Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Levosimendan Prevents Memory Impairment Induced by Diabetes in Rats: Role of Oxidative Stress

Author(s): Abeer M. Rababa'h*, Karem H. Alzoubi, Sandy Baydoun and Omar F. Khabour

Volume 16, Issue 14, 2019

Page: [1300 - 1308] Pages: 9

DOI: 10.2174/1567205017666200102153239

Price: $65

Abstract

Background: Levosimendan is a calcium sensitizer and phosphodiesterase inhibitor that has potent antioxidant and anti-inflammatory activities.

Objectives: The aim of the current study is to investigate the potential protective effect of levosimendan on learning and memory impairment induced by diabetes.

Methods: Adult Wister rats were randomly divided into four groups (n=15 rats/group): control, levosimendan, streptozotocin (STZ) induced diabetes, and levosimendan-STZ diabetes. Upon confirmation of the success of the STZ diabetic model, intraperitoneal levosimendan (100µg/kg/week) was administrated to the assigned groups for 4 weeks. Then, the radial arm water maze was used to evaluate spatial learning and memory. Oxidative stress biomarkers and brain-derived neurotrophic factor were evaluated in hippocampal tissues.

Results: The results showed that Diabetes Mellitus (DM) impaired both short- and long- term memory (P<0.01), while levosimendan protected the animals from memory impairment. In addition, levosimendan prevented DM-induced reduction in the hippocampal levels of superoxide dismutase and glutathione peroxidase (P<0.05). Moreover, the administration of levosimendan prevented DM-induced increases in hippocampal thiobarbituric acid reactive substances level (P<0.05). Furthermore, levosimendan restored the ratio of reduced/oxidized glutathione (GSH/GSSG) in DM rats to that observed in the control group (P<0.05).

Conclusions: In summary, DM induced learning and memory impairment, and treatment with levosimendan impeded this impairment probably through preventing alterations in the antioxidant system in the hippocampus.

Keywords: Streptozotocin, reactive oxygen species, levosimendan, diabetes mellitus, memory, hyperglycemia.

[1]
Robles GI, Singh-Franco D. A review of exenatide as adjunctive therapy in patients with type 2 diabetes. Drug Des Devel Ther 3: 219-40. (2009)
[http://dx.doi.org/10.2147/DDDT.S3321] [PMID: 19920937]
[2]
Biessels GJ, Gispen WH. The impact of diabetes on cognition: what can be learned from rodent models? Neurobiol Aging 26(1): 36-41. (2005)
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.08.015] [PMID: 16223548]
[3]
Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH. Ageing and diabetes: implications for brain function. Eur J Pharmacol 441(1-2): 1-14. (2002)
[http://dx.doi.org/10.1016/S0014-2999(02)01486-3] [PMID: 12007915]
[4]
Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J 27(4): 269-73. (2012)
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[5]
Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 34(6): 1249-57. (2011)
[http://dx.doi.org/10.2337/dc11-0442] [PMID: 21617109]
[6]
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5): 1047-53. (2004)
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[7]
Kiritoshi S, Nishikawa T, Sonoda K, Kukidome D, Senokuchi T, Matsuo T, et al. Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes 52(10): 2570-7. (2003)
[http://dx.doi.org/10.2337/diabetes.52.10.2570] [PMID: 14514642]
[8]
Schmidt RE. Neuropathology and pathogenesis of diabetic autonomic neuropathy. Int Rev Neurobiol 50: 257-92. (2002)
[http://dx.doi.org/10.1016/S0074-7742(02)50080-5] [PMID: 12198813]
[9]
Ceretta LB, Réus GZ, Abelaira HM, Ribeiro KF, Zappellini G, Felisbino FF, et al. Increased oxidative stress and imbalance in antioxidant enzymes in the brains of alloxan-induced diabetic rats. Exp Diabetes Res 2012302682 (2012)
[http://dx.doi.org/10.1155/2012/302682] [PMID: 22645603]
[10]
Alzoubi KH, Khabour OF, Alhaidar IA, Aleisa AM, Alkadhi KA. Diabetes impairs synaptic plasticity in the superior cervical ganglion: possible role for BDNF and oxidative stress. J Mol Neurosci 51(3): 763-70. (2013)
[http://dx.doi.org/10.1007/s12031-013-0061-1] [PMID: 23832486]
[11]
de M Bandeira S, da Fonseca LJ, da S Guedes G, Rabelo LA, Goulart MO, Vasconcelos SM. Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. Int J Mol Sci 14(2): 3265-84. (2013)
[http://dx.doi.org/10.3390/ijms14023265] [PMID: 23385234]
[12]
Feng B, Ruiz MA, Chakrabarti S. Oxidative-stress-induced epigenetic changes in chronic diabetic complications. Can J Physiol Pharmacol 91(3): 213-20. (2013)
[http://dx.doi.org/10.1139/cjpp-2012-0251] [PMID: 23537434]
[13]
Malone JI, Hanna S, Saporta S, Mervis RF, Park CR, Chong L, et al. Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory. Pediatr Diabetes 9(6): 531-9. (2008)
[http://dx.doi.org/10.1111/j.1399-5448.2008.00431.x] [PMID: 19067891]
[14]
Raha S, McEachern GE, Myint AT, Robinson BH. Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Free Radic Biol Med 29(2): 170-80. (2000)
[http://dx.doi.org/10.1016/S0891-5849(00)00338-5] [PMID: 10980405]
[15]
Duchen MR. Roles of mitochondria in health and disease. Diabetes 53(1): S96-S102. (2004)
[http://dx.doi.org/10.2337/diabetes.53.2007.S96] [PMID: 14749273]
[16]
Alzoubi KH, Abdul-Razzak KK, Khabour OF, Al-Tuweiq GM, Alzubi MA, Alkadhi KA. Adverse effect of combination of chronic psychosocial stress and high fat diet on hippocampus-dependent memory in rats. Behav Brain Res 204(1): 117-23. (2009)
[http://dx.doi.org/10.1016/j.bbr.2009.05.025] [PMID: 19482049]
[17]
Ros-Simó C, Moscoso-Castro M, Ruiz-Medina J, Ros J, Valverde O. Memory impairment and hippocampus specific protein oxidation induced by ethanol intake and 3, 4-methylenedioxymethamphetamine (MDMA) in mice. J Neurochem 125(5): 736-46. (2013)
[http://dx.doi.org/10.1111/jnc.12247] [PMID: 23521165]
[18]
Alzoubi KH, Khabour OF, Rashid BA, Damaj IM, Salah HA. The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: the role of oxidative stress. Behav Brain Res 226(1): 205-10. (2012)
[http://dx.doi.org/10.1016/j.bbr.2011.09.017] [PMID: 21944940]
[19]
Rababa’h AM, Alzoubi KH, Atmeh A. Levosimendan enhances memory through antioxidant effect in rat model: behavioral and molecular study. Behav Pharmacol 29(4): 344-50. (2018)
[http://dx.doi.org/10.1097/FBP.0000000000000362] [PMID: 29176443]
[20]
Aiguo Wu, Zhe Ying, Gomez-Pinilla F. Vitamin E protects against oxidative damage and learning disability after mild traumatic brain injury in rats. Neurorehabil Neural Repair 24(3): 290-8. (2010)
[http://dx.doi.org/10.1177/1545968309348318] [PMID: 19841436]
[21]
Benzi G, Marzatico F, Pastoris O, Villa RF. Influence of oxidative stress on the age-linked alterations of the cerebral glutathione system. J Neurosci Res 26(1): 120-8. (1990)
[http://dx.doi.org/10.1002/jnr.490260116] [PMID: 2162971]
[22]
Alzoubi KH, Khabour OF, Al-Azzam SI, Tashtoush MH, Mhaidat NM. metformin eased cognitive impairment induced by chronic l-methionine administration: potential role of oxidative stress. Curr Neuropharmacol 12(2): 186-92. (2014)
[http://dx.doi.org/10.2174/1570159X11666131120223201] [PMID: 24669211]
[23]
Alzoubi KH, Khabour OF, Tashtoush NH, Al-Azzam SI, Mhaidat NM. Evaluation of the effect of pentoxifylline on sleep-deprivation induced memory impairment. Hippocampus 23(9): 812-9. (2013)
[http://dx.doi.org/10.1002/hipo.22135] [PMID: 23592546]
[24]
Alzoubi KH, Rababa’h AM, Al Yacoub ON. Tempol prevents post-traumatic stress disorder induced memory impairment. Physiol Behav 184: 189-95. (2018)
[http://dx.doi.org/10.1016/j.physbeh.2017.12.002] [PMID: 29217357]
[25]
Figgitt DP, Gillies PS, Goa KL. Levosimendan. Drugs 61(5): 613-27. (2001)
[http://dx.doi.org/10.2165/00003495-200161050-00006] [PMID: 11368286]
[26]
Sahu MK, Das A, Malik V, Subramanian A, Singh SP, Hote M. Comparison of levosimendan and nitroglycerine in patients undergoing coronary artery bypass graft surgery. Ann Card Anaesth 19(1): 52-8. (2016)
[http://dx.doi.org/10.4103/0971-9784.173020] [PMID: 26750674]
[27]
Lim JY, Deo SV, Rababa’h A, Altarabsheh SE, Cho YH, Hang D, et al. Levosimendan reduces mortality in adults with left ventricular dysfunction undergoing cardiac surgery: a systematic review and meta-analysis. J Card Surg 30(7): 547-54. (2015)
[http://dx.doi.org/10.1111/jocs.12562] [PMID: 25989324]
[28]
Kiraz HA, Poyraz F, Kip G, Erdem Ö, Alkan M, Arslan M, et al. The effect of levosimendan on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats. Libyan J Med 10(1): 29269. (2015)
[http://dx.doi.org/10.3402/ljm.v10.29269] [PMID: 26649830]
[29]
Matsumoto S, Cho S, Tosaka S, Higashijima U, Maekawa T, Hara T. Hyperglycemia raises the threshold of levosimendan- but not milrinone-induced postconditioning in rat hearts. Cardiovasc Diabetol 11: 4. (2012)
[http://dx.doi.org/10.1186/1475-2840-11-4] [PMID: 22239823]
[30]
Pathak A, Lebrin M, Vaccaro A, Senard JM, Despas F. Pharmacology of levosimendan: inotropic, vasodilatory and cardioprotective effects. J Clin Pharm Ther 38(5): 341-9. (2013)
[http://dx.doi.org/10.1111/jcpt.12067] [PMID: 23594161]
[31]
Kasikcioglu HA, Cam N. A review of levosimendan in the treatment of heart failure. Vasc Health Risk Manag 2(4): 389-400. (2006)
[http://dx.doi.org/10.2147/vhrm.2006.2.4.389] [PMID: 17323593]
[32]
Gong B, Li Z, Yat Wong PC. Levosimendan treatment for heart failure: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth 29(6): 1415-25. (2015)
[http://dx.doi.org/10.1053/j.jvca.2015.03.023] [PMID: 26275522]
[33]
Roehl AB, Hein M, Loetscher PD, Rossaint J, Weis J, Rossaint R, et al. Neuroprotective properties of levosimendan in an in vitro model of traumatic brain injury. BMC Neurol 10: 97. (2010)
[http://dx.doi.org/10.1186/1471-2377-10-97] [PMID: 20964834]
[34]
Dubin A, Murias G, Sottile JP, Pozo MO, Barán M, Edul VS, et al. Effects of levosimendan and dobutamine in experimental acute endotoxemia: a preliminary controlled study. Intensive Care Med 33(3): 485-94. (2007)
[http://dx.doi.org/10.1007/s00134-006-0519-5] [PMID: 17262190]
[35]
Antila S, Huuskonen H, Nevalainen T, Kanerva H, Vanninen P, Lehtonen L. Site dependent bioavailability and metabolism of levosimendan in dogs. Eur J Pharm Sci 9(1): 85-91. (1999)
[http://dx.doi.org/10.1016/S0928-0987(99)00048-2] [PMID: 10494001]
[36]
Roehl AB, Zoremba N, Kipp M, Schiefer J, Goetzenich A, Bleilevens C, et al. The effects of levosimendan on brain metabolism during initial recovery from global transient ischaemia/hypoxia. BMC Neurol 12: 81. (2012)
[http://dx.doi.org/10.1186/1471-2377-12-81] [PMID: 22920500]
[37]
Antila S, Sundberg S, Lehtonen LA. Clinical pharmacology of levosimendan. Clin Pharmacokinet 46(7): 535-52. (2007)
[http://dx.doi.org/10.2165/00003088-200746070-00001] [PMID: 17596101]
[38]
Antoniades C, Antonopoulos AS, Tousoulis D, Bakogiannis C, Stefanadi E, Stefanadis C. Relationship between the pharmacokinetics of levosimendan and its effects on cardiovascular system. Curr Drug Metab 10(2): 95-103. (2009)
[http://dx.doi.org/10.2174/138920009787522142] [PMID: 19275545]
[39]
Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 70 5 47 1-20 70(5 47): 1-20. (2015)
[http://dx.doi.org/10.1002/0471141755.ph0547s70]
[40]
Khorsand M, Akmali M, Akhzari M. Efficacy of melatonin in restoring the antioxidant status in the lens of diabetic rats induced by streptozotocin. J Diabetes Metab Disord 18(2): 543-9. (2019)
[http://dx.doi.org/10.1007/s40200-019-00445-8] [PMID: 31890680]
[41]
Haacke H. Induction of diabetes mellitus of various degree of severity using streptozotocin in rats. Klin Wochenschr 47(8): 437-8. (1969)
[http://dx.doi.org/10.1007/BF01745791] [PMID: 5383655]
[42]
Mhaidat NM, Alzoubi KH, Khabour OF, Tashtoush NH, Banihani SA, Abdul-razzak KK. Exploring the effect of vitamin C on sleep deprivation induced memory impairment. Brain Res Bull 113: 41-7. (2015)
[http://dx.doi.org/10.1016/j.brainresbull.2015.02.002] [PMID: 25724146]
[43]
Alzoubi KH, Abdul-Razzak KK, Khabour OF, Al-Tuweiq GM, Alzubi MA, Alkadhi KA. Caffeine prevents cognitive impairment induced by chronic psychosocial stress and/or high fat-high carbohydrate diet. Behav Brain Res 237: 7-14. (2013)
[http://dx.doi.org/10.1016/j.bbr.2012.09.018] [PMID: 23000531]
[44]
Diamond DM, Park CR, Heman KL, Rose GM. Exposing rats to a predator impairs spatial working memory in the radial arm water maze. Hippocampus 9(5): 542-52. (1999)
[http://dx.doi.org/10.1002/(SICI)1098-1063(1999)9:5<542:AID-HIPO8>3.0.CO;2-N] [PMID: 10560925]
[45]
Alzoubi KH, Rababa’h AM, Owaisi A, Khabour OF. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation. Brain Res Bull 131: 176-82. (2017)
[http://dx.doi.org/10.1016/j.brainresbull.2017.04.004] [PMID: 28433816]
[46]
Biessels GJ, Kamal A, Ramakers GM, Urban IJ, Spruijt BM, Erkelens DW, et al. Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45(9): 1259-66. (1996)
[http://dx.doi.org/10.2337/diab.45.9.1259] [PMID: 8772732]
[47]
Kamal A, Biessels GJ, Duis SE, Gispen WH. Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing. Diabetologia 43(4): 500-6. (2000)
[http://dx.doi.org/10.1007/s001250051335] [PMID: 10819245]
[48]
Helkala E-L, Niskanen L, Viinamaki H, Partanen J, Uusitupa M. Short-term and long-term memory in elderly patients with NIDDM. Diabetes Care 18(5): 681-5. (1995)
[http://dx.doi.org/10.2337/diacare.18.5.681] [PMID: 8586007]
[49]
Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, et al. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain 131(Pt 12): 3311-34. (2008)
[http://dx.doi.org/10.1093/brain/awn288] [PMID: 19015157]
[50]
Khan MB, Khan MM, Khan A, Ahmed ME, Ishrat T, Tabassum R, et al. Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem Int 61(7): 1081-93. (2012)
[http://dx.doi.org/10.1016/j.neuint.2012.07.025] [PMID: 22898296]
[51]
Alzoubi KH, Khabour OF, Salah HA, Abu Rashid BE. The combined effect of sleep deprivation and Western diet on spatial learning and memory: role of BDNF and oxidative stress. J Mol Neurosci 50(1): 124-33. (2013)
[http://dx.doi.org/10.1007/s12031-012-9881-7] [PMID: 22956188]
[52]
Jittiwat J, Wattanathorn J. Ginger pharmacopuncture improves cognitive impairment and oxidative stress following cerebral ischemia. J Acupunct Meridian Stud 2012; 5(6): 295-300.
[http://dx.doi.org/10.1016/j.jams.2012.09.003] [PMID: 23265080]
[53]
Espinoza SE, Guo H, Fedarko N, DeZern A, Fried LP, Xue QL, et al. Glutathione peroxidase enzyme activity in aging. J Gerontol A Biol Sci Med Sci 63(5): 505-9. (2008)
[http://dx.doi.org/10.1093/gerona/63.5.505] [PMID: 18511755]
[54]
Maritim AC, Sanders RA, Watkins JB III. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17(1): 24-38. (2003)
[http://dx.doi.org/10.1002/jbt.10058] [PMID: 12616644]
[55]
Mastrocola R, Restivo F, Vercellinatto I, Danni O, Brignardello E, Aragno M, et al. Oxidative and nitrosative stress in brain mitochondria of diabetic rats. J Endocrinol 187(1): 37-44. (2005)
[http://dx.doi.org/10.1677/joe.1.06269] [PMID: 16214939]
[56]
Tuzcu M, Baydas G. Effect of melatonin and vitamin E on diabetes-induced learning and memory impairment in rats. Eur J Pharmacol 537(1-3): 106-10. (2006)
[http://dx.doi.org/10.1016/j.ejphar.2006.03.024] [PMID: 16626697]
[57]
Kuhad A, Sethi R, Chopra K. Lycopene attenuates diabetes-associated cognitive decline in rats. Life Sci 83(3-4): 128-34. (2008)
[http://dx.doi.org/10.1016/j.lfs.2008.05.013] [PMID: 18585396]
[58]
Alipour M, Salehi I, Ghadiri Soufi F. Effect of exercise on diabetes-induced oxidative stress in the rat hippocampus. Iran Red Crescent Med J 14(4): 222-8. (2012)
[PMID: 22754685]
[59]
Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 220: 223-50. (2014)
[http://dx.doi.org/10.1007/978-3-642-45106-5_9] [PMID: 24668475]
[60]
Garza AA, Ha TG, Garcia C, Chen MJ, Russo-Neustadt AA. Exercise, antidepressant treatment, and BDNF mRNA expression in the aging brain. Pharmacol Biochem Behav 77(2): 209-. (2004). [eng.]
[http://dx.doi.org/10.1016/j.pbb.2003.10.020] [PMID: 14751447]
[61]
Mitchell JB, Samuni A, Krishna MC, DeGraff WG, Ahn MS, Samuni U, et al. Biologically active metal-independent superoxide dismutase mimics. Biochemistry 29(11): 2802-7. (1990). [eng.]
[http://dx.doi.org/10.1021/bi00463a024] [PMID: 2161256]
[62]
Etemad A, Sheikhzadeh F, Asl NA. Evaluation of brain-derived neurotrophic factor in diabetic rats. Neurol Res 37(3): 217-22. (2015)
[http://dx.doi.org/10.1179/1743132814Y.0000000428] [PMID: 25082546]
[63]
Karakus E, Halici Z, Albayrak A, Bayir Y, Aydin A, Unal D, et al. Beneficial pharmacological effects of levosimendan on antioxidant status of acute inflammation induced in paw of rat: involvement in inflammatory mediators. Basic Clin Pharmacol Toxicol 112(3): 156-63. (2013)
[http://dx.doi.org/10.1111/bcpt.12004] [PMID: 22938184]
[64]
Gozeler MS, Ekinci Akdemir FN, Yildirim S, Sahin A, Eser G, Askin S. Levosimendan ameliorates cisplatin-induced ototoxicity: Rat model. Int J Pediatr Otorhinolaryngol 122: 70-5. (2019)
[http://dx.doi.org/10.1016/j.ijporl.2019.04.004] [PMID: 30978472]
[65]
Grossini E, Pollesello P, Bellofatto K, Sigaudo L, Farruggio S, Origlia V, et al. Protective effects elicited by levosimendan against liver ischemia/reperfusion injury in anesthetized rats. Liver Transpl 20(3): 361-75. (2014)
[http://dx.doi.org/10.1002/lt.23799] [PMID: 24273004]
[66]
Aydin C, Ay Y, Basel H, Kavak S, Inan B, Bektaş H, et al. Analysis of the influences of short-term levosimendan exposure on oxidant/antioxidant status and trace-element levels in the physiological status of the thoracic aorta of rats. J Membr Biol 245(12): 827-32. (2012)
[http://dx.doi.org/10.1007/s00232-012-9489-4] [PMID: 22843162]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy