Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

左西孟旦预防糖尿病引起的大鼠记忆力减退:氧化应激的作用

卷 16, 期 14, 2019

页: [1300 - 1308] 页: 9

弟呕挨: 10.2174/1567205017666200102153239

价格: $65

摘要

背景:左西孟旦是一种钙敏化剂和磷酸二酯酶抑制剂,具有有效的抗氧化剂和抗炎活性。 目的:本研究的目的是研究左西孟旦对糖尿病引起的学习和记忆障碍的潜在保护作用。 方法:成年Wister大鼠随机分为四组(每组15只):对照组,左西孟旦,链脲佐菌素(STZ)诱发的糖尿病和左西孟旦-STZ糖尿病。确认STZ糖尿病模型成功后,将腹膜内左西孟旦(100μg/ kg /周)给予指定组4周。然后,采用径向臂水迷宫被用来评估空间学习和记忆。在海马组织中评估了氧化应激生物标志物和脑源性神经营养因子。 结果:结果表明,糖尿病(DM)损害了短期和长期记忆(P <0.01),而左西孟旦可以保护动物免受记忆损害。此外,左西孟旦预防了DM引起的海马超氧化物歧化酶和谷胱甘肽过氧化物酶水平的降低(P <0.05)。此外,左西孟旦的给药防止了DM引起的海马硫代巴比妥酸反应性物质水平的升高(P <0.05)。此外,左西孟旦使DM大鼠中还原/氧化型谷胱甘肽(GSH / GSSG)的比例恢复至对照组(P <0.05)。 结论:总之,DM诱导的学习和记忆障碍,左西孟旦治疗可能通过防止海马中抗氧化系统的改变来阻止这种障碍。

关键词: 链脲佐菌素,活性氧,左西孟旦,糖尿病,记忆力,高血糖症。

[1]
Robles GI, Singh-Franco D. A review of exenatide as adjunctive therapy in patients with type 2 diabetes. Drug Des Devel Ther 3: 219-40. (2009)
[http://dx.doi.org/10.2147/DDDT.S3321] [PMID: 19920937]
[2]
Biessels GJ, Gispen WH. The impact of diabetes on cognition: what can be learned from rodent models? Neurobiol Aging 26(1): 36-41. (2005)
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.08.015] [PMID: 16223548]
[3]
Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH. Ageing and diabetes: implications for brain function. Eur J Pharmacol 441(1-2): 1-14. (2002)
[http://dx.doi.org/10.1016/S0014-2999(02)01486-3] [PMID: 12007915]
[4]
Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J 27(4): 269-73. (2012)
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[5]
Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 34(6): 1249-57. (2011)
[http://dx.doi.org/10.2337/dc11-0442] [PMID: 21617109]
[6]
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5): 1047-53. (2004)
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[7]
Kiritoshi S, Nishikawa T, Sonoda K, Kukidome D, Senokuchi T, Matsuo T, et al. Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes 52(10): 2570-7. (2003)
[http://dx.doi.org/10.2337/diabetes.52.10.2570] [PMID: 14514642]
[8]
Schmidt RE. Neuropathology and pathogenesis of diabetic autonomic neuropathy. Int Rev Neurobiol 50: 257-92. (2002)
[http://dx.doi.org/10.1016/S0074-7742(02)50080-5] [PMID: 12198813]
[9]
Ceretta LB, Réus GZ, Abelaira HM, Ribeiro KF, Zappellini G, Felisbino FF, et al. Increased oxidative stress and imbalance in antioxidant enzymes in the brains of alloxan-induced diabetic rats. Exp Diabetes Res 2012302682 (2012)
[http://dx.doi.org/10.1155/2012/302682] [PMID: 22645603]
[10]
Alzoubi KH, Khabour OF, Alhaidar IA, Aleisa AM, Alkadhi KA. Diabetes impairs synaptic plasticity in the superior cervical ganglion: possible role for BDNF and oxidative stress. J Mol Neurosci 51(3): 763-70. (2013)
[http://dx.doi.org/10.1007/s12031-013-0061-1] [PMID: 23832486]
[11]
de M Bandeira S, da Fonseca LJ, da S Guedes G, Rabelo LA, Goulart MO, Vasconcelos SM. Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. Int J Mol Sci 14(2): 3265-84. (2013)
[http://dx.doi.org/10.3390/ijms14023265] [PMID: 23385234]
[12]
Feng B, Ruiz MA, Chakrabarti S. Oxidative-stress-induced epigenetic changes in chronic diabetic complications. Can J Physiol Pharmacol 91(3): 213-20. (2013)
[http://dx.doi.org/10.1139/cjpp-2012-0251] [PMID: 23537434]
[13]
Malone JI, Hanna S, Saporta S, Mervis RF, Park CR, Chong L, et al. Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory. Pediatr Diabetes 9(6): 531-9. (2008)
[http://dx.doi.org/10.1111/j.1399-5448.2008.00431.x] [PMID: 19067891]
[14]
Raha S, McEachern GE, Myint AT, Robinson BH. Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Free Radic Biol Med 29(2): 170-80. (2000)
[http://dx.doi.org/10.1016/S0891-5849(00)00338-5] [PMID: 10980405]
[15]
Duchen MR. Roles of mitochondria in health and disease. Diabetes 53(1): S96-S102. (2004)
[http://dx.doi.org/10.2337/diabetes.53.2007.S96] [PMID: 14749273]
[16]
Alzoubi KH, Abdul-Razzak KK, Khabour OF, Al-Tuweiq GM, Alzubi MA, Alkadhi KA. Adverse effect of combination of chronic psychosocial stress and high fat diet on hippocampus-dependent memory in rats. Behav Brain Res 204(1): 117-23. (2009)
[http://dx.doi.org/10.1016/j.bbr.2009.05.025] [PMID: 19482049]
[17]
Ros-Simó C, Moscoso-Castro M, Ruiz-Medina J, Ros J, Valverde O. Memory impairment and hippocampus specific protein oxidation induced by ethanol intake and 3, 4-methylenedioxymethamphetamine (MDMA) in mice. J Neurochem 125(5): 736-46. (2013)
[http://dx.doi.org/10.1111/jnc.12247] [PMID: 23521165]
[18]
Alzoubi KH, Khabour OF, Rashid BA, Damaj IM, Salah HA. The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: the role of oxidative stress. Behav Brain Res 226(1): 205-10. (2012)
[http://dx.doi.org/10.1016/j.bbr.2011.09.017] [PMID: 21944940]
[19]
Rababa’h AM, Alzoubi KH, Atmeh A. Levosimendan enhances memory through antioxidant effect in rat model: behavioral and molecular study. Behav Pharmacol 29(4): 344-50. (2018)
[http://dx.doi.org/10.1097/FBP.0000000000000362] [PMID: 29176443]
[20]
Aiguo Wu, Zhe Ying, Gomez-Pinilla F. Vitamin E protects against oxidative damage and learning disability after mild traumatic brain injury in rats. Neurorehabil Neural Repair 24(3): 290-8. (2010)
[http://dx.doi.org/10.1177/1545968309348318] [PMID: 19841436]
[21]
Benzi G, Marzatico F, Pastoris O, Villa RF. Influence of oxidative stress on the age-linked alterations of the cerebral glutathione system. J Neurosci Res 26(1): 120-8. (1990)
[http://dx.doi.org/10.1002/jnr.490260116] [PMID: 2162971]
[22]
Alzoubi KH, Khabour OF, Al-Azzam SI, Tashtoush MH, Mhaidat NM. metformin eased cognitive impairment induced by chronic l-methionine administration: potential role of oxidative stress. Curr Neuropharmacol 12(2): 186-92. (2014)
[http://dx.doi.org/10.2174/1570159X11666131120223201] [PMID: 24669211]
[23]
Alzoubi KH, Khabour OF, Tashtoush NH, Al-Azzam SI, Mhaidat NM. Evaluation of the effect of pentoxifylline on sleep-deprivation induced memory impairment. Hippocampus 23(9): 812-9. (2013)
[http://dx.doi.org/10.1002/hipo.22135] [PMID: 23592546]
[24]
Alzoubi KH, Rababa’h AM, Al Yacoub ON. Tempol prevents post-traumatic stress disorder induced memory impairment. Physiol Behav 184: 189-95. (2018)
[http://dx.doi.org/10.1016/j.physbeh.2017.12.002] [PMID: 29217357]
[25]
Figgitt DP, Gillies PS, Goa KL. Levosimendan. Drugs 61(5): 613-27. (2001)
[http://dx.doi.org/10.2165/00003495-200161050-00006] [PMID: 11368286]
[26]
Sahu MK, Das A, Malik V, Subramanian A, Singh SP, Hote M. Comparison of levosimendan and nitroglycerine in patients undergoing coronary artery bypass graft surgery. Ann Card Anaesth 19(1): 52-8. (2016)
[http://dx.doi.org/10.4103/0971-9784.173020] [PMID: 26750674]
[27]
Lim JY, Deo SV, Rababa’h A, Altarabsheh SE, Cho YH, Hang D, et al. Levosimendan reduces mortality in adults with left ventricular dysfunction undergoing cardiac surgery: a systematic review and meta-analysis. J Card Surg 30(7): 547-54. (2015)
[http://dx.doi.org/10.1111/jocs.12562] [PMID: 25989324]
[28]
Kiraz HA, Poyraz F, Kip G, Erdem Ö, Alkan M, Arslan M, et al. The effect of levosimendan on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats. Libyan J Med 10(1): 29269. (2015)
[http://dx.doi.org/10.3402/ljm.v10.29269] [PMID: 26649830]
[29]
Matsumoto S, Cho S, Tosaka S, Higashijima U, Maekawa T, Hara T. Hyperglycemia raises the threshold of levosimendan- but not milrinone-induced postconditioning in rat hearts. Cardiovasc Diabetol 11: 4. (2012)
[http://dx.doi.org/10.1186/1475-2840-11-4] [PMID: 22239823]
[30]
Pathak A, Lebrin M, Vaccaro A, Senard JM, Despas F. Pharmacology of levosimendan: inotropic, vasodilatory and cardioprotective effects. J Clin Pharm Ther 38(5): 341-9. (2013)
[http://dx.doi.org/10.1111/jcpt.12067] [PMID: 23594161]
[31]
Kasikcioglu HA, Cam N. A review of levosimendan in the treatment of heart failure. Vasc Health Risk Manag 2(4): 389-400. (2006)
[http://dx.doi.org/10.2147/vhrm.2006.2.4.389] [PMID: 17323593]
[32]
Gong B, Li Z, Yat Wong PC. Levosimendan treatment for heart failure: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth 29(6): 1415-25. (2015)
[http://dx.doi.org/10.1053/j.jvca.2015.03.023] [PMID: 26275522]
[33]
Roehl AB, Hein M, Loetscher PD, Rossaint J, Weis J, Rossaint R, et al. Neuroprotective properties of levosimendan in an in vitro model of traumatic brain injury. BMC Neurol 10: 97. (2010)
[http://dx.doi.org/10.1186/1471-2377-10-97] [PMID: 20964834]
[34]
Dubin A, Murias G, Sottile JP, Pozo MO, Barán M, Edul VS, et al. Effects of levosimendan and dobutamine in experimental acute endotoxemia: a preliminary controlled study. Intensive Care Med 33(3): 485-94. (2007)
[http://dx.doi.org/10.1007/s00134-006-0519-5] [PMID: 17262190]
[35]
Antila S, Huuskonen H, Nevalainen T, Kanerva H, Vanninen P, Lehtonen L. Site dependent bioavailability and metabolism of levosimendan in dogs. Eur J Pharm Sci 9(1): 85-91. (1999)
[http://dx.doi.org/10.1016/S0928-0987(99)00048-2] [PMID: 10494001]
[36]
Roehl AB, Zoremba N, Kipp M, Schiefer J, Goetzenich A, Bleilevens C, et al. The effects of levosimendan on brain metabolism during initial recovery from global transient ischaemia/hypoxia. BMC Neurol 12: 81. (2012)
[http://dx.doi.org/10.1186/1471-2377-12-81] [PMID: 22920500]
[37]
Antila S, Sundberg S, Lehtonen LA. Clinical pharmacology of levosimendan. Clin Pharmacokinet 46(7): 535-52. (2007)
[http://dx.doi.org/10.2165/00003088-200746070-00001] [PMID: 17596101]
[38]
Antoniades C, Antonopoulos AS, Tousoulis D, Bakogiannis C, Stefanadi E, Stefanadis C. Relationship between the pharmacokinetics of levosimendan and its effects on cardiovascular system. Curr Drug Metab 10(2): 95-103. (2009)
[http://dx.doi.org/10.2174/138920009787522142] [PMID: 19275545]
[39]
Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 70 5 47 1-20 70(5 47): 1-20. (2015)
[http://dx.doi.org/10.1002/0471141755.ph0547s70]
[40]
Khorsand M, Akmali M, Akhzari M. Efficacy of melatonin in restoring the antioxidant status in the lens of diabetic rats induced by streptozotocin. J Diabetes Metab Disord 18(2): 543-9. (2019)
[http://dx.doi.org/10.1007/s40200-019-00445-8] [PMID: 31890680]
[41]
Haacke H. Induction of diabetes mellitus of various degree of severity using streptozotocin in rats. Klin Wochenschr 47(8): 437-8. (1969)
[http://dx.doi.org/10.1007/BF01745791] [PMID: 5383655]
[42]
Mhaidat NM, Alzoubi KH, Khabour OF, Tashtoush NH, Banihani SA, Abdul-razzak KK. Exploring the effect of vitamin C on sleep deprivation induced memory impairment. Brain Res Bull 113: 41-7. (2015)
[http://dx.doi.org/10.1016/j.brainresbull.2015.02.002] [PMID: 25724146]
[43]
Alzoubi KH, Abdul-Razzak KK, Khabour OF, Al-Tuweiq GM, Alzubi MA, Alkadhi KA. Caffeine prevents cognitive impairment induced by chronic psychosocial stress and/or high fat-high carbohydrate diet. Behav Brain Res 237: 7-14. (2013)
[http://dx.doi.org/10.1016/j.bbr.2012.09.018] [PMID: 23000531]
[44]
Diamond DM, Park CR, Heman KL, Rose GM. Exposing rats to a predator impairs spatial working memory in the radial arm water maze. Hippocampus 9(5): 542-52. (1999)
[http://dx.doi.org/10.1002/(SICI)1098-1063(1999)9:5<542:AID-HIPO8>3.0.CO;2-N] [PMID: 10560925]
[45]
Alzoubi KH, Rababa’h AM, Owaisi A, Khabour OF. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation. Brain Res Bull 131: 176-82. (2017)
[http://dx.doi.org/10.1016/j.brainresbull.2017.04.004] [PMID: 28433816]
[46]
Biessels GJ, Kamal A, Ramakers GM, Urban IJ, Spruijt BM, Erkelens DW, et al. Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45(9): 1259-66. (1996)
[http://dx.doi.org/10.2337/diab.45.9.1259] [PMID: 8772732]
[47]
Kamal A, Biessels GJ, Duis SE, Gispen WH. Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing. Diabetologia 43(4): 500-6. (2000)
[http://dx.doi.org/10.1007/s001250051335] [PMID: 10819245]
[48]
Helkala E-L, Niskanen L, Viinamaki H, Partanen J, Uusitupa M. Short-term and long-term memory in elderly patients with NIDDM. Diabetes Care 18(5): 681-5. (1995)
[http://dx.doi.org/10.2337/diacare.18.5.681] [PMID: 8586007]
[49]
Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, et al. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain 131(Pt 12): 3311-34. (2008)
[http://dx.doi.org/10.1093/brain/awn288] [PMID: 19015157]
[50]
Khan MB, Khan MM, Khan A, Ahmed ME, Ishrat T, Tabassum R, et al. Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem Int 61(7): 1081-93. (2012)
[http://dx.doi.org/10.1016/j.neuint.2012.07.025] [PMID: 22898296]
[51]
Alzoubi KH, Khabour OF, Salah HA, Abu Rashid BE. The combined effect of sleep deprivation and Western diet on spatial learning and memory: role of BDNF and oxidative stress. J Mol Neurosci 50(1): 124-33. (2013)
[http://dx.doi.org/10.1007/s12031-012-9881-7] [PMID: 22956188]
[52]
Jittiwat J, Wattanathorn J. Ginger pharmacopuncture improves cognitive impairment and oxidative stress following cerebral ischemia. J Acupunct Meridian Stud 2012; 5(6): 295-300.
[http://dx.doi.org/10.1016/j.jams.2012.09.003] [PMID: 23265080]
[53]
Espinoza SE, Guo H, Fedarko N, DeZern A, Fried LP, Xue QL, et al. Glutathione peroxidase enzyme activity in aging. J Gerontol A Biol Sci Med Sci 63(5): 505-9. (2008)
[http://dx.doi.org/10.1093/gerona/63.5.505] [PMID: 18511755]
[54]
Maritim AC, Sanders RA, Watkins JB III. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17(1): 24-38. (2003)
[http://dx.doi.org/10.1002/jbt.10058] [PMID: 12616644]
[55]
Mastrocola R, Restivo F, Vercellinatto I, Danni O, Brignardello E, Aragno M, et al. Oxidative and nitrosative stress in brain mitochondria of diabetic rats. J Endocrinol 187(1): 37-44. (2005)
[http://dx.doi.org/10.1677/joe.1.06269] [PMID: 16214939]
[56]
Tuzcu M, Baydas G. Effect of melatonin and vitamin E on diabetes-induced learning and memory impairment in rats. Eur J Pharmacol 537(1-3): 106-10. (2006)
[http://dx.doi.org/10.1016/j.ejphar.2006.03.024] [PMID: 16626697]
[57]
Kuhad A, Sethi R, Chopra K. Lycopene attenuates diabetes-associated cognitive decline in rats. Life Sci 83(3-4): 128-34. (2008)
[http://dx.doi.org/10.1016/j.lfs.2008.05.013] [PMID: 18585396]
[58]
Alipour M, Salehi I, Ghadiri Soufi F. Effect of exercise on diabetes-induced oxidative stress in the rat hippocampus. Iran Red Crescent Med J 14(4): 222-8. (2012)
[PMID: 22754685]
[59]
Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 220: 223-50. (2014)
[http://dx.doi.org/10.1007/978-3-642-45106-5_9] [PMID: 24668475]
[60]
Garza AA, Ha TG, Garcia C, Chen MJ, Russo-Neustadt AA. Exercise, antidepressant treatment, and BDNF mRNA expression in the aging brain. Pharmacol Biochem Behav 77(2): 209-. (2004). [eng.]
[http://dx.doi.org/10.1016/j.pbb.2003.10.020] [PMID: 14751447]
[61]
Mitchell JB, Samuni A, Krishna MC, DeGraff WG, Ahn MS, Samuni U, et al. Biologically active metal-independent superoxide dismutase mimics. Biochemistry 29(11): 2802-7. (1990). [eng.]
[http://dx.doi.org/10.1021/bi00463a024] [PMID: 2161256]
[62]
Etemad A, Sheikhzadeh F, Asl NA. Evaluation of brain-derived neurotrophic factor in diabetic rats. Neurol Res 37(3): 217-22. (2015)
[http://dx.doi.org/10.1179/1743132814Y.0000000428] [PMID: 25082546]
[63]
Karakus E, Halici Z, Albayrak A, Bayir Y, Aydin A, Unal D, et al. Beneficial pharmacological effects of levosimendan on antioxidant status of acute inflammation induced in paw of rat: involvement in inflammatory mediators. Basic Clin Pharmacol Toxicol 112(3): 156-63. (2013)
[http://dx.doi.org/10.1111/bcpt.12004] [PMID: 22938184]
[64]
Gozeler MS, Ekinci Akdemir FN, Yildirim S, Sahin A, Eser G, Askin S. Levosimendan ameliorates cisplatin-induced ototoxicity: Rat model. Int J Pediatr Otorhinolaryngol 122: 70-5. (2019)
[http://dx.doi.org/10.1016/j.ijporl.2019.04.004] [PMID: 30978472]
[65]
Grossini E, Pollesello P, Bellofatto K, Sigaudo L, Farruggio S, Origlia V, et al. Protective effects elicited by levosimendan against liver ischemia/reperfusion injury in anesthetized rats. Liver Transpl 20(3): 361-75. (2014)
[http://dx.doi.org/10.1002/lt.23799] [PMID: 24273004]
[66]
Aydin C, Ay Y, Basel H, Kavak S, Inan B, Bektaş H, et al. Analysis of the influences of short-term levosimendan exposure on oxidant/antioxidant status and trace-element levels in the physiological status of the thoracic aorta of rats. J Membr Biol 245(12): 827-32. (2012)
[http://dx.doi.org/10.1007/s00232-012-9489-4] [PMID: 22843162]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy