Review Article

口腔疾病发展中的表观遗传改变的影响

卷 28, 期 6, 2021

发表于: 14 January, 2020

页: [1091 - 1103] 页: 13

弟呕挨: 10.2174/0929867327666200114114802

价格: $65

摘要

背景:表观遗传机制改变基因表达和调节重要的细胞过程,有助于主要牙科疾病的发生和进展。它们的可逆性可能有助于靶向治疗。本文就口腔鳞状细胞癌、牙髓炎、牙周炎、龋齿和先天性口面畸形的表观遗传学变化进行综述,以寻找潜在的治疗靶点。 方法:我们进行了一个结构化的检索书目数据库(PubMed和MEDLINE),为同行评议的表观遗传学研究,重点关注口腔疾病在过去十年。对筛选后的论文进行了定性内容分析,并对主要发现进行了批判性讨论。 结果:一些表观遗传修饰与OSCC的发病机制有关,包括参与DNA修复、细胞周期调控和增殖的基因启动子甲基化导致恶性转化。此外,肿瘤抑制基因的表观遗传失活、组蛋白伴侣和几种microrna的过表达与OSCC的侵袭性有关。研究人员在牙髓炎中检测到IFN-γ甲基化模式和组蛋白的三甲基化反应,同时检测到一些microrna的异常表达,这些microrna主要影响细胞因子的产生。慢性牙周病与toll样受体2、前列腺素合成酶2、E-cadherin和一些炎症细胞因子的甲基化模式修饰以及miR-146a和miR155的过表达有关。此外,DNA甲基化被发现调节角膜形成,并牵涉到龋的发病机制以及一些先天性口面部畸形。 结论:强有力的证据表明,表观遗传学改变参与口腔疾病的发病机制,表观遗传学靶向可作为目前口腔健康管理的补充治疗方案。

关键词: 表观遗传学,口腔疾病,口腔鳞癌,牙周炎,DNA甲基化,龋齿

[1]
Seo, J.Y.; Park, Y.J.; Yi, Y.A.; Hwang, J.Y.; Lee, I.B.; Cho, B.H.; Son, H.H.; Seo, D.G. Epigenetics: general characteristics and implications for oral health. Restor. Dent. Endod, 2015, 40(1), 14-22.
[http://dx.doi.org/10.5395/rde.2015.40.1.14] [PMID: 25671208]
[2]
Li, Y.; Li, Z.; Zhu, W.G. Molecular mechanisms of epigenetic regulators as activatable targets in cancer theranostics. Curr. Med. Chem., 2019, 26(8), 1328-1350.
[http://dx.doi.org/10.2174/0929867324666170921101947] [PMID: 28933282]
[3]
Manikandan, P.; Nagini, S. Cytochrome P450 structure, function and clinical significance: a review. Curr. Drug Targets, 2018, 19(1), 38-54.
[http://dx.doi.org/10.2174/1389450118666170125144557] [PMID: 28124606]
[4]
Williams, S.D.; Hughes, T.E.; Adler, C.J.; Brook, A.H.; Townsend, G.C. Epigenetics: a new frontier in dentistry. Aust. Dent. J., 2014, 59(1)(Suppl. 1), 23-33.
[http://dx.doi.org/10.1111/adj.12155] [PMID: 24611746]
[5]
Singh, N.N.; Peer, A.; Nair, S.; Chaturvedi, R.K. Epigenetics: a possible answer to the undeciphered etiopathogenesis and behavior of oral lesions. J. Oral Maxillofac. Pathol., 2016, 20(1), 122-128.
[http://dx.doi.org/10.4103/0973-029X.180967] [PMID: 27194874]
[6]
Sun, C.; Duan, P.; Luan, C. CEBP epigenetic dysregulation as a drug target for the treatment of hematologic and gynecologic malignancies. Curr. Drug Targets, 2017, 18(10), 1142-1151.
[http://dx.doi.org/10.2174/1389450117666161228160455] [PMID: 28031014]
[7]
Bhargava, A.; Bunkar, N.; Aglawe, A.; Pandey, K.C.; Tiwari, R.; Chaudhury, K.; Goryacheva, I.Y.; Mishra, P.K. Epigenetic biomarkers for risk assessment of particulate matter associated lung cancer. Curr. Drug Targets, 2018, 19(10), 1127-1147.
[http://dx.doi.org/10.2174/1389450118666170911114342] [PMID: 28891455]
[8]
Raghuwanshi, S.; Dahariya, S.; Kandi, R.; Gutti, U.; Undi, R.B.; Sharma, D.S.; Sahu, I.; Kovuru, N.; Yarla, N.S.; Saladi, R.G.V.; Gutti, R.K. Epigenetic mechanisms: role in hematopoietic stem cell lineage commitment and differentiation. Curr. Drug Targets, 2018, 19(14), 1683-1695.
[http://dx.doi.org/10.2174/1389450118666171122141821] [PMID: 29173164]
[9]
Yao, Q.; Chen, Y.; Zhou, X. The roles of microRNAs in epigenetic regulation. Curr. Opin. Chem. Biol., 2019, 51, 11-17.
[http://dx.doi.org/10.1016/j.cbpa.2019.01.024] [PMID: 30825741]
[10]
Josko-Ochojska, J.; Rygiel, K.; Postek-Stefanska, L. Diseases of the oral cavity in light of the newest epigenetic research: possible implications for stomatology. Adv. Clin. Exp. Med., 2019, 28(3), 397-406.
[http://dx.doi.org/10.17219/acem/76060]] [PMID: 30277670]
[11]
Almadori, G.; Bussu, F.; Galli, J.; Cadoni, G.; Zappacosta, B.; Persichilli, S.; Minucci, A.; Giardina, B.; Maurizi, M. Serum levels of folate, homocysteine, and vitamin B12 in head and neck squamous cell carcinoma and in laryngeal leukoplakia. Cancer, 2005, 103(2), 284-292.
[http://dx.doi.org/10.1002/cncr.20772] [PMID: 15593092]
[12]
Bebek, G.; Bennett, K.L.; Funchain, P.; Campbell, R.; Seth, R.; Scharpf, J.; Burkey, B.; Eng, C. Microbiomic subprofiles and MDR1 promoter methylation in head and neck squamous cell carcinoma. Hum. Mol. Genet., 2012, 21(7), 1557-1565.
[http://dx.doi.org/10.1093/hmg/ddr593] [PMID: 22180460]
[13]
Galbiatti, A.L.; Ruiz, M.T.; Biselli-Chicote, P.M.; Raposo, L.S.; Maniglia, J.V.; Pavarino-Bertelli, E.C.; Goloni-Bertollo, E.M. 5-Methyltetrahydrofolate-homocysteine methyltransferase gene polymorphism (MTR) and risk of head and neck cancer. Braz. J. Med. Biol. Res., 2010, 43(5), 445-450.
[http://dx.doi.org/10.1590/S0100-879X2010007500034] [PMID: 20490431]
[14]
Mascolo, M.; Siano, M.; Ilardi, G.; Russo, D.; Merolla, F.; De Rosa, G.; Staibano, S. Epigenetic disregulation in oral cancer. Int. J. Mol. Sci., 2012, 13(2), 2331-2353.
[http://dx.doi.org/10.3390/ijms13022331] [PMID: 22408457]
[15]
Lingen, M.W.; Pinto, A.; Mendes, R.A.; Franchini, R.; Czerninski, R.; Tilakaratne, W.M.; Partridge, M.; Peterson, D.E.; Woo, S.B. Genetics/epigenetics of oral premalignancy: current status and future research. Oral Dis., 2011, 17(Suppl. 1), 7-22.
[http://dx.doi.org/10.1111/j.1601-0825.2011.01789.x] [PMID: 21382136]
[16]
Zhong, L.; Liu, Y.; Wang, K.; He, Z.; Gong, Z.; Zhao, Z.; Yang, Y.; Gao, X.; Li, F.; Wu, H.; Zhang, S.; Chen, L. Biomarkers: paving stones on the road towards the personalized precision medicine for oral squamous cell carcinoma. BMC Cancer, 2018, 18(1), 911.
[http://dx.doi.org/10.1186/s12885-018-4806-7] [PMID: 30241505]
[17]
Jithesh, P.V.; Risk, J.M.; Schache, A.G.; Dhanda, J.; Lane, B.; Liloglou, T.; Shaw, R.J. The epigenetic landscape of oral squamous cell carcinoma. Br. J. Cancer, 2013, 108(2), 370-379.
[http://dx.doi.org/10.1038/bjc.2012.568] [PMID: 23287992]
[18]
Bravi, F.; Bosetti, C.; Filomeno, M.; Levi, F.; Garavello, W.; Galimberti, S.; Negri, E.; La Vecchia, C. Foods, nutrients and the risk of oral and pharyngeal cancer. Br. J. Cancer, 2013, 109(11), 2904-2910.
[http://dx.doi.org/10.1038/bjc.2013.667] [PMID: 24149181]
[19]
de Ávila, M.B.; Xavier, M.M.; Pintro, V.O.; de Azevedo, W.F. Jr. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 305-310.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.035] [PMID: 29017921]
[20]
Levin, N.M.B.; Pintro, V.O.; Bitencourt-Ferreira, G.; de Mattos, B.B.; de Castro Silvério, A.; de Azevedo, W.F. Jr. Development of CDK-targeted scoring functions for prediction of binding affinity. Biophys. Chem., 2018, 235, 1-8.
[http://dx.doi.org/10.1016/j.bpc.2018.01.004] [PMID: 29407904]
[21]
Volkart, P.A.; Bitencourt-Ferreira, G.; Souto, A.A.; de Azevedo, W.F. Cyclin-dependent kinase 2 in cellular senescence and cancer. A structural and functional review. Curr. Drug Targets, 2019, 20(7), 716-726.
[http://dx.doi.org/10.2174/1389450120666181204165344] [PMID: 30516105]
[22]
Bais, M.V. Impact of epigenetic regulation on head and neck squamous cell carcinoma. J. Dent. Res., 2019, 98(3), 268-276.
[http://dx.doi.org/10.1177/0022034518816947] [PMID: 30615537]
[23]
Coombes, M.M.; Briggs, K.L.; Bone, J.R.; Clayman, G.L.; El-Naggar, A.K.; Dent, S.Y. Resetting the histone code at CDKN2A in HNSCC by inhibition of DNA methylation. Oncogene, 2003, 22(55), 8902-8911.
[http://dx.doi.org/10.1038/sj.onc.1207050] [PMID: 14654786]
[24]
de Azevedo, W.F. Jr. Opinion paper: targeting multiple cyclin-dependent kinases (CDKs): A new strategy for molecular docking studies. Curr. Drug Targets, 2016, 17(1), 2.
[http://dx.doi.org/10.2174/138945011701151217100907] [PMID: 26687602]
[25]
Levin, N.M.B.; Pintro, V.O.; de Avila, M.B.; de Mattos, B.B.; de Azevedo, W.F. Jr. Understanding the structural basis for inhibition of cyclin-dependent kinases. New pieces in the molecular puzzle. Curr. Drug Targets, 2017, 18(9), 1104-1111.
[http://dx.doi.org/10.2174/1389450118666161116130155] [PMID: 27848884]
[26]
Ribeiro, I.P.; Caramelo, F.; Marques, F.; Domingues, A.; Mesquita, M.; Barroso, L.; Prazeres, H.; Julião, M.J.; Baptista, I.P.; Ferreira, A.; Melo, J.B.; Carreira, I.M. WT1, MSH6, GATA5 and PAX5 as epigenetic oral squamous cell carcinoma biomarkers - a short report. Cell Oncol. (Dordr.), 2016, 39(6), 573-582.
[http://dx.doi.org/10.1007/s13402-016-0293-5] [PMID: 27491556]
[27]
Imai, T.; Toyota, M.; Suzuki, H.; Akino, K.; Ogi, K.; Sogabe, Y.; Kashima, L.; Maruyama, R.; Nojima, M.; Mita, H.; Sasaki, Y.; Itoh, F.; Imai, K.; Shinomura, Y.; Hiratsuka, H.; Tokino, T. Epigenetic inactivation of RASSF2 in oral squamous cell carcinoma. Cancer Sci., 2008, 99(5), 958-966.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00769.x] [PMID: 18294275]
[28]
Chen, Y.W.; Kao, S.Y.; Wang, H.J.; Yang, M.H. Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma. Cancer, 2013, 119(24), 4259-4267.
[http://dx.doi.org/10.1002/cncr.28356] [PMID: 24301303]
[29]
Rigi-Ladiz, M.A.; Kordi-Tamandani, D.M.; Torkamanzehi, A. Analysis of hypermethylation and expression profiles of APC and ATM genes in patients with oral squamous cell carcinoma. Clin. Epigen., 2011, 3, 6.
[http://dx.doi.org/10.1186/1868-7083-3-6] [PMID: 22414247]
[30]
Uesugi, H.; Uzawa, K.; Kawasaki, K.; Shimada, K.; Moriya, T.; Tada, A.; Shiiba, M.; Tanzawa, H. Status of reduced expression and hypermethylation of the APC tumor suppressor gene in human oral squamous cell carcinoma. Int. J. Mol. Med., 2005, 15(4), 597-602.
[http://dx.doi.org/10.3892/ijmm.15.4.597] [PMID: 15754020]
[31]
Sogabe, Y.; Suzuki, H.; Toyota, M.; Ogi, K.; Imai, T.; Nojima, M.; Sasaki, Y.; Hiratsuka, H.; Tokino, T. Epigenetic inactivation of SFRP genes in oral squamous cell carcinoma. Int. J. Oncol., 2008, 32(6), 1253-1261.
[http://dx.doi.org/10.3892/ijo.32.6.1253] [PMID: 18497987]
[32]
Wen, G.; Wang, H.; Zhong, Z. Associations of RASSF1A, RARβ, and CDH1 promoter hypermethylation with oral cancer risk: A PRISMA-compliant meta-analysis. Medicine (Baltimore), 2018, 97(11)e9971
[http://dx.doi.org/10.1097/MD.0000000000009971] [PMID: 29538221]
[33]
Langevin, S.M.; Butler, R.A.; Eliot, M.; Pawlita, M.; Maccani, J.Z.; McClean, M.D.; Kelsey, K.T. Novel DNA methylation targets in oral rinse samples predict survival of patients with oral squamous cell carcinoma. Oral Oncol., 2014, 50(11), 1072-1080.
[http://dx.doi.org/10.1016/j.oraloncology.2014.08.015] [PMID: 25242135]
[34]
Irimie, A.I.; Ciocan, C.; Gulei, D.; Mehterov, N.; Atanasov, A.G.; Dudea, D.; Berindan-Neagoe, I. Current insights into oral cancer epigenetics. Int. J. Mol. Sci., 2018, 19(3)E670
[http://dx.doi.org/10.3390/ijms19030670] [PMID: 29495520]
[35]
Kurasawa, Y.; Shiiba, M.; Nakamura, M.; Fushimi, K.; Ishigami, T.; Bukawa, H.; Yokoe, H.; Uzawa, K.; Tanzawa, H. PTEN expression and methylation status in oral squamous cell carcinoma. Oncol. Rep., 2008, 19(6), 1429-1434.
[PMID: 18497947]
[36]
Sushma, P.S.; Jamil, K.; Kumar, P.U.; Satyanarayana, U.; Ramakrishna, M.; Triveni, B. PTEN and p16 genes as epigenetic biomarkers in oral squamous cell carcinoma (OSCC): a study on south Indian population. Tumour Biol., 2016, 37(6), 7625-7632.
[http://dx.doi.org/10.1007/s13277-015-4648-8] [PMID: 26687648]
[37]
Zanjirband, M.; Rahgozar, S. Targeting p53-MDM2 interaction using small molecule inhibitors and the challenges needed to be addressed. Curr. Drug Targets, 2019, 20(11), 1091-1111.
[http://dx.doi.org/10.2174/1389450120666190402120701] [PMID: 30947669]
[38]
Perdas, E.; Stawski, R.; Nowak, D.; Zubrzycka, M. Potential of liquid biopsy in papillary thyroid carcinoma in context of miRNA, BRAF and p53 mutation. Curr. Drug Targets, 2018, 19(14), 1721-1729.
[http://dx.doi.org/10.2174/1389450119666180226124349] [PMID: 29484992]
[39]
Valente, J.F.A.; Queiroz, J.A.; Sousa, F. p53 as the focus of gene therapy: past, present and future. Curr. Drug Targets, 2018, 19(15), 1801-1817.
[http://dx.doi.org/10.2174/1389450119666180115165447] [PMID: 29336259]
[40]
Russo, D.; Merolla, F.; Varricchio, S.; Salzano, G.; Zarrilli, G.; Mascolo, M.; Strazzullo, V.; Di Crescenzo, R.M.; Celetti, A.; Ilardi, G. Epigenetics of oral and oropharyngeal cancers. Biomed. Rep., 2018, 9(4), 275-283.
[http://dx.doi.org/10.3892/br.2018.1136]] [PMID: 30233779]
[41]
Cheng, J.C.; Chiang, M.T.; Lee, C.H.; Liu, S.Y.; Chiu, K.C.; Chou, Y.T.; Huang, R.Y.; Huang, S.M.; Shieh, Y.S. γ-Synuclein expression is a malignant index in oral squamous cell carcinoma. J. Dent. Res., 2016, 95(4), 439-445.
[http://dx.doi.org/10.1177/0022034515621728] [PMID: 26661712]
[42]
Sakuma, T.; Uzawa, K.; Onda, T.; Shiiba, M.; Yokoe, H.; Shibahara, T.; Tanzawa, H. Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma. Int. J. Oncol., 2006, 29(1), 117-124.
[http://dx.doi.org/10.3892/ijo.29.1.117] [PMID: 16773191]
[43]
Cervigne, N.K.; Reis, P.P.; Machado, J.; Sadikovic, B.; Bradley, G.; Galloni, N.N.; Pintilie, M.; Jurisica, I.; Perez-Ordonez, B.; Gilbert, R.; Gullane, P.; Irish, J.; Kamel-Reid, S. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum. Mol. Genet., 2009, 18(24), 4818-4829.
[http://dx.doi.org/10.1093/hmg/ddp446] [PMID: 19776030]
[44]
Falzone, L.; Lupo, G.; La Rosa, G.R.M.; Crimi, S.; Anfuso, C.D.; Salemi, R.; Rapisarda, E.; Libra, M.; Candido, S. Identification of novel micrornas and their diagnostic and prognostic significance in oral cancer. Cancers (Basel), 2019, 11(5)E610
[http://dx.doi.org/10.3390/cancers11050610] [PMID: 31052345]
[45]
Hu, W.; Chan, C.S.; Wu, R.; Zhang, C.; Sun, Y.; Song, J.S.; Tang, L.H.; Levine, A.J.; Feng, Z. Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol. Cell, 2010, 38(5), 689-699.
[http://dx.doi.org/10.1016/j.molcel.2010.05.027] [PMID: 20542001]
[46]
Kozaki, K.; Imoto, I.; Mogi, S.; Omura, K.; Inazawa, J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res., 2008, 68(7), 2094-2105.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5194] [PMID: 18381414]
[47]
Lubek, J.E. Head and neck cancer research and support foundations. Oral Maxillofac. Surg. Clin. North Am., 2018, 30(4), 459-469.
[http://dx.doi.org/10.1016/j.coms.2018.06.007] [PMID: 30266190]
[48]
Hübbers, C.U.; Akgül, B. HPV and cancer of the oral cavity. Virulence, 2015, 6(3), 244-248.
[http://dx.doi.org/10.1080/21505594.2014.999570] [PMID: 25654476]
[49]
Syrjänen, S.; Lodi, G.; von Bültzingslöwen, I.; Aliko, A.; Arduino, P.; Campisi, G.; Challacombe, S.; Ficarra, G.; Flaitz, C.; Zhou, H.M.; Maeda, H.; Miller, C.; Jontell, M. Human papillomaviruses in oral carcinoma and oral potentially malignant disorders: a systematic review. Oral Dis., 2011, 17(1)(Suppl. 1), 58-72.
[http://dx.doi.org/10.1111/j.1601-0825.2011.01792.x] [PMID: 21382139]
[50]
Bonelli, M.; La Monica, S.; Fumarola, C.; Alfieri, R. Multiple effects of CDK4/6 inhibition in cancer: from cell cycle arrest to immunomodulation. Biochem. Pharmacol., 2019.170113676
[http://dx.doi.org/10.1016/j.bcp.2019.113676] [PMID: 31647925]
[51]
McCartney, A.; Migliaccio, I.; Bonechi, M.; Biagioni, C.; Romagnoli, D.; De Luca, F.; Galardi, F.; Risi, E.; De Santo, I.; Benelli, M.; Malorni, L.; Di Leo, A. Mechanisms of resistance to CDK4/6 inhibitors: potential implications and biomarkers for clinical practice. Front. Oncol., 2019, 9, 666.
[http://dx.doi.org/10.3389/fonc.2019.00666] [PMID: 31396487]
[52]
Sánchez-Martínez, C.; Lallena, M.J.; Sanfeliciano, S.G.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015-2019). Bioorg. Med. Chem. Lett., 2019, 29(20)126637
[http://dx.doi.org/10.1016/j.bmcl.2019.126637] [PMID: 31477350]
[53]
Silk, H. Diseases of the mouth. Prim. Care, 2014, 41(1), 75-90.
[http://dx.doi.org/10.1016/j.pop.2013.10.011] [PMID: 24439882]
[54]
Galicia, J.C.; Henson, B.R.; Parker, J.S.; Khan, A.A. Gene expression profile of pulpitis. Genes Immun., 2016, 17(4), 239-243.
[http://dx.doi.org/10.1038/gene.2016.14] [PMID: 27052691]
[55]
Irani, S. Orofacial bacterial infectious diseases: an update. J. Int. Soc. Prev. Community Dent., 2017, 7(Suppl. 2), S61-S67.
[http://dx.doi.org/10.4103/jispcd.JISPCD_290_17] [PMID: 29184830]
[56]
Duncan, H.F.; Smith, A.J.; Fleming, G.J.; Cooper, P.R. Histone deacetylase inhibitors induced differentiation and accelerated mineralization of pulp-derived cells. J. Endod., 2012, 38(3), 339-345.
[http://dx.doi.org/10.1016/j.joen.2011.12.014] [PMID: 22341071]
[57]
Kokkas, A.; Goulas, A.; Stavrianos, C.; Anogianakis, G. The role of cytokines in pulp inflammation. J. Biol. Regul. Homeost. Agents, 2011, 25(3), 303-311.
[PMID: 22023754]
[58]
Hui, T.; Wang, C.; Chen, D.; Zheng, L.; Huang, D.; Ye, L. Epigenetic regulation in dental pulp inflammation. Oral Dis., 2017, 23(1), 22-28.
[http://dx.doi.org/10.1111/odi.12464] [PMID: 26901577]
[59]
Luo, Y.; Peng, X.; Duan, D.; Liu, C.; Xu, X.; Zhou, X. Epigenetic regulations in the pathogenesis of periodontitis. Curr. Stem Cell Res. Ther., 2018, 13(2), 144-150.
[http://dx.doi.org/10.2174/1574888X12666170718161740] [PMID: 28721820]
[60]
de Faria Amormino, S.A.; Arão, T.C.; Saraiva, A.M.; Gomez, R.S.; Dutra, W.O.; da Costa, J.E.; de Fátima Correia Silva, J.; Moreira, P.R. Hypermethylation and low transcription of TLR2 gene in chronic periodontitis. Hum. Immunol., 2013, 74(9), 1231-1236.
[http://dx.doi.org/10.1016/j.humimm.2013.04.037] [PMID: 23747679]
[61]
Lod, S.; Johansson, T.; Abrahamsson, K.H.; Larsson, L. The influence of epigenetics in relation to oral health. Int. J. Dent. Hyg., 2014, 12(1), 48-54.
[http://dx.doi.org/10.1111/idh.12030] [PMID: 23730835]
[62]
Loo, W.T.; Jin, L.; Cheung, M.N.; Wang, M.; Chow, L.W. Epigenetic change in E-cadherin and COX-2 to predict chronic periodontitis. J. Transl. Med., 2010, 8, 110.
[http://dx.doi.org/10.1186/1479-5876-8-110] [PMID: 21047437]
[63]
Lavu, V.; Venkatesan, V.; Rao, S.R. The epigenetic paradigm in periodontitis pathogenesis. J. Indian Soc. Periodontol., 2015, 19(2), 142-149.
[http://dx.doi.org/10.4103/0972-124X.145784] [PMID: 26015662]
[64]
Zhang, S.; Barros, S.P.; Niculescu, M.D.; Moretti, A.J.; Preisser, J.S.; Offenbacher, S. Alteration of PTGS2 promoter methylation in chronic periodontitis. J. Dent. Res., 2010, 89(2), 133-137.
[http://dx.doi.org/10.1177/0022034509356512] [PMID: 20042743]
[65]
Schulz, S.; Immel, U.D.; Just, L.; Schaller, H.G.; Gläser, C.; Reichert, S. Epigenetic characteristics in inflammatory candidate genes in aggressive periodontitis. Hum. Immunol., 2016, 77(1), 71-75.
[http://dx.doi.org/10.1016/j.humimm.2015.10.007] [PMID: 26472015]
[66]
Larsson, L. Current concepts of epigenetics and its role in periodontitis. Curr. Oral Health Rep., 2017, 4(4), 286-293.
[http://dx.doi.org/10.1007/s40496-017-0156-9] [PMID: 29201597]
[67]
Lindroth, A.M.; Park, Y.J. Epigenetic biomarkers: a step forward for understanding periodontitis. J. Periodontal Implant Sci., 2013, 43(3), 111-120.
[http://dx.doi.org/10.5051/jpis.2013.43.3.111] [PMID: 23837125]
[68]
Hema, K.N.; Smitha, T.; Sheethal, H.S.; Mirnalini, S.A. Epigenetics in oral squamous cell carcinoma. J. Oral Maxillofac. Pathol., 2017, 21(2), 252-259.
[http://dx.doi.org/10.4103/jomfp.JOMFP_150_17] [PMID: 28932035]
[69]
Delgado-Calle, J.; Sañudo, C.; Bolado, A.; Fernández, A.F.; Arozamena, J.; Pascual-Carra, M.A.; Rodriguez-Rey, J.C.; Fraga, M.F.; Bonewald, L.; Riancho, J.A. DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. J. Bone Miner. Res., 2012, 27(4), 926-937.
[http://dx.doi.org/10.1002/jbmr.1491] [PMID: 22162201]
[70]
Yoshioka, H.; Minamizaki, T.; Yoshiko, Y. The dynamics of DNA methylation and hydroxymethylation during amelogenesis. Histochem. Cell Biol., 2015, 144(5), 471-478.
[http://dx.doi.org/10.1007/s00418-015-1353-z] [PMID: 26209269]
[71]
Fernando, S.; Speicher, D.J.; Bakr, M.M.; Benton, M.C.; Lea, R.A.; Scuffham, P.A.; Mihala, G.; Johnson, N.W. Protocol for assessing maternal, environmental and epigenetic risk factors for dental caries in children. BMC Oral Health, 2015, 15, 167.
[http://dx.doi.org/10.1186/s12903-015-0143-2] [PMID: 26715445]
[72]
Plamondon, J.A.; Harris, M.J.; Mager, D.L.; Gagnier, L.; Juriloff, D.M. The clf2 gene has an epigenetic role in the multifactorial etiology of cleft lip and palate in the A/WySn mouse strain. Birth Defects Res. A Clin. Mol. Teratol., 2011, 91(8), 716-727.
[http://dx.doi.org/10.1002/bdra.20788] [PMID: 21384535]
[73]
Ornoy, A. Valproic acid in pregnancy: how much are we endangering the embryo and fetus? Reprod. Toxicol., 2009, 28(1), 1-10.
[http://dx.doi.org/10.1016/j.reprotox.2009.02.014] [PMID: 19490988]
[74]
Desh, H.; Gray, S.L.; Horton, M.J.; Raoul, G.; Rowlerson, A.M.; Ferri, J.; Vieira, A.R.; Sciote, J.J. Molecular motor MYO1C, acetyltransferase KAT6B and osteogenetic transcription factor RUNX2 expression in human masseter muscle contributes to development of malocclusion. Arch. Oral Biol., 2014, 59(6), 601-607.
[http://dx.doi.org/10.1016/j.archoralbio.2014.03.005] [PMID: 24698832]
[75]
Wang, Y.; Zhu, Y.; Wang, Q.; Hu, H.; Li, Z.; Wang, D.; Zhang, W.; Qi, B.; Ye, J.; Wu, H.; Jiang, H.; Liu, L.; Yang, J.; Cheng, J. The histone demethylase LSD1 is a novel oncogene and therapeutic target in oral cancer. Cancer Lett., 2016, 374(1), 12-21.
[http://dx.doi.org/10.1016/j.canlet.2016.02.004] [PMID: 26872725]
[76]
Gasche, J.A.; Goel, A. Epigenetic mechanisms in oral carcinogenesis. Future Oncol., 2012, 8(11), 1407-1425.
[http://dx.doi.org/10.2217/fon.12.138] [PMID: 23148615]
[77]
Sato, T.; Suzuki, M.; Sato, Y.; Echigo, S.; Rikiishi, H. Sequence-dependent interaction between cisplatin and histone deacetylase inhibitors in human oral squamous cell carcinoma cells. Int. J. Oncol., 2006, 28(5), 1233-1241.
[http://dx.doi.org/10.3892/ijo.28.5.1233] [PMID: 16596240]
[78]
Nagumo, T.; Takaoka, S.; Yoshiba, S.; Ohashi, M.; Shirota, T.; Hatori, M.; Isobe, T.; Tachikawa, T.; Shintani, S. Antitumor activity of suberoylanilide hydroxamic acid against human oral squamous cell carcinoma cell lines in vitro and in vivo. Oral Oncol., 2009, 45(9), 766-770.
[http://dx.doi.org/10.1016/j.oraloncology.2008.11.009] [PMID: 19157955]
[79]
Jang, B.; Shin, J.A.; Kim, Y.S.; Kim, J.Y.; Yi, H.K.; Park, I.S.; Cho, N.P.; Cho, S.D. Growth-suppressive effect of suberoylanilide hydroxamic acid (SAHA) on human oral cancer cells. Cell Oncol. (Dordr.), 2016, 39(1), 79-87.
[http://dx.doi.org/10.1007/s13402-015-0255-3] [PMID: 26582320]
[80]
Jang, B.; Kim, L.H.; Lee, S.Y.; Lee, K.E.; Shin, J.A.; Cho, S.D. Trichostatin A induces apoptosis in oral squamous cell carcinoma cell lines independent of hyperacetylation of histones. J. Cancer Res. Ther., 2018, 14(Suppl.), S576-S582.
[http://dx.doi.org/10.4103/0973-1482.177220] [PMID: 30249871]
[81]
Sarkar, S.; Goldgar, S.; Byler, S.; Rosenthal, S.; Heerboth, S. Demethylation and re-expression of epigenetically silenced tumor suppressor genes: sensitization of cancer cells by combination therapy. Epigenomics, 2013, 5(1), 87-94.
[http://dx.doi.org/10.2217/epi.12.68] [PMID: 23414323]
[82]
Ma, J.; Zhang, Y.; Wang, J.; Zhao, T.; Ji, P.; Song, J.; Zhang, H.; Luo, W. Proliferative effects of gamma-amino butyric acid on oral squamous cell carcinoma cells are associated with mitogen-activated protein kinase signaling pathways. Int. J. Mol. Med., 2016, 38(1), 305-311.
[http://dx.doi.org/10.3892/ijmm.2016.2597] [PMID: 27222045]
[83]
Yakushiji, T.; Uzawa, K.; Shibahara, T.; Noma, H.; Tanzawa, H. Over-expression of DNA methyltransferases and CDKN2A gene methylation status in squamous cell carcinoma of the oral cavity. Int. J. Oncol., 2003, 22(6), 1201-1207.
[http://dx.doi.org/10.3892/ijo.22.6.1201] [PMID: 12738984]
[84]
Mallery, S.R.; Wang, D.; Santiago, B.; Pei, P.; Schwendeman, S.P.; Nieto, K.; Spinney, R.; Tong, M.; Koutras, G.; Han, B.; Holpuch, A.; Lang, J. Benefits of multifaceted chemopreventives in the suppression of the oral squamous cell carcinoma (OSCC) tumorigenic phenotype. Cancer Prev. Res. (Phila.), 2017, 10(1), 76-88.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0180] [PMID: 27756753]
[85]
Osei-Sarfo, K.; Gudas, L.J. Retinoids induce antagonism between FOXO3A and FOXM1 transcription factors in human oral squamous cell carcinoma (OSCC) cells. PLoS One, 2019, 14(4)e0215234
[http://dx.doi.org/10.1371/journal.pone.0215234] [PMID: 30978209]
[86]
Cantley, M.D.; Bartold, P.M.; Marino, V.; Fairlie, D.P.; Le, G.T.; Lucke, A.J.; Haynes, D.R. Histone deacetylase inhibitors and periodontal bone loss. J. Periodontal Res., 2011, 46(6), 697-703.
[http://dx.doi.org/10.1111/j.1600-0765.2011.01392.x] [PMID: 21745207]
[87]
Algate, K.; Haynes, D.; Fitzsimmons, T.; Romeo, O.; Wagner, F.; Holson, E.; Reid, R.; Fairlie, D.; Bartold, P.; Cantley, M. Histone deacetylases 1 and 2 inhibition suppresses cytokine production and osteoclast bone resorption in vitro. J. Cell. Biochem., 2020, 121(1), 244-258.
[http://dx.doi.org/10.1002/jcb.29137] [PMID: 31222845]
[88]
Chang, M.C.; Chen, Y.J.; Lian, Y.C.; Chang, B.E.; Huang, C.C.; Huang, W.L.; Pan, Y.H.; Jeng, J.H. Butyrate stimulates histone H3 acetylation, 8-isoprostane production, rankl expression, and regulated osteoprotegerin expression/ secretion in MG-63 osteoblastic cells. Int. J. Mol. Sci., 2018, 19(12), 4071.,
[http://dx.doi.org/10.3390/ijms19124071] [PMID: 30562925]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy