Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Chronic Stress and Diabetes Mellitus: Interwoven Pathologies

Author(s): Vivek Kumar Sharma and Thakur Gurjeet Singh*

Volume 16, Issue 6, 2020

Page: [546 - 556] Pages: 11

DOI: 10.2174/1573399815666191111152248

Price: $65

Abstract

Stress threatens the homeostasis and mobilizes a plethora of adaptive physiological and behavioral changes via the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system. The HPA axis influences the pituitary gland, hypothalamus and adrenal gland via a complex set of positive and negative feedback system. The feedback system operates in a well regulated neuroendocrine manner to reestablish the threatened body equilibrium. The HPA axis secreted major product is a glucocorticoid (cortisol) which is kept within a physiologically optimal range and serves to accomplish the various physiological functions crucial for survival. In chronically stressed individuals dishabituation of HPA axis is followed by increased release of glucocorticoids and catecholamines. Higher secretion of glucocorticoids influences glucose metabolism by promoting gluconeogenesis in the liver, suppressing glucose uptake (adipocytes and skeletal muscles), promoting lipolysis in adipocytes, suppressing insulin secretion, inflicting insulin resistance and inflammation. These biological changes alter neuroendocrine mechanisms and lead to maladaptive congregation of events that form the underlying cause of development of Type 2 diabetes (T2D). The currently reviewed evidences advocate that targeting stress mediated hypersecretion of glucocorticoids may be a viable approach for the treatment of T2D and to reinstate glucose homeostasis.

Keywords: Chronic stress, hypothalamic-pituitary-adrenal axis, diabetes, glucocorticoids, insulin, inflammation.

[1]
Silva-E-Oliveira J, Amélio PM, Abranches ILL, Damasceno DD, Furtado F. Heart rate variability based on risk stratification for type 2 diabetes mellitus. Einstein (Sao Paulo) 2017; 15(2): 141-7.
[http://dx.doi.org/10.1590/s1679-45082017ao3888] [PMID: 28767910]
[2]
Milne N, Di Rosa F. The diabetes review: A guide to the basics. J Diabetes Nurs 2019. 23JDN053
[3]
International Diabetes Federation (IDF). International diabetes atlas. 8th ed. Brussels: IDF 2017.
[4]
Gomes BF, Accardo CM. Immunoinflammatory mediators in the pathogenesis of diabetes mellitus. Einstein (Sao Paulo) 2019; 17(1)eRB4596
[http://dx.doi.org/10.31744/einstein_journal/2019RB4596] [PMID: 30810587]
[5]
Rongzi L, Zhang Y, Rasool S, et al. Effects and Underlying Mechanisms of Bioactive Compounds on Type 2 Diabetes Mellitus and Alzheimer’s diseaseOxidative Medicine and Cellular Longevity. In: 2019. Article ID 8165707, 25 pages
[6]
Infante-Garcia C, Garcia-Alloza M. Review of the effect of natural compounds and extracts on neurodegeneration in animal models of diabetes mellitus. Int J Mol Sci 2019; 20(10): 2533.
[http://dx.doi.org/10.3390/ijms20102533] [PMID: 31126031]
[7]
Grandl G, Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin Immunopathol 2018; 40(2): 215-24.
[http://dx.doi.org/10.1007/s00281-017-0666-5] [PMID: 29209827]
[8]
Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 2004; 279(41): 42351-4.
[http://dx.doi.org/10.1074/jbc.R400019200] [PMID: 15258147]
[9]
Ramachandran A, Snehalatha C, Latha E, Manoharan M, Vijay V. Impacts of urbanisation on the lifestyle and on the prevalence of diabetes in native Asian Indian population. Diabetes Res Clin Pract 1999; 44(3): 207-13.
[http://dx.doi.org/10.1016/S0168-8227(99)00024-8] [PMID: 10462144]
[10]
Kelly SJ, Ismail M. Stress and type 2 diabetes: a review of how stress contributes to the development of type 2 diabetes. Annu Rev Public Health 2015; 36: 441-62.
[http://dx.doi.org/10.1146/annurev-publhealth-031914-122921] [PMID: 25581145]
[11]
Surwit RS, Schneider MS, Feinglos MN. Stress and diabetes mellitus. Diabetes Care 1992; 15(10): 1413-22.
[http://dx.doi.org/10.2337/diacare.15.10.1413] [PMID: 1425110]
[12]
Eriksson AK, van den Donk M, Hilding A, Östenson CG. Work stress, sense of coherence, and risk of type 2 diabetes in a prospective study of middle-aged Swedish men and women. Diabetes Care 2013; 36(9): 2683-9.
[http://dx.doi.org/10.2337/dc12-1738] [PMID: 23637356]
[13]
Siddiqui ASV, Madhu V, Sharma SB, Desai NG. Endocrine stress responses and risk of type 2 diabetes mellitus; Stress, Early Online: 1–9. Taylor & Francis 2015.
[14]
Tian R, Hou G, Li D, Yuan TF. A possible change process of inflammatory cytokines in the prolonged chronic stress and its ultimate implications for health. ScientificWorldJournal 2014; 2014780616
[http://dx.doi.org/10.1155/2014/780616] [PMID: 24995360]
[15]
Chrousos GP, Gold PW. The concepts of stress system disorders: Overview of behavioral and physical homeostasis. JAMA 1992; 267: 1244-52.
[http://dx.doi.org/10.1001/jama.1992.03480090092034] [PMID: 1538563]
[16]
Kyrou I, Tsigos C. Stress mechanisms and metabolic complications. Horm Metab Res 2007; 39(6): 430-8.
[http://dx.doi.org/10.1055/s-2007-981462] [PMID: 17578760]
[17]
Tsigos C, Kyrou I, Chrousos GP. Stress, endocrine manifestations and diseasesHandbook of Stress, Medicine, and Health. 2nd ed. Boca Raton, FL: CRC Press 2005; pp. 101-31.
[18]
Kyrou I, Tsigos C. Stress hormones: physiological stress and regulation of metabolism. Curr Opin Pharmacol 2009; 9(6): 787-93.
[http://dx.doi.org/10.1016/j.coph.2009.08.007] [PMID: 19758844]
[19]
Bains JS, Wamsteeker Cusulin JI, Inoue W. Stress-related synaptic plasticity in the hypothalamus. Nat Rev Neurosci 2015; 16(7): 377-88.
[http://dx.doi.org/10.1038/nrn3881] [PMID: 26087679]
[20]
Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 2009; 10(6): 397-409.
[http://dx.doi.org/10.1038/nrn2647] [PMID: 19469025]
[21]
Dayas CV, Buller KM, Crane JW, Xu Y, Day TA. Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. Eur J Neurosci 2001; 14(7): 1143-52.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01733.x] [PMID: 11683906]
[22]
Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A comprehensive overview on stress neurobiology: basic concepts and clinical implications. Front Behav Neurosci 2018; 12: 127.
[http://dx.doi.org/10.3389/fnbeh.2018.00127] [PMID: 30034327]
[23]
Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 1981; 213(4514): 1394-7.
[http://dx.doi.org/10.1126/science.6267699] [PMID: 6267699]
[24]
Sawchenko PE, Imaki T, Vale W. Co-localization of neuroactive substances in the endocrine hypothalamus. Ciba Found Symp 1992; 168: 16-30.
[PMID: 1425023]
[25]
Joëls M, Baram TZ. The neuro-symphony of stress. Nat Rev Neurosci 2009; 10(6): 459-66.
[http://dx.doi.org/10.1038/nrn2632] [PMID: 19339973]
[26]
Vale W, Rivier C, Yang L, Minick S, Guillemin R. Effects of purified hypothalamic corticotropin-releasing factor and other substances on the secretion of adrenocorticotropin and beta-endorphin-like immunoactivities in vitro. Endocrinology 1978; 103(5): 1910-5.
[http://dx.doi.org/10.1210/endo-103-5-1910] [PMID: 218793]
[27]
de Kloet ER. Functional profile of the binary brain corticosteroid receptor system: mediating, multitasking, coordinating, integrating. Eur J Pharmacol 2013; 719(1-3): 53-62.
[http://dx.doi.org/10.1016/j.ejphar.2013.04.053] [PMID: 23876452]
[28]
Downs CA, Faulkner MS. Toxic stress, inflammation and symptomatology of chronic complications in diabetes. World J Diabetes 2015; 6(4): 554-65.
[http://dx.doi.org/10.4239/wjd.v6.i4.554] [PMID: 25987953]
[29]
Engler O, Pham T. FuIIenon MJ, Ooi G, Funder JW, Clarke IJ. Studies of the secretion of corticotropin releasing factor and arginine vasopressin into hypophyseal portal circulation of the conscious sheep. Neuroendocrinology 1989; 49: 367-81.
[http://dx.doi.org/10.1159/000125141] [PMID: 2541360]
[30]
Horrocks PM, Jones AF, Ratcliffe WA, et al. Patterns of ACTH and cortisol pulsatility over twenty-four hours in normal males and females. Clin Endocrinol (Oxf) 1990; 32(1): 127-34.
[http://dx.doi.org/10.1111/j.1365-2265.1990.tb03758.x] [PMID: 2158868]
[31]
Holmes MC, Antoni FA, Aguilera G, Catt KJ. Magnocellular axons in passage through the median eminence release vasopressin. Nature 1986; 319(6051): 326-9.
[http://dx.doi.org/10.1038/319326a0] [PMID: 3001538]
[32]
Phillips MI. Functions of angiotensin in the central nervous system. Annu Rev Physiol 1987; 49: 413-35.
[http://dx.doi.org/10.1146/annurev.ph.49.030187.002213] [PMID: 3551809]
[33]
Dana N. Joseph ID and Shannon Whirledge; stress and the hpa axis: balancing homeostasis and fertility. Int J Mol Sci 2017; 18: 2224.
[http://dx.doi.org/10.3390/ijms18102224]
[34]
Jansen SW, Roelfsema F, Akintola AA, et al. Characterization of the hypothalamic-pituitary-adrenal-axis in familial longevity under resting conditions. PLoS One 2015; 10(7)e0133119
[http://dx.doi.org/10.1371/journal.pone.0133119] [PMID: 26193655]
[35]
Joseph JJ, Golden SH. Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann N Y Acad Sci 2017; 1391(1): 20-34.
[http://dx.doi.org/10.1111/nyas.13217] [PMID: 27750377]
[36]
Björntorp P, Rosmond R. The metabolic syndrome--a neuroendocrine disorder? Br J Nutr 2000; 83(Suppl. 1): S49-57.
[http://dx.doi.org/10.1017/S0007114500000957] [PMID: 10889792]
[37]
Sadegh-Nejadi S, Afrisham R, Soliemanifar O, et al. Alteration of the level of salivary cortisol under psychological stress and its relationship with rumination and personality traits. Majallah-i Danishgah-i Ulum-i Pizishki-i Gurgan 2017; 19(1)
[38]
Vogelzangs N, Kritchevsky SB, Beekman AT, et al. Depressive symptoms and change in abdominal obesity in older persons. Arch Gen Psychiatry 2008; 65(12): 1386-93.
[http://dx.doi.org/10.1001/archpsyc.65.12.1386] [PMID: 19047525]
[39]
Afrisham R, Paknejad M, Soliemanifar O, Sadegh-Nejadi S, Meshkani R, Ashtary-Larky D. The influence of psychological stress on the initiation and progression of diabetes and cancer. Int J Endocrinol Metab 2019; 17(2)e67400
[http://dx.doi.org/10.5812/ijem.67400] [PMID: 31372166]
[40]
Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol 2009; 5(7): 374-81.
[http://dx.doi.org/10.1038/nrendo.2009.106] [PMID: 19488073]
[41]
MacGillivray MH, Bruck E, Voorhess ML. Acute diabetic ketoacidosis in children: role of the stress hormones. Pediatr Res 1981; 15(2): 99-106.
[http://dx.doi.org/10.1203/00006450-198102000-00002] [PMID: 6789292]
[42]
Radahmadi M, Shadan F, Karimian SM. Shahab-e-din Sadr S, Nasimi A. Effects of stress on exacerbation of diabetes mellitus, serum glucose and glucocorticoids levels and body weight in rats. Pathophysiology 2006; 13: 51-5.
[http://dx.doi.org/10.1016/j.pathophys.2005.07.001] [PMID: 16102950]
[43]
Björntorp P, Rosmond R. Neuroendocrine abnormalities in visceral obesity. Int J Obes Relat Metab Disord 2000; 24(Suppl. 2): S80-5.
[http://dx.doi.org/10.1038/sj.ijo.0801285] [PMID: 10997616]
[44]
Lambillotte C, Gilon P, Henquin JC. Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J Clin Invest 1997; 99(3): 414-23.
[http://dx.doi.org/10.1172/JCI119175] [PMID: 9022074]
[45]
Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 2002; 53(4): 865-71.
[http://dx.doi.org/10.1016/S0022-3999(02)00429-4] [PMID: 12377295]
[46]
Cameron OG, Kronfol Z, Greden JF, Carroll BJ. Hypothalamic-pituitary-adrenocortical activity in patients with diabetes mellitus. Arch Gen Psychiatry 1984; 41(11): 1090-5.
[http://dx.doi.org/10.1001/archpsyc.1983.01790220080013] [PMID: 6497572]
[47]
Weitzman ED, Fukushima D, Nogeire C, Roffwarg H, Gallagher TF, Hellman L. Twenty-four hour pattern of the episodic secretion of cortisol in normal subjects. J Clin Endocrinol Metab 1971; 33(1): 14-22.
[http://dx.doi.org/10.1210/jcem-33-1-14] [PMID: 4326799]
[48]
Shpakov AO, Derkach KV, Berstein LM. Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 2015; 1(3): FSO25.
[http://dx.doi.org/10.4155/fso.15.23] [PMID: 28031898]
[49]
Raff H, Magill SB. Is the hypothalamic-pituitary-adrenal axis disrupted in type 2 diabetes mellitus? Endocrine 2016; 54(2): 273-5.
[http://dx.doi.org/10.1007/s12020-016-1108-1] [PMID: 27696230]
[50]
Mills E, Devendra S. Steroid-induced hyperglycaemia in primary care. London J Prim Care (Abingdon) 2015; 7(5): 103-6.
[http://dx.doi.org/10.1080/17571472.2015.1082344] [PMID: 26550039]
[51]
Dalmazi GD, Pagotto U, Pasquali R. Valentina V. Glucocorticoids and type 2 diabetes: from physiology to pathology. Journal of Nutrition and Metabolism. In: 2012. Article ID 525093, 9 pages
[52]
van Raalte DH, Ouwens DM, Diamant M. Novel insights into glucocorticoid-mediated diabetogenic effects: towards expansion of therapeutic options? Eur J Clin Invest 2009; 39(2): 81-93.
[http://dx.doi.org/10.1111/j.1365-2362.2008.02067.x] [PMID: 19200161]
[53]
Wallace MD, Metzger NL. Optimizing the treatment of steroid-induced hyperglycemia. Ann Pharmacother 2018; 52(1): 86-90.
[http://dx.doi.org/10.1177/1060028017728297] [PMID: 28836444]
[54]
Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M. Islet architecture: A comparative study. Islets 2009; 1(2): 129-36.
[http://dx.doi.org/10.4161/isl.1.2.9480] [PMID: 20606719]
[55]
Dybala MP, Hara M. Heterogeneity of the human pancreatic islet. Diabetes 2019; 68(6): 1230-9.
[http://dx.doi.org/10.2337/db19-0072] [PMID: 30936150]
[56]
Beaudry JL, Riddell MC. Effects of glucocorticoids and exercise on pancreatic β-cell function and diabetes development. Diabetes Metab Res Rev 2012; 28(7): 560-73.
[http://dx.doi.org/10.1002/dmrr.2310] [PMID: 22556149]
[57]
Kahn SE. Clinical review 135: The importance of β-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab 2001; 86(9): 4047-58.
[PMID: 11549624]
[58]
Lansang MC, Hustak LK. Glucocorticoid-induced diabetes and adrenal suppression: how to detect and manage them. Cleve Clin J Med 2011; 78(11): 748-56.
[http://dx.doi.org/10.3949/ccjm.78a.10180] [PMID: 22049542]
[59]
Hansen KB, Vilsbøll T, Bagger JI, Holst JJ, Knop FK. Reduced glucose tolerance and insulin resistance induced by steroid treatment, relative physical inactivity, and high-calorie diet impairs the incretin effect in healthy subjects. J Clin Endocrinol Metab 2010; 95(7): 3309-17.
[http://dx.doi.org/10.1210/jc.2010-0119] [PMID: 20410219]
[60]
Zhong F, Jiang Y. Endogenous pancreatic β cell regeneration: a potential strategy for the recovery of β cell deficiency in diabetes. Front Endocrinol 2019; 10: 101-13.
[http://dx.doi.org/10.3389/fendo.2019.00101]
[61]
Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52(1): 102-10.
[http://dx.doi.org/10.2337/diabetes.52.1.102] [PMID: 12502499]
[62]
Prentki M, Corkey BE. Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes 1996; 45(3): 273-83.
[http://dx.doi.org/10.2337/diab.45.3.273] [PMID: 8593930]
[63]
Bonner-Weir S. beta-cell turnover: its assessment and implications. Diabetes 2001; 50(Suppl. 1): S20-4.
[http://dx.doi.org/10.2337/diabetes.50.2007.S20] [PMID: 11272192]
[64]
Protzek AO, Costa-Júnior JM, Rezende LF, et al. Augmented β-cell function and mass in glucocorticoid-treated rodents are associated with increased islet Ir-β /AKT/mTOR and Decreased AMPK/ACC and AS160 Signaling. Int J Endocrinol 2014; 2014983453
[http://dx.doi.org/10.1155/2014/983453] [PMID: 25313308]
[65]
Seino S, Shibasaki T, Minami K. Pancreatic β-cell signalling: toward better understanding of diabetes and its treatment
[66]
Juliana CA, Yang J, Rozo AV, et al. ATF5 regulates β-cell survival during stress. Proc Natl Acad Sci USA 2017; 114(6): 1341-6.
[http://dx.doi.org/10.1073/pnas.1620705114] [PMID: 28115692]
[67]
Kim-Muller JY, Fan J, Kim YJ, et al. Aldehyde dehydrogenase 1a3 defines a subset of failing pancreatic β cells in diabetic mice. Nat Commun 2016; 7: 12631.
[http://dx.doi.org/10.1038/ncomms12631] [PMID: 27572106]
[68]
Park YJ, Woo M. Pancreatic β cells: Gatekeepers of type 2 diabetes. J Cell Biol 2019; 218(4): 1094-5.
[http://dx.doi.org/10.1083/jcb.201810097] [PMID: 30696700]
[69]
Kahn CR. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism 1978; 27(12)(Suppl. 2): 1893-902.
[http://dx.doi.org/10.1016/S0026-0495(78)80007-9] [PMID: 723640]
[70]
Baynes KC, Whitehead J, Krook A, O’Rahilly S. Molecular mechanisms of inherited insulin resistance. QJM 1997; 90: 557-62.
[71]
Lansang MC, Hustak LK. Glucocorticoid-induced diabetes and adrenal suppression: how to detect and manage them. Cleve Clin J Med 2011; 78(11): 748-56.
[http://dx.doi.org/10.3949/ccjm.78a.10180] [PMID: 22049542]
[72]
Vegiopoulos A, Herzig S. Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol 2007; 275(1-2): 43-61.
[http://dx.doi.org/10.1016/j.mce.2007.05.015] [PMID: 17624658]
[73]
Ferris HA, Kahn CR. New mechanisms of glucocorticoid-induced insulin resistance: make no bones about it. J Clin Invest 2012; 122(11): 3854-7.
[http://dx.doi.org/10.1172/JCI66180] [PMID: 23093783]
[74]
Sakoda H, Ogihara T, Anai M, et al. Dexamethasone-induced insulin resistance in 3T3-L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction. Diabetes 2000; 49(10): 1700-8.
[http://dx.doi.org/10.2337/diabetes.49.10.1700] [PMID: 11016454]
[75]
Rizza RA, Mandarino LJ, Gerich JE. Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor detect of insulin action. J Clin Endocrinol Metab 1982; 54(1): 131-8.
[http://dx.doi.org/10.1210/jcem-54-1-131] [PMID: 7033265]
[76]
Almon RR, Dubois DC, Jin JY, Jusko WJ. Temporal profiling of the transcriptional basis for the development of corticosteroid-induced insulin resistance in rat muscle. J Endocrinol 2005; 184(1): 219-32.
[http://dx.doi.org/10.1677/joe.1.05953] [PMID: 15642798]
[77]
Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 2010; 11(1): 11-8.
[http://dx.doi.org/10.1111/j.1467-789X.2009.00623.x] [PMID: 19656312]
[78]
Ruzzin J, Wagman AS, Jensen J. Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor. Diabetologia 2005; 48(10): 2119-30.
[http://dx.doi.org/10.1007/s00125-005-1886-0] [PMID: 16078016]
[79]
Mazziotti G, Gazzaruso C, Giustina A. Diabetes in Cushing syndrome: basic and clinical aspects. Trends Endocrinol Metab 2011; 22(12): 499-506.
[http://dx.doi.org/10.1016/j.tem.2011.09.001] [PMID: 21993190]
[80]
Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 2004; 27(3): 813-23.
[http://dx.doi.org/10.2337/diacare.27.3.813] [PMID: 14988310]
[81]
Moberg E, Kollind M, Lins PE, Adamson U. Acute mental stress impairs insulin sensitivity in IDDM patients. Diabetologia 1994; 37(3): 247-51.
[http://dx.doi.org/10.1007/BF00398050] [PMID: 8174837]
[82]
Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11(2): 98-107.
[http://dx.doi.org/10.1038/nri2925] [PMID: 21233852]
[83]
Falco G, Pirro PS, Castellano E, et al. The relationship between stress and diabetes mellitus. J Neurol Psychol 2015; 3(1): 7.
[84]
Pivonello R, De Leo M, Vitale P, et al. Pathophysiology of diabetes mellitus in Cushing’s syndrome. Neuroendocrinology 2010; 92(Suppl. 1): 77-81.
[http://dx.doi.org/10.1159/000314319] [PMID: 20829623]
[85]
Cassuto H, Kochan K, Chakravarty K, et al. Glucocorticoids regulate transcription of the gene for phosphoenolpyruvate carboxykinase in the liver via an extended glucocorticoid regulatory unit. J Biol Chem 2005; 280(40): 33873-84.
[http://dx.doi.org/10.1074/jbc.M504119200] [PMID: 16100117]
[86]
Patel R, Patel M, Tsai R, et al. LXRβ is required for glucocorticoid-induced hyperglycemia and hepatosteatosis in mice. J Clin Invest 2011; 121(1): 431-41.
[http://dx.doi.org/10.1172/JCI41681] [PMID: 21123945]
[87]
Lindmark S, Lönn L, Wiklund U, Tufvesson M, Olsson T, Eriksson JW. Dysregulation of the autonomic nervous system can be a link between visceral adiposity and insulin resistance. Obes Res 2005; 13(4): 717-28.
[http://dx.doi.org/10.1038/oby.2005.81] [PMID: 15897481]
[88]
Harman-Boehm I, Blüher M, Redel H, et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab 2007; 92(6): 2240-7.
[http://dx.doi.org/10.1210/jc.2006-1811] [PMID: 17374712]
[89]
Langin D, Dicker A, Tavernier G, et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 2005; 54(11): 3190-7.
[http://dx.doi.org/10.2337/diabetes.54.11.3190] [PMID: 16249444]
[90]
Rask E, Olsson T, Söderberg S, et al. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab 2001; 86(3): 1418-21.
[http://dx.doi.org/10.1210/jcem.86.3.7453] [PMID: 11238541]
[91]
Uchida Y, Takeshita K, Yamamoto K, et al. Stress augments insulin resistance and prothrombotic state: role of visceral adipose-derived monocyte chemoattractant protein-1. Diabetes 2012; 61(6): 1552-61.
[http://dx.doi.org/10.2337/db11-0828] [PMID: 22396205]
[92]
Shaw DI, Hall WL, Williams CM. Metabolic syndrome: what is it and what are the implications? Proc Nutr Soc 2005; 64(3): 349-57.
[http://dx.doi.org/10.1079/PNS2005442] [PMID: 16048668]
[93]
Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res 2004; 95(8): 764-72.
[http://dx.doi.org/10.1161/01.RES.0000146094.59640.13] [PMID: 15486323]
[94]
Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 2002; 32(3)(Suppl. 3): 14-23.
[http://dx.doi.org/10.1046/j.1365-2362.32.s3.3.x] [PMID: 12028371]
[95]
Yaribeygi H, Stephen LA, Sahebkar A. Mitochondrial dysfunction in diabetes and the regulatory roles of antidiabetic agents on the mitochondrial function. J Cell Physiol 2018; 1-9.
[PMID: 30417488]
[96]
Holmes D. Diabetes: Plasma membrane key to diet-induced insulin resistance. Nat Rev Endocrinol 2017; 13(1): 2.
[http://dx.doi.org/10.1038/nrendo.2016.190] [PMID: 27834388]
[97]
Picard M, McEwen BS. Psychological Stress and Mitochondria: A Systematic Review. Psychosom Med 2018; 80(2): 141-53.
[http://dx.doi.org/10.1097/PSY.0000000000000545] [PMID: 29389736]
[98]
Wallace DC, Fan W, Procaccio V. Mitochondrial energetics and therapeutics. Annu Rev Pathol 2010; 5: 297-348.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092314] [PMID: 20078222]
[99]
Lambert AJ, Brand MD. Reactive oxygen species production by mitochondria. Methods Mol Biol 2009; 554: 165-81.
[http://dx.doi.org/10.1007/978-1-59745-521-3_11] [PMID: 19513674]
[100]
Rangaraju V, Calloway N, Ryan TA. Activity-driven local ATP synthesis is required for synaptic function. Cell 2014; 156(4): 825-35.
[http://dx.doi.org/10.1016/j.cell.2013.12.042] [PMID: 24529383]
[101]
Picard M, McManus MJ, Gray JD, et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci USA 2015; 112(48): E6614-23.
[http://dx.doi.org/10.1073/pnas.1515733112] [PMID: 26627253]
[102]
Psarra AM, Sekeris CE. Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor. Biochim Biophys Acta 2011; 1813(10): 1814-21.
[http://dx.doi.org/10.1016/j.bbamcr.2011.05.014] [PMID: 21664385]
[103]
Du J, Wang Y, Hunter R, et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc Natl Acad Sci USA 2009; 106(9): 3543-8.
[http://dx.doi.org/10.1073/pnas.0812671106] [PMID: 19202080]
[104]
Picard M, Juster RP, Sloan RP, McEwen BS. Mitochondrial nexus to allostatic load biomarkers. Psychosom Med 2017; 79(1): 114-7.
[http://dx.doi.org/10.1097/PSY.0000000000000414] [PMID: 27806021]
[105]
Picard M, Juster RP, McEwen BS. Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids. Nat Rev Endocrinol 2014; 10(5): 303-10.
[http://dx.doi.org/10.1038/nrendo.2014.22] [PMID: 24663223]
[106]
Blake R, Trounce IA. Mitochondrial dysfunction and complications associated with diabetes. Biochim Biophys Acta 2014; 1840(4): 1404-12.
[http://dx.doi.org/10.1016/j.bbagen.2013.11.007] [PMID: 24246956]
[107]
Nishikawa T, Araki E. Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 2007; 9(3): 343-53.
[http://dx.doi.org/10.1089/ars.2006.1458] [PMID: 17184177]
[108]
Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res 2008; 102(4): 401-14.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.165472] [PMID: 18309108]
[109]
Ma ZA, Zhao Z, Turk J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res 2012; 2012703538
[http://dx.doi.org/10.1155/2012/703538] [PMID: 22110477]
[110]
Maechler P. Mitochondrial function and insulin secretion. Mol Cell Endocrinol 2013; 379(1-2): 12-8.
[http://dx.doi.org/10.1016/j.mce.2013.06.019] [PMID: 23792187]
[111]
Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology (Berl) 2016; 233(9): 1637-50.
[http://dx.doi.org/10.1007/s00213-016-4218-9] [PMID: 26847047]
[112]
Jiang CL, Lu CL, Liu XY. The molecular basis for bidirectional communication between the immune and neuroendocrine systems. Domest Anim Endocrinol 1998; 15(5): 363-9.
[http://dx.doi.org/10.1016/S0739-7240(98)00026-5] [PMID: 9785040]
[113]
Liu Y-Z, Wang Y-X, Jiang C-L. Inflammation: The Common Pathway of Stress-Related Diseases. Front Hum Neurosci 2017; 11: 316.
[http://dx.doi.org/10.3389/fnhum.2017.00316] [PMID: 28676747]
[114]
Sorrells SF, Caso JR, Munhoz CD, Sapolsky RM. The stressed CNS: when glucocorticoids aggravate inflammation. Neuron 2009; 64(1): 33-9.
[http://dx.doi.org/10.1016/j.neuron.2009.09.032] [PMID: 19840546]
[115]
Elenkov IJ. Neurohormonal-cytokine interactions: implications for inflammation, common human diseases and well-being. Neurochem Int 2008; 52(1-2): 40-51.
[http://dx.doi.org/10.1016/j.neuint.2007.06.037] [PMID: 17716784]
[116]
Straub RH, Cutolo M. Glucocorticoids and chronic inflammation. Rheumatology (Oxford) 2016; 55(2)(Suppl. 2): ii6-ii14.
[http://dx.doi.org/10.1093/rheumatology/kew348] [PMID: 27856655]
[117]
Tian R, Hou G, Li D, Yuan TF. A possible change process of inflammatory cytokines in the prolonged chronic stress and its ultimate implications for health. ScientificWorldJournal 2014; 2014780616
[http://dx.doi.org/10.1155/2014/780616] [PMID: 24995360]
[118]
Zhou JR, Xu Z, Jiang CL. Neuropeptide Y promotes TGF-beta1 production in RAW264.7 cells by activating PI3K pathway via Y1 receptor. Neurosci Bull 2008; 24(3): 155-9.
[http://dx.doi.org/10.1007/s12264-008-0130-6] [PMID: 18500388]
[119]
Huang JL, Zhang YL, Wang CC, et al. Enhanced phosphorylation of MAPKs by NE promotes TNF-α production by macrophage through α adrenergic receptor. Inflammation 2012; 35(2): 527-34.
[http://dx.doi.org/10.1007/s10753-011-9342-4] [PMID: 21590324]
[120]
Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 2003; 52(7): 1779-85.
[http://dx.doi.org/10.2337/diabetes.52.7.1779] [PMID: 12829646]
[121]
Malarkey WB, Wu H, Cacioppo JT, et al. Chronic stress down-regulates growth hormone gene expression in peripheral blood mononuclear cells of older adults. Endocrine 1996; 5(1): 33-9.
[http://dx.doi.org/10.1007/BF02738653] [PMID: 21153091]
[122]
Cohen S, Janicki-Deverts D, Doyle WJ, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci USA 2012; 109(16): 5995-9.
[http://dx.doi.org/10.1073/pnas.1118355109] [PMID: 22474371]
[123]
Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med 2001; 7(10): 1138-43.
[http://dx.doi.org/10.1038/nm1001-1138] [PMID: 11590438]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy