017921]
[20]
Levin, N.M.B.; Pintro, V.O.; Bitencourt-Ferreira, G.; de Mattos, B.B.; de Castro Silvério, A.; de Azevedo, W.F. Jr. Development of CDK-targeted scoring functions for prediction of binding affinity. Biophys. Chem., 2018, 235, 1-8.
[http://dx.doi.org/10.1016/j.bpc.2018.01.004] [PMID: 29407904]
[21]
Volkart, P.A.; Bitencourt-Ferreira, G.; Souto, A.A.; de Azevedo, W.F. Cyclin-dependent kinase 2 in cellular senescence and cancer. A structural and functional review. Curr. Drug Targets, 2019, 20(7), 716-726.
[http://dx.doi.org/10.2174/1389450120666181204165344] [PMID: 30516105]
[22]
Bais, M.V. Impact of epigenetic regulation on head and neck squamous cell carcinoma. J. Dent. Res., 2019, 98(3), 268-276.
[http://dx.doi.org/10.1177/0022034518816947] [PMID: 30615537]
[23]
Coombes, M.M.; Briggs, K.L.; Bone, J.R.; Clayman, G.L.; El-Naggar, A.K.; Dent, S.Y. Resetting the histone code at CDKN2A in HNSCC by inhibition of DNA methylation. Oncogene, 2003, 22(55), 8902-8911.
[http://dx.doi.org/10.1038/sj.onc.1207050] [PMID: 14654786]
[24]
de Azevedo, W.F. Jr. Opinion paper: targeting multiple cyclin-dependent kinases (CDKs): A new strategy for molecular docking studies. Curr. Drug Targets, 2016, 17(1), 2.
[http://dx.doi.org/10.2174/138945011701151217100907] [PMID: 26687602]
[25]
Levin, N.M.B.; Pintro, V.O.; de Avila, M.B.; de Mattos, B.B.; de Azevedo, W.F. Jr. Understanding the structural basis for inhibition of cyclin-dependent kinases. New pieces in the molecular puzzle. Curr. Drug Targets, 2017, 18(9), 1104-1111.
[http://dx.doi.org/10.2174/1389450118666161116130155] [PMID: 27848884]
[26]
Ribeiro, I.P.; Caramelo, F.; Marques, F.; Domingues, A.; Mesquita, M.; Barroso, L.; Prazeres, H.; Julião, M.J.; Baptista, I.P.; Ferreira, A.; Melo, J.B.; Carreira, I.M. WT1, MSH6, GATA5 and PAX5 as epigenetic oral squamous cell carcinoma biomarkers - a short report. Cell Oncol. (Dordr.), 2016, 39(6), 573-582.
[http://dx.doi.org/10.1007/s13402-016-0293-5] [PMID: 27491556]
[27]
Imai, T.; Toyota, M.; Suzuki, H.; Akino, K.; Ogi, K.; Sogabe, Y.; Kashima, L.; Maruyama, R.; Nojima, M.; Mita, H.; Sasaki, Y.; Itoh, F.; Imai, K.; Shinomura, Y.; Hiratsuka, H.; Tokino, T. Epigenetic inactivation of RASSF2 in oral squamous cell carcinoma. Cancer Sci., 2008, 99(5), 958-966.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00769.x] [PMID: 18294275]
[28]
Chen, Y.W.; Kao, S.Y.; Wang, H.J.; Yang, M.H. Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma. Cancer, 2013, 119(24), 4259-4267.
[http://dx.doi.org/10.1002/cncr.28356] [PMID: 24301303]
[29]
Rigi-Ladiz, M.A.; Kordi-Tamandani, D.M.; Torkamanzehi, A. Analysis of hypermethylation and expression profiles of APC and ATM genes in patients with oral squamous cell carcinoma. Clin. Epigen., 2011, 3, 6.
[http://dx.doi.org/10.1186/1868-7083-3-6] [PMID: 22414247]
[30]
Uesugi, H.; Uzawa, K.; Kawasaki, K.; Shimada, K.; Moriya, T.; Tada, A.; Shiiba, M.; Tanzawa, H. Status of reduced expression and hypermethylation of the APC tumor suppressor gene in human oral squamous cell carcinoma. Int. J. Mol. Med., 2005, 15(4), 597-602.
[http://dx.doi.org/10.3892/ijmm.15.4.597] [PMID: 15754020]
[31]
Sogabe, Y.; Suzuki, H.; Toyota, M.; Ogi, K.; Imai, T.; Nojima, M.; Sasaki, Y.; Hiratsuka, H.; Tokino, T. Epigenetic inactivation of SFRP genes in oral squamous cell carcinoma. Int. J. Oncol., 2008, 32(6), 1253-1261.
[http://dx.doi.org/10.3892/ijo.32.6.1253] [PMID: 18497987]
[32]
Wen, G.; Wang, H.; Zhong, Z. Associations of RASSF1A, RARβ, and CDH1 promoter hypermethylation with oral cancer risk: A PRISMA-compliant meta-analysis. Medicine (Baltimore), 2018, 97(11)e9971
[http://dx.doi.org/10.1097/MD.0000000000009971] [PMID: 29538221]
[33]
Langevin, S.M.; Butler, R.A.; Eliot, M.; Pawlita, M.; Maccani, J.Z.; McClean, M.D.; Kelsey, K.T. Novel DNA methylation targets in oral rinse samples predict survival of patients with oral squamous cell carcinoma. Oral Oncol., 2014, 50(11), 1072-1080.
[http://dx.doi.org/10.1016/j.oraloncology.2014.08.015] [PMID: 25242135]
[34]
Irimie, A.I.; Ciocan, C.; Gulei, D.; Mehterov, N.; Atanasov, A.G.; Dudea, D.; Berindan-Neagoe, I. Current insights into oral cancer epigenetics. Int. J. Mol. Sci., 2018, 19(3)E670
[http://dx.doi.org/10.3390/ijms19030670] [PMID: 29495520]
[35]
Kurasawa, Y.; Shiiba, M.; Nakamura, M.; Fushimi, K.; Ishigami, T.; Bukawa, H.; Yokoe, H.; Uzawa, K.; Tanzawa, H. PTEN expression and methylation status in oral squamous cell carcinoma. Oncol. Rep., 2008, 19(6), 1429-1434.
[PMID: 18497947]
[36]
Sushma, P.S.; Jamil, K.; Kumar, P.U.; Satyanarayana, U.; Ramakrishna, M.; Triveni, B. PTEN and p16 genes as epigenetic biomarkers in oral squamous cell carcinoma (OSCC): a study on south Indian population. Tumour Biol., 2016, 37(6), 7625-7632.
[http://dx.doi.org/10.1007/s13277-015-4648-8] [PMID: 26687648]
[37]
Zanjirband, M.; Rahgozar, S. Targeting p53-MDM2 interaction using small molecule inhibitors and the challenges needed to be addressed. Curr. Drug Targets, 2019, 20(11), 1091-1111.
[http://dx.doi.org/10.2174/1389450120666190402120701] [PMID: 30947669]
[38]
Perdas, E.; Stawski, R.; Nowak, D.; Zubrzycka, M. Potential of liquid biopsy in papillary thyroid carcinoma in context of miRNA, BRAF and p53 mutation. Curr. Drug Targets, 2018, 19(14), 1721-1729.
[http://dx.doi.org/10.2174/1389450119666180226124349] [PMID: 29484992]
[39]
Valente, J.F.A.; Queiroz, J.A.; Sousa, F. p53 as the focus of gene therapy: past, present and future. Curr. Drug Targets, 2018, 19(15), 1801-1817.
[http://dx.doi.org/10.2174/1389450119666180115165447] [PMID: 29336259]
[40]
Russo, D.; Merolla, F.; Varricchio, S.; Salzano, G.; Zarrilli, G.; Mascolo, M.; Strazzullo, V.; Di Crescenzo, R.M.; Celetti, A.; Ilardi, G. Epigenetics of oral and oropharyngeal cancers. Biomed. Rep., 2018, 9(4), 275-283.
[http://dx.doi.org/10.3892/br.2018.1136]] [PMID: 30233779]
[41]
Cheng, J.C.; Chiang, M.T.; Lee, C.H.; Liu, S.Y.; Chiu, K.C.; Chou, Y.T.; Huang, R.Y.; Huang, S.M.; Shieh, Y.S. γ-Synuclein expression is a malignant index in oral squamous cell carcinoma. J. Dent. Res., 2016, 95(4), 439-445.
[http://dx.doi.org/10.1177/0022034515621728] [PMID: 26661712]
[42]
Sakuma, T.; Uzawa, K.; Onda, T.; Shiiba, M.; Yokoe, H.; Shibahara, T.; Tanzawa, H. Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma. Int. J. Oncol., 2006, 29(1), 117-124.
[http://dx.doi.org/10.3892/ijo.29.1.117] [PMID: 16773191]
[43]
Cervigne, N.K.; Reis, P.P.; Machado, J.; Sadikovic, B.; Bradley, G.; Galloni, N.N.; Pintilie, M.; Jurisica, I.; Perez-Ordonez, B.; Gilbert, R.; Gullane, P.; Irish, J.; Kamel-Reid, S. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum. Mol. Genet., 2009, 18(24), 4818-4829.
[http://dx.doi.org/10.1093/hmg/ddp446] [PMID: 19776030]
[44]
Falzone, L.; Lupo, G.; La Rosa, G.R.M.; Crimi, S.; Anfuso, C.D.; Salemi, R.; Rapisarda, E.; Libra, M.; Candido, S. Identification of novel micrornas and their diagnostic and prognostic significance in oral cancer. Cancers (Basel), 2019, 11(5)E610
[http://dx.doi.org/10.3390/cancers11050610] [PMID: 31052345]
[45]
Hu, W.; Chan, C.S.; Wu, R.; Zhang, C.; Sun, Y.; Song, J.S.; Tang, L.H.; Levine, A.J.; Feng, Z. Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol. Cell, 2010, 38(5), 689-699.
[http://dx.doi.org/10.1016/j.molcel.2010.05.027] [PMID: 20542001]
[46]
Kozaki, K.; Imoto, I.; Mogi, S.; Omura, K.; Inazawa, J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res., 2008, 68(7), 2094-2105.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5194] [PMID: 18381414]
[47]
Lubek, J.E. Head and neck cancer research and support foundations. Oral Maxillofac. Surg. Clin. North Am., 2018, 30(4), 459-469.
[http://dx.doi.org/10.1016/j.coms.2018.06.007] [PMID: 30266190]
[48]
Hübbers, C.U.; Akgül, B. HPV and cancer of the oral cavity. Virulence, 2015, 6(3), 244-248.
[http://dx.doi.org/10.1080/21505594.2014.999570] [PMID: 25654476]
[49]
Syrjänen, S.; Lodi, G.; von Bültzingslöwen, I.; Aliko, A.; Arduino, P.; Campisi, G.; Challacombe, S.; Ficarra, G.; Flaitz, C.; Zhou, H.M.; Maeda, H.; Miller, C.; Jontell, M. Human papillomaviruses in oral carcinoma and oral potentially malignant disorders: a systematic review. Oral Dis., 2011, 17(1)(Suppl. 1), 58-72.
[http://dx.doi.org/10.1111/j.1601-0825.2011.01792.x] [PMID: 21382139]
[50]
Bonelli, M.; La Monica, S.; Fumarola, C.; Alfieri, R. Multiple effects of CDK4/6 inhibition in cancer: from cell cycle arrest to immunomodulation. Biochem. Pharmacol., 2019.170113676
[http://dx.doi.org/10.1016/j.bcp.2019.113676] [PMID: 31647925]
[51]
McCartney, A.; Migliaccio, I.; Bonechi, M.; Biagioni, C.; Romagnoli, D.; De Luca, F.; Galardi, F.; Risi, E.; De Santo, I.; Benelli, M.; Malorni, L.; Di Leo, A. Mechanisms of resistance to CDK4/6 inhibitors: potential implications and biomarkers for clinical practice. Front. Oncol., 2019, 9, 666.
[http://dx.doi.org/10.3389/fonc.2019.00666] [PMID: 31396487]
[52]
Sánchez-Martínez, C.; Lallena, M.J.; Sanfeliciano, S.G.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015-2019). Bioorg. Med. Chem. Lett., 2019, 29(20)126637
[http://dx.doi.org/10.1016/j.bmcl.2019.126637] [PMID: 31477350]
[53]
Silk, H. Diseases of the mouth. Prim. Care, 2014, 41(1), 75-90.
[http://dx.doi.org/10.1016/j.pop.2013.10.011] [PMID: 24439882]
[54]
Galicia, J.C.; Henson, B.R.; Parker, J.S.; Khan, A.A. Gene expression profile of pulpitis. Genes Immun., 2016, 17(4), 239-243.
[http://dx.doi.org/10.1038/gene.2016.14] [PMID: 27052691]
[55]
Irani, S. Orofacial bacterial infectious diseases: an update. J. Int. Soc. Prev. Community Dent., 2017, 7(Suppl. 2), S61-S67.
[http://dx.doi.org/10.4103/jispcd.JISPCD_290_17] [PMID: 29184830]
[56]
Duncan, H.F.; Smith, A.J.; Fleming, G.J.; Cooper, P.R. Histone deacetylase inhibitors induced differentiation and accelerated mineralization of pulp-derived cells. J. Endod., 2012, 38(3), 339-345.
[http://dx.doi.org/10.1016/j.joen.2011.12.014] [PMID: 22341071]
[57]
Kokkas, A.; Goulas, A.; Stavrianos, C.; Anogianakis, G. The role of cytokines in pulp inflammation. J. Biol. Regul. Homeost. Agents, 2011, 25(3), 303-311.
[PMID: 22023754]
[58]
Hui, T.; Wang, C.; Chen, D.; Zheng, L.; Huang, D.; Ye, L. Epigenetic regulation in dental pulp inflammation. Oral Dis., 2017, 23(1), 22-28.
[http://dx.doi.org/10.1111/odi.12464] [PMID: 26901577]
[59]
Luo, Y.; Peng, X.; Duan, D.; Liu, C.; Xu, X.; Zhou, X. Epigenetic regulations in the pathogenesis of periodontitis. Curr. Stem Cell Res. Ther., 2018, 13(2), 144-150.
[http://dx.doi.org/10.2174/1574888X12666170718161740] [PMID: 28721820]
[60]
de Faria Amormino, S.A.; Arão, T.C.; Saraiva, A.M.; Gomez, R.S.; Dutra, W.O.; da Costa, J.E.; de Fátima Correia Silva, J.; Moreira, P.R. Hypermethylation and low transcription of TLR2 gene in chronic periodontitis. Hum. Immunol., 2013, 74(9), 1231-1236.
[http://dx.doi.org/10.1016/j.humimm.2013.04.037] [PMID: 23747679]
[61]
Lod, S.; Johansson, T.; Abrahamsson, K.H.; Larsson, L. The influence of epigenetics in relation to oral health. Int. J. Dent. Hyg., 2014, 12(1), 48-54.
[http://dx.doi.org/10.1111/idh.12030] [PMID: 23730835]
[62]
Loo, W.T.; Jin, L.; Cheung, M.N.; Wang, M.; Chow, L.W. Epigenetic change in E-cadherin and COX-2 to predict chronic periodontitis. J. Transl. Med., 2010, 8, 110.
[http://dx.doi.org/10.1186/1479-5876-8-110] [PMID: 21047437]
[63]
Lavu, V.; Venkatesan, V.; Rao, S.R. The epigenetic paradigm in periodontitis pathogenesis. J. Indian Soc. Periodontol., 2015, 19(2), 142-149.
[http://dx.doi.org/10.4103/0972-124X.145784] [PMID: 26015662]
[64]
Zhang, S.; Barros, S.P.; Niculescu, M.D.; Moretti, A.J.; Preisser, J.S.; Offenbacher, S. Alteration of PTGS2 promoter methylation in chronic periodontitis. J. Dent. Res., 2010, 89(2), 133-137.
[http://dx.doi.org/10.1177/0022034509356512] [PMID: 20042743]
[65]
Schulz, S.; Immel, U.D.; Just, L.; Schaller, H.G.; Gläser, C.; Reichert, S. Epigenetic characteristics in inflammatory candidate genes in aggressive periodontitis. Hum. Immunol., 2016, 77(1), 71-75.
[http://dx.doi.org/10.1016/j.humimm.2015.10.007] [PMID: 26472015]
[66]
Larsson, L. Current concepts of epigenetics and its role in periodontitis. Curr. Oral Health Rep., 2017, 4(4), 286-293.
[http://dx.doi.org/10.1007/s40496-017-0156-9] [PMID: 29201597]
[67]
Lindroth, A.M.; Park, Y.J. Epigenetic biomarkers: a step forward for understanding periodontitis. J. Periodontal Implant Sci., 2013, 43(3), 111-120.
[http://dx.doi.org/10.5051/jpis.2013.43.3.111] [PMID: 23837125]
[68]
Hema, K.N.; Smitha, T.; Sheethal, H.S.; Mirnalini, S.A. Epigenetics in oral squamous cell carcinoma. J. Oral Maxillofac. Pathol., 2017, 21(2), 252-259.
[http://dx.doi.org/10.4103/jomfp.JOMFP_150_17] [PMID: 28932035]
[69]
Delgado-Calle, J.; Sañudo, C.; Bolado, A.; Fernández, A.F.; Arozamena, J.; Pascual-Carra, M.A.; Rodriguez-Rey, J.C.; Fraga, M.F.; Bonewald, L.; Riancho, J.A. DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. J. Bone Miner. Res., 2012, 27(4), 926-937.
[http://dx.doi.org/10.1002/jbmr.1491] [PMID: 22162201]
[70]
Yoshioka, H.; Minamizaki, T.; Yoshiko, Y. The dynamics of DNA methylation and hydroxymethylation during amelogenesis. Histochem. Cell Biol., 2015, 144(5), 471-478.
[http://dx.doi.org/10.1007/s00418-015-1353-z] [PMID: 26209269]
[71]
Fernando, S.; Speicher, D.J.; Bakr, M.M.; Benton, M.C.; Lea, R.A.; Scuffham, P.A.; Mihala, G.; Johnson, N.W. Protocol for assessing maternal, environmental and epigenetic risk factors for dental caries in children. BMC Oral Health, 2015, 15, 167.
[http://dx.doi.org/10.1186/s12903-015-0143-2] [PMID: 26715445]
[72]
Plamondon, J.A.; Harris, M.J.; Mager, D.L.; Gagnier, L.; Juriloff, D.M. The clf2 gene has an epigenetic role in the multifactorial etiology of cleft lip and palate in the A/WySn mouse strain. Birth Defects Res. A Clin. Mol. Teratol., 2011, 91(8), 716-727.
[http://dx.doi.org/10.1002/bdra.20788] [PMID: 21384535]
[73]
Ornoy, A. Valproic acid in pregnancy: how much are we endangering the embryo and fetus? Reprod. Toxicol., 2009, 28(1), 1-10.
[http://dx.doi.org/10.1016/j.reprotox.2009.02.014] [PMID: 19490988]
[74]
Desh, H.; Gray, S.L.; Horton, M.J.; Raoul, G.; Rowlerson, A.M.; Ferri, J.; Vieira, A.R.; Sciote, J.J. Molecular motor MYO1C, acetyltransferase KAT6B and osteogenetic transcription factor RUNX2 expression in human masseter muscle contributes to development of malocclusion. Arch. Oral Biol., 2014, 59(6), 601-607.
[http://dx.doi.org/10.1016/j.archoralbio.2014.03.005] [PMID: 24698832]
[75]
Wang, Y.; Zhu, Y.; Wang, Q.; Hu, H.; Li, Z.; Wang, D.; Zhang, W.; Qi, B.; Ye, J.; Wu, H.; Jiang, H.; Liu, L.; Yang, J.; Cheng, J. The histone demethylase LSD1 is a novel oncogene and therapeutic target in oral cancer. Cancer Lett., 2016, 374(1), 12-21.
[http://dx.doi.org/10.1016/j.canlet.2016.02.004] [PMID: 26872725]
[76]
Gasche, J.A.; Goel, A. Epigenetic mechanisms in oral carcinogenesis. Future Oncol., 2012, 8(11), 1407-1425.
[http://dx.doi.org/10.2217/fon.12.138] [PMID: 23148615]
[77]
Sato, T.; Suzuki, M.; Sato, Y.; Echigo, S.; Rikiishi, H. Sequence-dependent interaction between cisplatin and histone deacetylase inhibitors in human oral squamous cell carcinoma cells. Int. J. Oncol., 2006, 28(5), 1233-1241.
[http://dx.doi.org/10.3892/ijo.28.5.1233] [PMID: 16596240]
[78]
Nagumo, T.; Takaoka, S.; Yoshiba, S.; Ohashi, M.; Shirota, T.; Hatori, M.; Isobe, T.; Tachikawa, T.; Shintani, S. Antitumor activity of suberoylanilide hydroxamic acid against human oral squamous cell carcinoma cell lines in vitro and in vivo. Oral Oncol., 2009, 45(9), 766-770.
[http://dx.doi.org/10.1016/j.oraloncology.2008.11.009] [PMID: 19157955]
[79]
Jang, B.; Shin, J.A.; Kim, Y.S.; Kim, J.Y.; Yi, H.K.; Park, I.S.; Cho, N.P.; Cho, S.D. Growth-suppressive effect of suberoylanilide hydroxamic acid (SAHA) on human oral cancer cells. Cell Oncol. (Dordr.), 2016, 39(1), 79-87.
[http://dx.doi.org/10.1007/s13402-015-0255-3] [PMID: 26582320]
[80]
Jang, B.; Kim, L.H.; Lee, S.Y.; Lee, K.E.; Shin, J.A.; Cho, S.D. Trichostatin A induces apoptosis in oral squamous cell carcinoma cell lines independent of hyperacetylation of histones. J. Cancer Res. Ther., 2018, 14(Suppl.), S576-S582.
[http://dx.doi.org/10.4103/0973-1482.177220] [PMID: 30249871]
[81]
Sarkar, S.; Goldgar, S.; Byler, S.; Rosenthal, S.; Heerboth, S. Demethylation and re-expression of epigenetically silenced tumor suppressor genes: sensitization of cancer cells by combination therapy. Epigenomics, 2013, 5(1), 87-94.
[http://dx.doi.org/10.2217/epi.12.68] [PMID: 23414323]
[82]
Ma, J.; Zhang, Y.; Wang, J.; Zhao, T.; Ji, P.; Song, J.; Zhang, H.; Luo, W. Proliferative effects of gamma-amino butyric acid on oral squamous cell carcinoma cells are associated with mitogen-activated protein kinase signaling pathways. Int. J. Mol. Med., 2016, 38(1), 305-311.
[http://dx.doi.org/10.3892/ijmm.2016.2597] [PMID: 27222045]
[83]
Yakushiji, T.; Uzawa, K.; Shibahara, T.; Noma, H.; Tanzawa, H. Over-expression of DNA methyltransferases and CDKN2A gene methylation status in squamous cell carcinoma of the oral cavity. Int. J. Oncol., 2003, 22(6), 1201-1207.
[http://dx.doi.org/10.3892/ijo.22.6.1201] [PMID: 12738984]
[84]
Mallery, S.R.; Wang, D.; Santiago, B.; Pei, P.; Schwendeman, S.P.; Nieto, K.; Spinney, R.; Tong, M.; Koutras, G.; Han, B.; Holpuch, A.; Lang, J. Benefits of multifaceted chemopreventives in the suppression of the oral squamous cell carcinoma (OSCC) tumorigenic phenotype. Cancer Prev. Res. (Phila.), 2017, 10(1), 76-88.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0180] [PMID: 27756753]
[85]
Osei-Sarfo, K.; Gudas, L.J. Retinoids induce antagonism between FOXO3A and FOXM1 transcription factors in human oral squamous cell carcinoma (OSCC) cells. PLoS One, 2019, 14(4)e0215234
[http://dx.doi.org/10.1371/journal.pone.0215234] [PMID: 30978209]
[86]
Cantley, M.D.; Bartold, P.M.; Marino, V.; Fairlie, D.P.; Le, G.T.; Lucke, A.J.; Haynes, D.R. Histone deacetylase inhibitors and periodontal bone loss. J. Periodontal Res., 2011, 46(6), 697-703.
[http://dx.doi.org/10.1111/j.1600-0765.2011.01392.x] [PMID: 21745207]
[87]
Algate, K.; Haynes, D.; Fitzsimmons, T.; Romeo, O.; Wagner, F.; Holson, E.; Reid, R.; Fairlie, D.; Bartold, P.; Cantley, M. Histone deacetylases 1 and 2 inhibition suppresses cytokine production and osteoclast bone resorption in vitro. J. Cell. Biochem., 2020, 121(1), 244-258.
[http://dx.doi.org/10.1002/jcb.29137] [PMID: 31222845]
[88]
Chang, M.C.; Chen, Y.J.; Lian, Y.C.; Chang, B.E.; Huang, C.C.; Huang, W.L.; Pan, Y.H.; Jeng, J.H. Butyrate stimulates histone H3 acetylation, 8-isoprostane production, rankl expression, and regulated osteoprotegerin expression/ secretion in MG-63 osteoblastic cells. Int. J. Mol. Sci., 2018, 19(12), 4071.,
[http://dx.doi.org/10.3390/ijms19124071] [PMID: 30562925]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy