Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Radiolabeled Protein-inhibitor Peptides with Rapid Clinical Translation towards Imaging and Therapy

Author(s): Guillermina Ferro-Flores*, Blanca Ocampo-García, Myrna Luna-Gutiérrez, Clara Santos-Cuevas, Nallely Jiménez-Mancilla, Erika Azorín-Vega and Laura Meléndez-Alafort

Volume 27, Issue 41, 2020

Page: [7032 - 7047] Pages: 16

DOI: 10.2174/0929867327666191223121211

Price: $65

Abstract

Protein interactions are the basis for the biological functioning of human beings. However, many of these interactions are also responsible for diseases, including cancer. Synthetic inhibitors of protein interactions based on small molecules are widely investigated in medicinal chemistry. The development of radiolabeled protein-inhibitor peptides for molecular imaging and targeted therapy with quickstep towards clinical translation is an interesting and active research field in the radiopharmaceutical sciences. In this article, recent achievements concerning the design, translational research and theranostic applications of structurally-modified small radiopeptides, such as prostate-specific membrane antigen (PSMA) inhibitors, fibroblast activation protein (FAP) inhibitors and antagonists of chemokine-4 receptor ligands (CXCR-4-L), with high affinity for cancer-associated target proteins, are reviewed and discussed.

Keywords: Radiolabeled peptides, inhibitor peptides, translational radiopeptides, PSMA, FAP, CXCR-4.

[1]
Wójcik, P.; Berlicki, Ł. Peptide-based inhibitors of protein-protein interactions. Bioorg. Med. Chem. Lett., 2016, 26(3), 707-713.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.084] [PMID: 26764190]
[2]
Krenning, E.P.; Bakker, W.H.; Breeman, W.A.; Koper, J.W.; Kooij, P.P.; Ausema, L.; Lameris, J.S.; Reubi, J.C.; Lamberts, S.W. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet, 1989, 1(8632), 242-244.
[http://dx.doi.org/10.1016/S0140-6736(89)91258-0] [PMID: 2563413]
[3]
Lamberts, S.W.; Bakker, W.H.; Reubi, J-C.; Krenning, E.P. Somatostatin-receptor imaging in the localization of endocrine tumors. N. Engl. J. Med., 1990, 323(18), 1246-1249.
[http://dx.doi.org/10.1056/NEJM199011013231805] [PMID: 2170840]
[4]
Ferro-Flores, G.; Arteaga de Murphy, C.; Melendez-Alafort, L. Third generation radiopharmaceuticals for imaging and targeted therapy. Curr. Pharm. Anal., 2006, 2(4), 339-352.
[http://dx.doi.org/10.2174/157341206778699555]
[5]
Reubi, J.C.; Maecke, H.R. Peptide-based probes for cancer imaging. J. Nucl. Med., 2008, 49(11), 1735-1738.
[http://dx.doi.org/10.2967/jnumed.108.053041] [PMID: 18927341]
[6]
de Visser, M.; Verwijnen, S.M.; de Jong, M. Update: improvement strategies for peptide receptor scintigraphy and radionuclide therapy. Cancer Biother. Radiopharm., 2008, 23(2), 137-157.
[http://dx.doi.org/10.1089/cbr.2007.0435] [PMID: 18454684]
[7]
Schottelius, M.; Wester, H-J. Molecular imaging targeting peptide receptors. Methods, 2009, 48(2), 161-177.
[http://dx.doi.org/10.1016/j.ymeth.2009.03.012] [PMID: 19324088]
[8]
Ferro-Flores, G. Ramírez, Fde.M.; Meléndez-Alafort, L.; Santos-Cuevas, C.L. Peptides for in vivo target-specific cancer imaging. Mini Rev. Med. Chem., 2010, 10(1), 87-97.
[http://dx.doi.org/10.2174/138955710791112596] [PMID: 20380643]
[9]
Ruzza, P.; Calderan, A. Radiolabeled peptide-receptor ligands in tumor imaging. Expert Opin. Med. Diagn., 2011, 5(5), 411-424.
[http://dx.doi.org/10.1517/17530059.2011.592829] [PMID: 23484627]
[10]
Ambrosini, V.; Fani, M.; Fanti, S.; Forrer, F.; Maecke, H.R. Radiopeptide imaging and therapy in Europe. J. Nucl. Med., 2011, 52(2)(Suppl. 2), 42S-55S.
[http://dx.doi.org/10.2967/jnumed.110.085753] [PMID: 22144555]
[11]
Graham, M.M.; Menda, Y. Radiopeptide imaging and therapy in the United States. J. Nucl. Med., 2011, 52(2)(Suppl. 2), 56S-63S.
[http://dx.doi.org/10.2967/jnumed.110.085746] [PMID: 22144556]
[12]
Morgat, C.; Hindié, E.; Mishra, A.K.; Allard, M.; Fernandez, P. Gallium-68: chemistry and radiolabeled peptides exploring different oncogenic pathways. Cancer Biother. Radiopharm., 2013, 28(2), 85-97.
[http://dx.doi.org/10.1089/cbr.2012.1244] [PMID: 23461410]
[13]
Sun, X.; Li, Y.; Liu, T.; Li, Z.; Zhang, X.; Chen, X. Peptide-based imaging agents for cancer detection. Adv. Drug Deliv. Rev., 2017, 110-111, 38-51.
[http://dx.doi.org/10.1016/j.addr.2016.06.007] [PMID: 27327937]
[14]
Tornesello, A.L.; Tornesello, M.L.; Buonaguro, F.M. An overview of bioactive peptides for in vivo imaging and therapy in human diseases. Mini Rev. Med. Chem., 2017, 17(9), 758-770.
[http://dx.doi.org/10.2174/1389557517666170120151739] [PMID: 28117023]
[15]
Jackson, I.M.; Scott, P.J.H.; Thompson, S. Clinical applications of radiolabeled peptides for PET. Semin. Nucl. Med., 2017, 47(5), 493-523.
[http://dx.doi.org/10.1053/j.semnuclmed.2017.05.007] [PMID: 28826523]
[16]
Opalinska, M.; Hubalewska-Dydejczyk, A.; Sowa-Staszczak, A. Radiolabeled peptides: current and new perspectives. Q. J. Nucl. Med. Mol. Imaging, 2017, 61(2), 153-167.
[http://dx.doi.org/10.23736/s1824-4785.17.02971-5] [PMID: 28347132]
[17]
Rezazadeh, F.; Sadeghzadeh, N. Tumor targeting with 99m Tc radiolabeled peptides: clinical application and recent development. Chem. Biol. Drug Des., 2019, 93(3), 205-221.
[http://dx.doi.org/10.1111/cbdd.13413] [PMID: 30299570]
[18]
Paganelli, G.; Zoboli, S.; Cremonesi, M.; Mäcke, H.R.; Chinol, M. Receptor-mediated radionuclide therapy with 90Y-DOTA-D-Phe1-Tyr3-Octreotide: preliminary report in cancer patients. Cancer Biother. Radiopharm., 1999, 14(6), 477-483.
[http://dx.doi.org/10.1089/cbr.1999.14.477] [PMID: 10850334]
[19]
Kwekkeboom, D.J.; Bakker, W.H.; Kam, B.L.; Teunissen, J.J.; Kooij, P.P.; de Herder, W.W.; Feelders, R.A.; van Eijck, C.H.; de Jong, M.; Srinivasan, A.; Erion, J.L.; Krenning, E.P. Treatment of patients with gastro-entero-pancreatic (GEP) tumours with the novel radiolabelled somatostatin analogue [177Lu-DOTA0,Tyr3]octreotate. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(3), 417-422.
[http://dx.doi.org/10.1007/s00259-002-1050-8] [PMID: 12634971]
[20]
Rajasekaran, A.K.; Anilkumar, G.; Christiansen, J.J. Is prostate-specific membrane antigen a multifunctional protein? Am. J. Physiol. Cell Physiol., 2005, 288(5), C975-C981.
[http://dx.doi.org/10.1152/ajpcell.00506.2004] [PMID: 15840561]
[21]
Benešová, M.; Schäfer, M.; Bauder-Wüst, U.; Afshar-Oromieh, A.; Kratochwil, C.; Mier, W.; Haberkorn, U.; Kopka, K.; Eder, M. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradio-therapy of prostate cancer. J. Nucl. Med., 2015, 56(6), 914-920.
[http://dx.doi.org/10.2967/jnumed.114.147413] [PMID: 25883127]
[22]
Rösch, F. 68Ge/68Ga generators and 68Ga radiopharmaceutical chemistry on their way into a new century. J. Postgrad. Med. Educ. Res., 2013, 47, 18-25.
[http://dx.doi.org/10.5005/jp-journals-10028-1052]
[23]
Lin, M.; Paolillo, V.; Ta, R.T.; Damasco, J.; Rojo, R.D.; Carl, J.C.; Melancon, M.P.; Ravizzini, G.C.; Le, D.B.; Santos, E.B. Fully automated preparation of 68Ga-PSMA-11 at curie level quantity using cyclotron-produced 68Ga for clinical applications. Appl. Radiat. Isot., 2020, 155108936
[http://dx.doi.org/10.1016/j.apradiso.2019.108936] [PMID: 31655351]
[24]
Mendoza-Figueroa, M.J.; Escudero-Castellanos, A.; Ramirez-Nava, G.J.; Ocampo-García, B.E.; Santos-Cuevas, C.L.; Ferro-Flores, G.; Pedraza-Lopez, M.; Avila-Rodriguez, M.A. Preparation and preclinical evaluation of 68 Ga-iPSMA-BN as a potential heterodimeric radiotracer for PET-imaging of prostate cancer. J. Radioanal. Nucl. Chem., 2018, 318(3), 2097-2105.
[http://dx.doi.org/10.1007/s10967-018-6285-3]
[25]
Eder, M.; Schäfer, M.; Bauder-Wüst, U.; Hull, W-E.; Wängler, C.; Mier, W.; Haberkorn, U.; Eisenhut, M. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug. Chem., 2012, 23(4), 688-697.
[http://dx.doi.org/10.1021/bc200279b] [PMID: 22369515]
[26]
Eder, M.; Neels, O.; Müller, M.; Bauder-Wüst, U.; Remde, Y.; Schäfer, M.; Hennrich, U.; Eisenhut, M.; Afshar-Oromieh, A.; Haberkorn, U.; Kopka, K. Novel preclinical and radiopharmaceutical aspects of [68Ga] Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceuticals (Basel), 2014, 7(7), 779-796.
[http://dx.doi.org/10.3390/ph7070779] [PMID: 24983957]
[27]
Eiber, M.; Maurer, T.; Souvatzoglou, M.; Beer, A.J.; Ruffani, A.; Haller, B.; Graner, F-P.; Kübler, H.; Haberkorn, U.; Eisenhut, M.; Wester, H.J.; Gschwend, J.E.; Schwaiger, M. Evaluation of hybrid 68Ga-PSMA ligand PET/CT in 248 patients with biochemical re-currence after radical prostatectomy. J. Nucl. Med., 2015, 56(5), 668-674.
[http://dx.doi.org/10.2967/jnumed.115.154153] [PMID: 25791990]
[28]
Weineisen, M.; Schottelius, M.; Simecek, J.; Baum, R.P.; Yildiz, A.; Beykan, S.; Kulkarni, H.R.; Lassmann, M.; Klette, I.; Eiber, M.; Schwaiger, M.; Wester, H.J. 68Ga-and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J. Nucl. Med., 2015, 56(8), 1169-1176.
[http://dx.doi.org/10.2967/jnumed.115.158550] [PMID: 26089548]
[29]
Hernández-Jiménez, T.; Ferro-Flores, G.; Ocampo-García, B.; Morales-Avila, E.; Escudero-Castellanos, A.; Azorín-Vega, E.; Santos-Cuevas, C.; Luna-Gutiérrez, M.; Jiménez-Mancilla, N.; Medina, L.A. 177 Lu-DOTA-HYNIC-Lys (Nal)-Urea-Glu: synthesis and as-sessment of the ability to target the prostate specific membrane antigen. J. Radioanal. Nucl. Chem., 2018, 318(3), 2059-2066.
[http://dx.doi.org/10.1007/s10967-018-6239-9]
[30]
Luna-Gutiérrez, M.; Hernández-Jiménez, T.; Serrano-Espinoza, L.; Peña-Flores, A.; Soto-Abundiz, A. Freeze-dried multi-dose kits for the fast preparation of 177 Lu-Tyr 3-octreotide and 177 Lu-PSMA (inhibitor) under GMP conditions. J. Radioanal. Nucl. Chem., 2017, 314(3), 2181-2188.
[http://dx.doi.org/10.1007/s10967-017-5595-1]
[31]
Cardinale, J.; Martin, R.; Remde, Y.; Schäfer, M.; Hienzsch, A.; Hübner, S.; Zerges, A-M.; Marx, H.; Hesse, R.; Weber, K.; Smits, R.; Hoepping, A.; Müller, M.; Neels, O.C.; Kopka, K. Procedures for the GMP-compliant production and quality control of [18F] PSMA-1007: a next generation radiofluorinated tracer for the detection of prostate cancer. Pharmaceuticals (Basel), 2017, 10(4), 77.
[http://dx.doi.org/10.3390/ph10040077] [PMID: 28953234]
[32]
Giesel, F.L.; Cardinale, J.; Schäfer, M.; Neels, O.; Benešová, M.; Mier, W.; Haberkorn, U.; Kopka, K.; Kratochwil, C. (18)F-Labelled PSMA-1007 shows similarity in structure, biodistribution and tumour uptake to the theragnostic compound PSMA-617. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(10), 1929-1930.
[http://dx.doi.org/10.1007/s00259-016-3447-9] [PMID: 27342416]
[33]
Giesel, F.L.; Hadaschik, B.; Cardinale, J.; Radtke, J.; Vinsensia, M.; Lehnert, W.; Kesch, C.; Tolstov, Y.; Singer, S.; Grabe, N.; Du-ensing, S.; Schäfer, M.; Neels, O.C.; Mier, W.; Haberkorn, U.; Kopka, K.; Kratochwil, C. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(4), 678-688.
[http://dx.doi.org/10.1007/s00259-016-3573-4] [PMID: 27889802]
[34]
Giesel, F.L.; Knorr, K.; Spohn, F.; Will, L.; Maurer, T.; Flechsig, P.; Neels, O.; Schiller, K.; Amaral, H.; Weber, W.A.; Haberkorn, U.; Schwaiger, M.; Kratochwil, C.; Choyke, P.; Kramer, V.; Kopka, K.; Eiber, M. Detection efficacy of 18F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy. J. Nucl. Med., 2019, 60(3), 362-368.
[http://dx.doi.org/10.2967/jnumed.118.212233] [PMID: 30042163]
[35]
Zechmann, C.M.; Afshar-Oromieh, A.; Armor, T.; Stubbs, J.B.; Mier, W.; Hadaschik, B.; Joyal, J.; Kopka, K.; Debus, J.; Babich, J.W.; Haberkorn, U. Radiation dosimetry and first therapy results with a (124)I/(131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(7), 1280-1292.
[http://dx.doi.org/10.1007/s00259-014-2713-y] [PMID: 24577951]
[36]
Zhou, Y.; Li, J.; Xu, X.; Zhao, M.; Zhang, B.; Deng, S.; Wu, Y. 64Cu-based radiopharmaceuticals in molecular imaging. Technol. Cancer Res. Treat., 2019, 181533033819830758
[http://dx.doi.org/10.1177/1533033819830758] [PMID: 30764737]
[37]
Dos Santos, J.C.; Beijer, B.; Bauder-Wüst, U.; Schäfer, M.; Leotta, K.; Eder, M.; Benešová, M.; Kleist, C.; Giesel, F.; Kratochwil, C. Development of novel PSMA ligands for imaging and therapy with copper isotopes. J. Nucl. Med., 2020, 61(1), 70-79.
[http://dx.doi.org/10.2967/jnumed.119.229054] [PMID: 31541034]
[38]
Barrett, J.A.; Coleman, R.E.; Goldsmith, S.J.; Vallabhajosula, S.; Petry, N.A.; Cho, S.; Armor, T.; Stubbs, J.B.; Maresca, K.P.; Stabin, M.G.; Joyal, J.L.; Eckelman, W.C.; Babich, J.W. First-in-man evaluation of 2 high-affinity PSMA-avid small molecules for imaging prostate cancer. J. Nucl. Med., 2013, 54(3), 380-387.
[http://dx.doi.org/10.2967/jnumed.112.111203] [PMID: 23303962]
[39]
Schmidkonz, C.; Hollweg, C.; Beck, M.; Reinfelder, J.; Goetz, T.I.; Sanders, J.C.; Schmidt, D.; Prante, O.; Bäuerle, T.; Cavallaro, A.; Uder, M.; Wullich, B.; Goebell, P.; Kuwert, T.; Ritt, P. 99m Tc-MIP-1404-SPECT/CT for the detection of PSMA-positive lesions in 225 patients with biochemical recurrence of prostate cancer. Prostate, 2018, 78(1), 54-63.
[http://dx.doi.org/10.1002/pros.23444] [PMID: 29105797]
[40]
Hillier, S.M.; Maresca, K.P.; Lu, G.; Merkin, R.D.; Marquis, J.C.; Zimmerman, C.N.; Eckelman, W.C.; Joyal, J.L.; Babich, J.W. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen for molecular imaging of prostate cancer. J. Nucl. Med., 2013, 54(8), 1369-1376.
[http://dx.doi.org/10.2967/jnumed.112.116624] [PMID: 23733925]
[41]
Abergel, R.; Arnedo-Sanchez, L. Challenges of actinium coordination chemistry for nuclear medicine. J. Med. Imaging Radiat. Sci., 2019, 50(1), S39.
[http://dx.doi.org/10.1016/j.jmir.2019.03.119]
[42]
Ferro-Flores, G.; Luna-Gutiérrez, M.; Ocampo-García, B.; Santos-Cuevas, C.; Azorín-Vega, E.; Jiménez-Mancilla, N.; Orocio-Rodríguez, E.; Davanzo, J.; García-Pérez, F.O. Clinical translation of a PSMA inhibitor for 99mTc-based SPECT. Nucl. Med. Biol., 2017, 48, 36-44.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.01.012] [PMID: 28193503]
[43]
Santos-Cuevas, C.; Davanzo, J.; Ferro-Flores, G.; García-Pérez, F.O.; Ocampo-García, B.; Ignacio-Alvarez, E.; Gómez-Argumosa, E.; Pedraza-López, M. 99mTc-labeled PSMA inhibitor: Biokinetics and radiation dosimetry in healthy subjects and imaging of prostate cancer tumors in patients. Nucl. Med. Biol., 2017, 52, 1-6.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.05.005] [PMID: 28575794]
[44]
Santos-Cuevas, C.; Ferro-Flores, G.; García-Pérez, F.O.; Jiménez-Mancilla, N.; Ramírez-Nava, G.; Ocampo-García, B.; Luna-Gutiérrez, M.; Azorín-Vega, E.; Davanzo, J.; Soldevilla-Gallardo, I. 177Lu-DOTA-HYNIC-Lys (Nal)-Urea-Glu: biokinetics, dosimetry, and evaluation in patients with advanced prostate cancer. Contrast Media Mol. Imaging, 2018, 20185247153
[http://dx.doi.org/10.1155/2018/5247153] [PMID: 30534027]
[45]
Robu, S.; Schottelius, M.; Eiber, M.; Maurer, T.; Gschwend, J.; Schwaiger, M.; Wester, H-J. Preclinical evaluation and first patient application of 99mTc-PSMA-I&S for SPECT imaging and radioguided surgery in prostate cancer. J. Nucl. Med., 2017, 58(2), 235-242.
[http://dx.doi.org/10.2967/jnumed.116.178939] [PMID: 27635024]
[46]
Maurer, T.; Weirich, G.; Schottelius, M.; Weineisen, M.; Frisch, B.; Okur, A.; Kübler, H.; Thalgott, M.; Navab, N.; Schwaiger, M.; Wester, H.J.; Gschwend, J.E.; Eiber, M. Prostate-specific membrane antigen-radioguided surgery for metastatic lymph nodes in prostate cancer. Eur. Urol., 2015, 68(3), 530-534.
[http://dx.doi.org/10.1016/j.eururo.2015.04.034] [PMID: 25957851]
[47]
García-Pérez, F.O.; Davanzo, J.; López-Buenrostro, S.; Santos-Cuevas, C.; Ferro-Flores, G.; Jímenez-Ríos, M.A.; Scavuzzo, A.; San-tana-Ríos, Z.; Medina-Ornelas, S. Head to head comparison performance of 99mTc-EDDA/HYNIC-iPSMA SPECT/CT and 68Ga-PSMA-11 PET/CT a prospective study in biochemical recurrence prostate cancer patients. Am. J. Nucl. Med. Mol. Imaging, 2018, 8(5), 332-340.
[PMID: 30510850]
[48]
Ahmadzadehfar, H.; Rahbar, K.; Kürpig, S.; Bögemann, M.; Claesener, M.; Eppard, E.; Gärtner, F.; Rogenhofer, S.; Schäfers, M.; Essler, M. Early side effects and first results of radioligand therapy with (177)Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study. EJNMMI Res., 2015, 5(1), 114.
[http://dx.doi.org/10.1186/s13550-015-0114-2] [PMID: 26099227]
[49]
Kratochwil, C.; Giesel, F.L.; Eder, M.; Afshar-Oromieh, A.; Benešová, M.; Mier, W.; Kopka, K.; Haberkorn, U. [177Lu]Lutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(6), 987-988.
[http://dx.doi.org/10.1007/s00259-014-2978-1] [PMID: 25573634]
[50]
Baum, R.P.; Kulkarni, H.R.; Schuchardt, C.; Singh, A.; Wirtz, M.; Wiessalla, S.; Schottelius, M.; Mueller, D.; Klette, I.; Wester, H-J. Lutetium-177 PSMA radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J. Nucl. Med., 2016, 57(7), 1006-1013.
[http://dx.doi.org/10.2967/jnumed.115.168443] [PMID: 26795286]
[51]
Kratochwil, C.; Giesel, F.L.; Stefanova, M.; Benešová, M.; Bronzel, M.; Afshar-Oromieh, A.; Mier, W.; Eder, M.; Kopka, K.; Haberkorn, U. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J. Nucl. Med., 2016, 57(8), 1170-1176.
[http://dx.doi.org/10.2967/jnumed.115.171397] [PMID: 26985056]
[52]
Rahbar, K.; Schmidt, M.; Heinzel, A.; Eppard, E.; Bode, A.; Yordanova, A.; Claesener, M.; Ahmadzadehfar, H. Response and tolera-bility of a single dose of 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer: a multicenter retrospective analysis. J. Nucl. Med., 2016, 57(9), 1334-1338.
[http://dx.doi.org/10.2967/jnumed.116.173757] [PMID: 27056618]
[53]
Rahbar, K.; Ahmadzadehfar, H.; Kratochwil, C.; Haberkorn, U.; Schäfers, M.; Essler, M.; Baum, R.P.; Kulkarni, H.R.; Schmidt, M.; Drzezga, A.; Bartenstein, P.; Pfestroff, A.; Luster, M.; Lützen, U.; Marx, M.; Prasad, V.; Brenner, W.; Heinzel, A.; Mottaghy, F.M.; Ruf, J.; Meyer, P.T.; Heuschkel, M.; Eveslage, M.; Bögemann, M.; Fendler, W.P.; Krause, B.J. German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J. Nucl. Med., 2017, 58(1), 85-90.
[http://dx.doi.org/10.2967/jnumed.116.183194] [PMID: 27765862]
[54]
Langbein, T.; Weber, W.A.; Eiber, M. Future of theranostics: an outlook on precision oncology in nuclear medicine. J. Nucl. Med., 2019, 60(Suppl. 2), 13S-19S.
[http://dx.doi.org/10.2967/jnumed.118.220566] [PMID: 31481583]
[55]
Miederer, M.; Scheinberg, D.A.; McDevitt, M.R. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv. Drug Deliv. Rev., 2008, 60(12), 1371-1382.
[http://dx.doi.org/10.1016/j.addr.2008.04.009] [PMID: 18514364]
[56]
Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J. Nucl. Med., 2016, 57(12), 1941-1944.
[http://dx.doi.org/10.2967/jnumed.116.178673] [PMID: 27390158]
[57]
Sathekge, M.; Bruchertseifer, F.; Knoesen, O.; Reyneke, F.; Lawal, I.; Lengana, T.; Davis, C.; Mahapane, J.; Corbett, C.; Vorster, M.; Morgenstern, A. 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(1), 129-138.
[http://dx.doi.org/10.1007/s00259-018-4167-0] [PMID: 30232539]
[58]
Kratochwil, C.; Schmidt, K.; Afshar-Oromieh, A.; Bruchertseifer, F.; Rathke, H.; Morgenstern, A.; Haberkorn, U.; Giesel, F.L. Targeted alpha therapy of mCRPC: Dosimetry estimate of 213Bismuth-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(1), 31-37.
[http://dx.doi.org/10.1007/s00259-017-3817-y] [PMID: 28891033]
[59]
Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Bronzel, M.; Apostolidis, C.; Weichert, W.; Haberkorn, U.; Giesel, F.L.; Morgenstern, A. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J. Nucl. Med., 2017, 58(10), 1624-1631.
[http://dx.doi.org/10.2967/jnumed.117.191395] [PMID: 28408529]
[60]
Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Hohenfellner, M.; Giesel, F.L.; Haberkorn, U.; Morgenstern, A. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J. Nucl. Med., 2018, 59(5), 795-802.
[http://dx.doi.org/10.2967/jnumed.117.203539] [PMID: 29326358]
[61]
Nonnekens, J.; Chatalic, K.L.; Molkenboer-Kuenen, J.D.; Beerens, C.E.; Bruchertseifer, F.; Morgenstern, A.; Veldhoven-Zweistra, J.; Schottelius, M.; Wester, H-J.; van Gent, D.C.; van Weerden, W.M.; Boerman, O.C.; de Jong, M.; Heskamp, S. 213Bi-labeled prostate-specific membrane antigen-targeting agents induce DNA double-strand breaks in prostate cancer xenografts. Cancer Biother. Radiopharm., 2017, 32(2), 67-73.
[http://dx.doi.org/10.1089/cbr.2016.2155] [PMID: 28301262]
[62]
Sathekge, M.; Knoesen, O.; Meckel, M.; Modiselle, M.; Vorster, M.; Marx, S. 213Bi-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(6), 1099-1100.
[http://dx.doi.org/10.1007/s00259-017-3657-9] [PMID: 28255795]
[63]
Chakravarty, R.; Siamof, C.M.; Dash, A.; Cai, W. Targeted α-therapy of prostate cancer using radiolabeled PSMA inhibitors: a game changer in nuclear medicine. Am. J. Nucl. Med. Mol. Imaging, 2018, 8(4), 247-267.
[PMID: 30245917]
[64]
Azorín-Vega, E.; Rojas-Calderón, E.; Ferro-Flores, G.; Aranda-Lara, L.; Jiménez-Mancilla, N.; Nava-Cabrera, M.A. Assessment of the radiation absorbed dose produced by 177Lu-iPSMA, 225Ac-iPSMA and 223RaCl2 to prostate cancer cell nuclei in a bone microenvi-ronment model. Appl. Radiat. Isot., 2019, 146, 66-71.
[http://dx.doi.org/10.1016/j.apradiso.2019.01.020] [PMID: 30753987]
[65]
Rathke, H.; Kratochwil, C.; Hohenberger, R.; Giesel, F.L.; Bruchertseifer, F.; Flechsig, P.; Morgenstern, A.; Hein, M.; Plinkert, P.; Haberkorn, U.; Bulut, O.C. Initial clinical experience performing sialendoscopy for salivary gland protection in patients undergoing 225Ac-PSMA-617 RLT. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(1), 139-147.
[http://dx.doi.org/10.1007/s00259-018-4135-8] [PMID: 30151743]
[66]
Morgenstern, A.; Apostolidis, C.; Kratochwil, C.; Sathekge, M.; Krolicki, L.; Bruchertseifer, F. An overview of targeted alpha therapy with 225Actinium and 213Bismuth. Curr. Radiopharm., 2018, 11(3), 200-208.
[http://dx.doi.org/10.2174/1874471011666180502104524] [PMID: 29732998]
[67]
Afshar-Oromieh, A.; Haberkorn, U.; Zechmann, C.; Armor, T.; Mier, W.; Spohn, F.; Debus, N.; Holland-Letz, T.; Babich, J.; Kratochwil, C. Repeated PSMA-targeting radioligand therapy of metastatic prostate cancer with 131I-MIP-1095. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(6), 950-959.
[http://dx.doi.org/10.1007/s00259-017-3665-9] [PMID: 28280855]
[68]
Hamson, E.J.; Keane, F.M.; Tholen, S.; Schilling, O.; Gorrell, M.D. Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. Proteomics Clin. Appl., 2014, 8(5-6), 454-463.
[http://dx.doi.org/10.1002/prca.201300095] [PMID: 24470260]
[69]
Jansen, K.; Heirbaut, L.; Verkerk, R.; Cheng, J.D.; Joossens, J.; Cos, P.; Maes, L.; Lambeir, A-M.; De Meester, I.; Augustyns, K.; Van der Veken, P. Extended structure-activity relationship and pharmacokinetic investigation of (4-quinolinoyl)glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP). J. Med. Chem., 2014, 57(7), 3053-3074.
[http://dx.doi.org/10.1021/jm500031w] [PMID: 24617858]
[70]
Jansen, K.; Heirbaut, L.; Cheng, J.D.; Joossens, J.; Ryabtsova, O.; Cos, P.; Maes, L.; Lambeir, A-M.; De Meester, I.; Augustyns, K.; Van der Veken, P. Selective inhibitors of fibroblast activation protein (FAP) with a (4-quinolinoyl)-glycyl-2-cyanopyrrolidine scaffold. ACS Med. Chem. Lett., 2013, 4(5), 491-496.
[http://dx.doi.org/10.1021/ml300410d] [PMID: 24900696]
[71]
Poplawski, S.E.; Lai, J.H.; Li, Y.; Jin, Z.; Liu, Y.; Wu, W.; Wu, Y.; Zhou, Y.; Sudmeier, J.L.; Sanford, D.G.; Bachovchin, W.W. Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase. J. Med. Chem., 2013, 56(9), 3467-3477.
[http://dx.doi.org/10.1021/jm400351a] [PMID: 23594271]
[72]
Meletta, R.; Müller Herde, A.; Chiotellis, A.; Isa, M.; Rancic, Z.; Borel, N.; Ametamey, S.M.; Krämer, S.D.; Schibli, R. Evaluation of the radiolabeled boronic acid-based FAP inhibitor MIP-1232 for atherosclerotic plaque imaging. Molecules, 2015, 20(2), 2081-2099.
[http://dx.doi.org/10.3390/molecules20022081] [PMID: 25633335]
[73]
Loktev, A.; Lindner, T.; Mier, W.; Debus, J.; Altmann, A.; Jäger, D.; Giesel, F.; Kratochwil, C.; Barthe, P.; Roumestand, C.; Haberkorn, U. A tumor-imaging method targeting cancer-associated fibroblasts. J. Nucl. Med., 2018, 59(9), 1423-1429.
[http://dx.doi.org/10.2967/jnumed.118.210435] [PMID: 29626120]
[74]
Lindner, T.; Loktev, A.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Jäger, D.; Mier, W.; Haberkorn, U. Development of quin-oline-based theranostic ligands for the targeting of fibroblast activation protein. J. Nucl. Med., 2018, 59(9), 1415-1422.
[http://dx.doi.org/10.2967/jnumed.118.210443] [PMID: 29626119]
[75]
Giesel, F.L.; Kratochwil, C.; Lindner, T.; Marschalek, M.M.; Loktev, A.; Lehnert, W.; Debus, J.; Jäger, D.; Flechsig, P.; Altmann, A.; Mier, W.; Haberkorn, U. 68Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J. Nucl. Med., 2019, 60(3), 386-392.
[http://dx.doi.org/10.2967/jnumed.118.215913] [PMID: 30072500]
[76]
Kratochwil, C.; Flechsig, P.; Lindner, T.; Abderrahim, L.; Altmann, A.; Mier, W.; Adeberg, S.; Rathke, H.; Röhrich, M.; Winter, H.; Plinkert, P.K.; Marme, F.; Lang, M.; Kauczor, H.U.; Jäger, D.; Debus, J.; Haberkorn, U.; Giesel, F.L. 68Ga-FAPI PET/CT: Tracer Up-take in 28 Different Kinds of Cancer. J. Nucl. Med., 2019, 60(6), 801-805.
[http://dx.doi.org/10.2967/jnumed.119.227967] [PMID: 30954939]
[77]
Watabe, T.; Liu, Y.; Kaneda-Nakashima, K.; Shirakami, Y.; Lindner, T.; Ooe, K.; Toyoshima, A.; Nagata, K.; Shimosegawa, E.; Haberkorn, U. Theranostics targeting fibroblast activation protein in the tumor stroma: 64Cu and 225Ac labelled FAPI-04 in pancreatic cancer xenograft mouse models. J. Nucl. Med., 2020, 61(4), 563-569.
[http://dx.doi.org/10.2967/jnumed.119.233122] [PMID: 31586001]
[78]
Lapa, C.; Lückerath, K.; Kleinlein, I.; Monoranu, C.M.; Linsenmann, T.; Kessler, A.F.; Rudelius, M.; Kropf, S.; Buck, A.K.; Ernestus, R-I.; Wester, H.J.; Löhr, M.; Herrmann, K. 68Ga-pentixafor-PET/CT for imaging of chemokine receptor 4 expression in glioblastoma. Theranostics, 2016, 6(3), 428-434.
[http://dx.doi.org/10.7150/thno.13986] [PMID: 26909116]
[79]
Gourni, E.; Demmer, O.; Schottelius, M.; D’Alessandria, C.; Schulz, S.; Dijkgraaf, I.; Schumacher, U.; Schwaiger, M.; Kessler, H.; Wester, H-J. PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. J. Nucl. Med., 2011, 52(11), 1803-1810.
[http://dx.doi.org/10.2967/jnumed.111.098798] [PMID: 22045709]
[80]
Herrmann, K.; Lapa, C.; Wester, H-J.; Schottelius, M.; Schiepers, C.; Eberlein, U.; Bluemel, C.; Keller, U.; Knop, S.; Kropf, S.; Schirbel, A.; Buck, A.K.; Lassmann, M. Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. J. Nucl. Med., 2015, 56(3), 410-416.
[http://dx.doi.org/10.2967/jnumed.114.151647] [PMID: 25698782]
[81]
Hartimath, S.V.; van Waarde, A.; Dierckx, R.A.; de Vries, E.F. Evaluation of N-[(11)C]methyl-AMD3465 as a PET tracer for imaging of CXCR4 receptor expression in a C6 glioma tumor model. Mol. Pharm., 2014, 11(11), 3810-3817.
[http://dx.doi.org/10.1021/mp500398r] [PMID: 25094028]
[82]
Tamamura, H.; Omagari, A.; Oishi, S.; Kanamoto, T.; Yamamoto, N.; Peiper, S.C.; Nakashima, H.; Otaka, A.; Fujii, N. Pharmacophore identification of a specific CXCR4 inhibitor, T140, leads to development of effective anti-HIV agents with very high selectivity indexes. Bioorg. Med. Chem. Lett., 2000, 10(23), 2633-2637.
[http://dx.doi.org/10.1016/S0960-894X(00)00535-7] [PMID: 11128640]
[83]
Fujii, N.; Oishi, S.; Hiramatsu, K.; Araki, T.; Ueda, S.; Tamamura, H.; Otaka, A.; Kusano, S.; Terakubo, S.; Nakashima, H.; Broach, J.A.; Trent, J.O.; Wang, Z.X.; Peiper, S.C. Molecular-size reduction of a potent CXCR4-chemokine antagonist using orthogonal com-bination of conformation- and sequence-based libraries. Angew. Chem. Int. Ed. Engl., 2003, 42(28), 3251-3253.
[http://dx.doi.org/10.1002/anie.200351024] [PMID: 12876735]
[84]
Demmer, O.; Gourni, E.; Schumacher, U.; Kessler, H.; Wester, H.J. PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem, 2011, 6(10), 1789-1791.
[http://dx.doi.org/10.1002/cmdc.201100320] [PMID: 21780290]
[85]
Mikaeili, A.; Erfani, M.; Shafiei, M.; Kobarfard, F.; Abdi, K.; Sabzevari, O. Development of a 99mTc-Labeled CXCR4 antagonist derivative as a new tumor radiotracer. Cancer Biother. Radiopharm., 2018, 33(1), 17-24.
[http://dx.doi.org/10.1089/cbr.2017.2226] [PMID: 29389241]
[86]
Ávila-Sánchez, J.M.; Ferro-Flores, G.; Jiménez-Mancilla, N.; Ocampo-García, B.; Bravo-Villegas, G.; Luna-Gutiérrez, M.; Santos-Cuevas, C.; Azorín-Vega, E.; Aranda-Lara, L.; Isaac-Olivé, K.; Melendez-Alafort, L. Synthesis and evaluation of the 99mTc-/177Lu-CXCR4-L theranostic pair for in-vivo chemokine-4 receptor-specific targeting. J. Radioanal. Nucl. Chem., 2020, 342, 21-23.
[http://dx.doi.org/10.1007/s10967-020-07043-6]
[87]
Mayerhoefer, M.E.; Jaeger, U.; Staber, P.; Raderer, M.; Wadsak, W.; Pfaff, S.; Kornauth, C.; Senn, D.; Weber, M.; Wester, H-J.; Skrabs, C.; Haug, A. [68Ga]Ga-pentixafor PET/MRI for CXCR4 imaging of chronic lymphocytic leukemia: preliminary results. Invest. Radiol., 2018, 53(7), 403-408.
[http://dx.doi.org/10.1097/RLI.0000000000000469] [PMID: 29642081]
[88]
Pan, Q.; Luo, Y.; Cao, X.; Ma, Y.; Li, F. Multiple myeloma presenting as a superscan on 68Ga-pentixafor PET/CT. Clin. Nucl. Med., 2018, 43(6), 462-463.
[http://dx.doi.org/10.1097/RLU.0000000000002067] [PMID: 29538035]
[89]
Xu, L.; Tetteh, G.; Lipkova, J.; Zhao, Y.; Li, H.; Christ, P.; Piraud, M.; Buck, A.; Shi, K.; Menze, B.H. Automated whole-body bone lesion detection for multiple myeloma on 68Ga-Pentixafor PET/CT imaging using deep learning methods. Contrast Media Mol. Imaging, 2018, 20182391925
[http://dx.doi.org/10.1155/2018/2391925] [PMID: 29531504 ]
[90]
Reiter, T.; Kircher, M.; Schirbel, A.; Werner, R.A.; Kropf, S.; Ertl, G.; Buck, A.K.; Wester, H-J.; Bauer, W.R.; Lapa, C. Imaging of CXC motif chemokine receptor CXCR4 expression after myocardial infarction with [68Ga] pentixafor-PET/CT in correlation with cardiac MRI. JACC Cardiovasc. Imaging, 2018, 11(10), 1541-1543.
[http://dx.doi.org/10.1016/j.jcmg.2018.01.001] [PMID: 29454781]
[91]
Heinze, B.; Fuss, C.T.; Mulatero, P.; Beuschlein, F.; Reincke, M.; Mustafa, M.; Schirbel, A.; Deutschbein, T.; Williams, T.A.; Rhayem, Y.; Quinkler, M.; Rayes, N.; Monticone, S.; Wild, V.; Gomez-Sanchez, C.E.; Reis, A.C.; Petersenn, S.; Wester, H.J.; Kropf, S.; Fassnacht, M.; Lang, K.; Herrmann, K.; Buck, A.K.; Bluemel, C.; Hahner, S. Targeting CXCR4 (CXC Chemokine Receptor Type 4) for molecular imaging of aldosterone-producing adenoma. Hypertension, 2018, 71(2), 317-325.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09975] [PMID: 29279316]
[92]
Fang, H-Y.; Münch, N.S.; Schottelius, M.; Ingermann, J.; Liu, H.; Schauer, M.; Stangl, S.; Multhoff, G.; Steiger, K.; Gerngroß, C.; Jesinghaus, M.; Weichert, W.; Kühl, A.A.; Sepulveda, A.R.; Wester, H.J.; Wang, T.C.; Quante, M. CXCR4 is a potential target for diagnostic PET/CT imaging in Barrett’s dysplasia and esophageal adenocarcinoma. Clin. Cancer Res., 2018, 24(5), 1048-1061.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1756] [PMID: 29208671]
[93]
Li, X.; Heber, D.; Leike, T.; Beitzke, D.; Lu, X.; Zhang, X.; Wei, Y.; Mitterhauser, M.; Wadsak, W.; Kropf, S.; Wester, H.J.; Loewe, C.; Hacker, M.; Haug, A.R. [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(4), 558-566.
[http://dx.doi.org/10.1007/s00259-017-3831-0] [PMID: 28932900]
[94]
Weiberg, D.; Thackeray, J.T.; Daum, G.; Sohns, J.M.; Kropf, S.; Wester, H-J.; Ross, T.L.; Bengel, F.M.; Derlin, T. Clinical molecular imaging of chemokine receptor CXCR4 expression in atherosclerotic plaque using 68Ga-pentixafor PET: correlation with cardiovascular risk factors and calcified plaque burden. J. Nucl. Med., 2018, 59(2), 266-272.
[http://dx.doi.org/10.2967/jnumed.117.196485] [PMID: 28775206]
[95]
Bouter, C.; Meller, B.; Sahlmann, C.O.; Staab, W.; Wester, H.J.; Kropf, S.; Meller, J. 68Ga-pentixafor PET/CT imaging of chemokine receptor CXCR4 in chronic infection of the bone: first insights. J. Nucl. Med., 2018, 59(2), 320-326.
[http://dx.doi.org/10.2967/jnumed.117.193854] [PMID: 28729430]
[96]
Herhaus, P.; Habringer, S.; Vag, T.; Steiger, K.; Slotta-Huspenina, J.; Gerngroß, C.; Wiestler, B.; Wester, H-J.; Schwaiger, M.; Keller, U. Response assessment with the CXCR4-directed positron emission tomography tracer [68Ga]Pentixafor in a patient with extranodal marginal zone lymphoma of the orbital cavities. EJNMMI Res., 2017, 7(1), 51.
[http://dx.doi.org/10.1186/s13550-017-0294-z] [PMID: 28577295]
[97]
Vallejo-Armenta, P.; Santos-Cuevas, C.; Soto-Andonaegui, J.; Villanueva-Pérez, R.M.; González-Díaz, J.I.; García-Pérez, F.O. Ar-rellano-Zarate, A.; Luna-Gutiérrez, M.; Azorín-Vega, E.; Ocampo-García, B.; Ferro-Flores, G. 99mTc-CXCR4-L for imaging of the chemokine-4 receptor associated with brain tumor invasiveness: biokinetics, radiation dosimetry, and proof of concept in humans. Contrast Media Mol. Imaging, 2020, 20202525037
[http://dx.doi.org/10.1155/2020/2525037] [PMID: 32410920]
[98]
Schottelius, M.; Osl, T.; Poschenrieder, A.; Hoffmann, F.; Beykan, S.; Hänscheid, H.; Schirbel, A.; Buck, A.K.; Kropf, S.; Schwaiger, M.; Keller, U.; Lassmann, M.; Wester, H.J. [177Lu] pentixather: comprehensive preclinical characterization of a first CXCR4-directed endoradiotherapeutic agent. Theranostics, 2017, 7(9), 2350-2362.
[http://dx.doi.org/10.7150/thno.19119] [PMID: 28744319]
[99]
Habringer, S.; Lapa, C.; Herhaus, P.; Schottelius, M.; Istvanffy, R.; Steiger, K.; Slotta-Huspenina, J.; Schirbel, A.; Hänscheid, H.; Kircher, S.; Buck, A.K.; Götze, K.; Vick, B.; Jeremias, I.; Schwaiger, M.; Peschel, C.; Oostendorp, R.; Wester, H.J.; Grigoleit, G.U.; Keller, U. Dual targeting of acute leukemia and supporting niche by CXCR4-directed theranostics. Theranostics, 2018, 8(2), 369-383.
[http://dx.doi.org/10.7150/thno.21397] [PMID: 29290814]
[100]
Buck, A.K.; Stolzenburg, A.; Hänscheid, H.; Schirbel, A.; Lückerath, K.; Schottelius, M.; Wester, H-J.; Lapa, C. Chemokine receptor - directed imaging and therapy. Methods, 2017, 130, 63-71.
[http://dx.doi.org/10.1016/j.ymeth.2017.09.002] [PMID: 28916148]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy