Review Article

放射性标记的蛋白抑制剂肽,可快速向成像和治疗领域进行临床转化

卷 27, 期 41, 2020

页: [7032 - 7047] 页: 16

弟呕挨: 10.2174/0929867327666191223121211

价格: $65

摘要

蛋白质相互作用是人类生物学功能的基础。 但是,这些相互作用中的许多也与疾病有关,包括癌症。 在药物化学中,广泛研究了基于小分子的蛋白质相互作用的合成抑制剂。 放射标记的蛋白质抑制剂肽的开发,以用于分子成像和靶向治疗,并迅速迈向临床转化,是放射性药物科学领域中一个有趣而活跃的研究领域。 在本文中,有关结构修饰的小放射性肽(例如前列腺特异性膜抗原(PSMA)抑制剂,成纤维细胞活化蛋白(FAP)抑制剂和趋化因子4受体配体的拮抗剂)的设计,转化研究和治疗学应用的最新成就( 对与癌症相关的目标蛋白具有高度亲和力的CXCR-4-L)进行了综述和讨论。

关键词: 放射性标记的肽,抑制剂肽,转化性放射性肽,PSMA,FAP,CXCR-4。

[1]
Wójcik, P.; Berlicki, Ł. Peptide-based inhibitors of protein-protein interactions. Bioorg. Med. Chem. Lett., 2016, 26(3), 707-713.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.084] [PMID: 26764190]
[2]
Krenning, E.P.; Bakker, W.H.; Breeman, W.A.; Koper, J.W.; Kooij, P.P.; Ausema, L.; Lameris, J.S.; Reubi, J.C.; Lamberts, S.W. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet, 1989, 1(8632), 242-244.
[http://dx.doi.org/10.1016/S0140-6736(89)91258-0] [PMID: 2563413]
[3]
Lamberts, S.W.; Bakker, W.H.; Reubi, J-C.; Krenning, E.P. Somatostatin-receptor imaging in the localization of endocrine tumors. N. Engl. J. Med., 1990, 323(18), 1246-1249.
[http://dx.doi.org/10.1056/NEJM199011013231805] [PMID: 2170840]
[4]
Ferro-Flores, G.; Arteaga de Murphy, C.; Melendez-Alafort, L. Third generation radiopharmaceuticals for imaging and targeted therapy. Curr. Pharm. Anal., 2006, 2(4), 339-352.
[http://dx.doi.org/10.2174/157341206778699555]
[5]
Reubi, J.C.; Maecke, H.R. Peptide-based probes for cancer imaging. J. Nucl. Med., 2008, 49(11), 1735-1738.
[http://dx.doi.org/10.2967/jnumed.108.053041] [PMID: 18927341]
[6]
de Visser, M.; Verwijnen, S.M.; de Jong, M. Update: improvement strategies for peptide receptor scintigraphy and radionuclide therapy. Cancer Biother. Radiopharm., 2008, 23(2), 137-157.
[http://dx.doi.org/10.1089/cbr.2007.0435] [PMID: 18454684]
[7]
Schottelius, M.; Wester, H-J. Molecular imaging targeting peptide receptors. Methods, 2009, 48(2), 161-177.
[http://dx.doi.org/10.1016/j.ymeth.2009.03.012] [PMID: 19324088]
[8]
Ferro-Flores, G. Ramírez, Fde.M.; Meléndez-Alafort, L.; Santos-Cuevas, C.L. Peptides for in vivo target-specific cancer imaging. Mini Rev. Med. Chem., 2010, 10(1), 87-97.
[http://dx.doi.org/10.2174/138955710791112596] [PMID: 20380643]
[9]
Ruzza, P.; Calderan, A. Radiolabeled peptide-receptor ligands in tumor imaging. Expert Opin. Med. Diagn., 2011, 5(5), 411-424.
[http://dx.doi.org/10.1517/17530059.2011.592829] [PMID: 23484627]
[10]
Ambrosini, V.; Fani, M.; Fanti, S.; Forrer, F.; Maecke, H.R. Radiopeptide imaging and therapy in Europe. J. Nucl. Med., 2011, 52(2)(Suppl. 2), 42S-55S.
[http://dx.doi.org/10.2967/jnumed.110.085753] [PMID: 22144555]
[11]
Graham, M.M.; Menda, Y. Radiopeptide imaging and therapy in the United States. J. Nucl. Med., 2011, 52(2)(Suppl. 2), 56S-63S.
[http://dx.doi.org/10.2967/jnumed.110.085746] [PMID: 22144556]
[12]
Morgat, C.; Hindié, E.; Mishra, A.K.; Allard, M.; Fernandez, P. Gallium-68: chemistry and radiolabeled peptides exploring different oncogenic pathways. Cancer Biother. Radiopharm., 2013, 28(2), 85-97.
[http://dx.doi.org/10.1089/cbr.2012.1244] [PMID: 23461410]
[13]
Sun, X.; Li, Y.; Liu, T.; Li, Z.; Zhang, X.; Chen, X. Peptide-based imaging agents for cancer detection. Adv. Drug Deliv. Rev., 2017, 110-111, 38-51.
[http://dx.doi.org/10.1016/j.addr.2016.06.007] [PMID: 27327937]
[14]
Tornesello, A.L.; Tornesello, M.L.; Buonaguro, F.M. An overview of bioactive peptides for in vivo imaging and therapy in human diseases. Mini Rev. Med. Chem., 2017, 17(9), 758-770.
[http://dx.doi.org/10.2174/1389557517666170120151739] [PMID: 28117023]
[15]
Jackson, I.M.; Scott, P.J.H.; Thompson, S. Clinical applications of radiolabeled peptides for PET. Semin. Nucl. Med., 2017, 47(5), 493-523.
[http://dx.doi.org/10.1053/j.semnuclmed.2017.05.007] [PMID: 28826523]
[16]
Opalinska, M.; Hubalewska-Dydejczyk, A.; Sowa-Staszczak, A. Radiolabeled peptides: current and new perspectives. Q. J. Nucl. Med. Mol. Imaging, 2017, 61(2), 153-167.
[http://dx.doi.org/10.23736/s1824-4785.17.02971-5] [PMID: 28347132]
[17]
Rezazadeh, F.; Sadeghzadeh, N. Tumor targeting with 99m Tc radiolabeled peptides: clinical application and recent development. Chem. Biol. Drug Des., 2019, 93(3), 205-221.
[http://dx.doi.org/10.1111/cbdd.13413] [PMID: 30299570]
[18]
Paganelli, G.; Zoboli, S.; Cremonesi, M.; Mäcke, H.R.; Chinol, M. Receptor-mediated radionuclide therapy with 90Y-DOTA-D-Phe1-Tyr3-Octreotide: preliminary report in cancer patients. Cancer Biother. Radiopharm., 1999, 14(6), 477-483.
[http://dx.doi.org/10.1089/cbr.1999.14.477] [PMID: 10850334]
[19]
Kwekkeboom, D.J.; Bakker, W.H.; Kam, B.L.; Teunissen, J.J.; Kooij, P.P.; de Herder, W.W.; Feelders, R.A.; van Eijck, C.H.; de Jong, M.; Srinivasan, A.; Erion, J.L.; Krenning, E.P. Treatment of patients with gastro-entero-pancreatic (GEP) tumours with the novel radiolabelled somatostatin analogue [177Lu-DOTA0,Tyr3]octreotate. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(3), 417-422.
[http://dx.doi.org/10.1007/s00259-002-1050-8] [PMID: 12634971]
[20]
Rajasekaran, A.K.; Anilkumar, G.; Christiansen, J.J. Is prostate-specific membrane antigen a multifunctional protein? Am. J. Physiol. Cell Physiol., 2005, 288(5), C975-C981.
[http://dx.doi.org/10.1152/ajpcell.00506.2004] [PMID: 15840561]
[21]
Benešová, M.; Schäfer, M.; Bauder-Wüst, U.; Afshar-Oromieh, A.; Kratochwil, C.; Mier, W.; Haberkorn, U.; Kopka, K.; Eder, M. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradio-therapy of prostate cancer. J. Nucl. Med., 2015, 56(6), 914-920.
[http://dx.doi.org/10.2967/jnumed.114.147413] [PMID: 25883127]
[22]
Rösch, F. 68Ge/68Ga generators and 68Ga radiopharmaceutical chemistry on their way into a new century. J. Postgrad. Med. Educ. Res., 2013, 47, 18-25.
[http://dx.doi.org/10.5005/jp-journals-10028-1052]
[23]
Lin, M.; Paolillo, V.; Ta, R.T.; Damasco, J.; Rojo, R.D.; Carl, J.C.; Melancon, M.P.; Ravizzini, G.C.; Le, D.B.; Santos, E.B. Fully automated preparation of 68Ga-PSMA-11 at curie level quantity using cyclotron-produced 68Ga for clinical applications. Appl. Radiat. Isot., 2020, 155108936
[http://dx.doi.org/10.1016/j.apradiso.2019.108936] [PMID: 31655351]
[24]
Mendoza-Figueroa, M.J.; Escudero-Castellanos, A.; Ramirez-Nava, G.J.; Ocampo-García, B.E.; Santos-Cuevas, C.L.; Ferro-Flores, G.; Pedraza-Lopez, M.; Avila-Rodriguez, M.A. Preparation and preclinical evaluation of 68 Ga-iPSMA-BN as a potential heterodimeric radiotracer for PET-imaging of prostate cancer. J. Radioanal. Nucl. Chem., 2018, 318(3), 2097-2105.
[http://dx.doi.org/10.1007/s10967-018-6285-3]
[25]
Eder, M.; Schäfer, M.; Bauder-Wüst, U.; Hull, W-E.; Wängler, C.; Mier, W.; Haberkorn, U.; Eisenhut, M. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug. Chem., 2012, 23(4), 688-697.
[http://dx.doi.org/10.1021/bc200279b] [PMID: 22369515]
[26]
Eder, M.; Neels, O.; Müller, M.; Bauder-Wüst, U.; Remde, Y.; Schäfer, M.; Hennrich, U.; Eisenhut, M.; Afshar-Oromieh, A.; Haberkorn, U.; Kopka, K. Novel preclinical and radiopharmaceutical aspects of [68Ga] Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceuticals (Basel), 2014, 7(7), 779-796.
[http://dx.doi.org/10.3390/ph7070779] [PMID: 24983957]
[27]
Eiber, M.; Maurer, T.; Souvatzoglou, M.; Beer, A.J.; Ruffani, A.; Haller, B.; Graner, F-P.; Kübler, H.; Haberkorn, U.; Eisenhut, M.; Wester, H.J.; Gschwend, J.E.; Schwaiger, M. Evaluation of hybrid 68Ga-PSMA ligand PET/CT in 248 patients with biochemical re-currence after radical prostatectomy. J. Nucl. Med., 2015, 56(5), 668-674.
[http://dx.doi.org/10.2967/jnumed.115.154153] [PMID: 25791990]
[28]
Weineisen, M.; Schottelius, M.; Simecek, J.; Baum, R.P.; Yildiz, A.; Beykan, S.; Kulkarni, H.R.; Lassmann, M.; Klette, I.; Eiber, M.; Schwaiger, M.; Wester, H.J. 68Ga-and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J. Nucl. Med., 2015, 56(8), 1169-1176.
[http://dx.doi.org/10.2967/jnumed.115.158550] [PMID: 26089548]
[29]
Hernández-Jiménez, T.; Ferro-Flores, G.; Ocampo-García, B.; Morales-Avila, E.; Escudero-Castellanos, A.; Azorín-Vega, E.; Santos-Cuevas, C.; Luna-Gutiérrez, M.; Jiménez-Mancilla, N.; Medina, L.A. 177 Lu-DOTA-HYNIC-Lys (Nal)-Urea-Glu: synthesis and as-sessment of the ability to target the prostate specific membrane antigen. J. Radioanal. Nucl. Chem., 2018, 318(3), 2059-2066.
[http://dx.doi.org/10.1007/s10967-018-6239-9]
[30]
Luna-Gutiérrez, M.; Hernández-Jiménez, T.; Serrano-Espinoza, L.; Peña-Flores, A.; Soto-Abundiz, A. Freeze-dried multi-dose kits for the fast preparation of 177 Lu-Tyr 3-octreotide and 177 Lu-PSMA (inhibitor) under GMP conditions. J. Radioanal. Nucl. Chem., 2017, 314(3), 2181-2188.
[http://dx.doi.org/10.1007/s10967-017-5595-1]
[31]
Cardinale, J.; Martin, R.; Remde, Y.; Schäfer, M.; Hienzsch, A.; Hübner, S.; Zerges, A-M.; Marx, H.; Hesse, R.; Weber, K.; Smits, R.; Hoepping, A.; Müller, M.; Neels, O.C.; Kopka, K. Procedures for the GMP-compliant production and quality control of [18F] PSMA-1007: a next generation radiofluorinated tracer for the detection of prostate cancer. Pharmaceuticals (Basel), 2017, 10(4), 77.
[http://dx.doi.org/10.3390/ph10040077] [PMID: 28953234]
[32]
Giesel, F.L.; Cardinale, J.; Schäfer, M.; Neels, O.; Benešová, M.; Mier, W.; Haberkorn, U.; Kopka, K.; Kratochwil, C. (18)F-Labelled PSMA-1007 shows similarity in structure, biodistribution and tumour uptake to the theragnostic compound PSMA-617. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(10), 1929-1930.
[http://dx.doi.org/10.1007/s00259-016-3447-9] [PMID: 27342416]
[33]
Giesel, F.L.; Hadaschik, B.; Cardinale, J.; Radtke, J.; Vinsensia, M.; Lehnert, W.; Kesch, C.; Tolstov, Y.; Singer, S.; Grabe, N.; Du-ensing, S.; Schäfer, M.; Neels, O.C.; Mier, W.; Haberkorn, U.; Kopka, K.; Kratochwil, C. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(4), 678-688.
[http://dx.doi.org/10.1007/s00259-016-3573-4] [PMID: 27889802]
[34]
Giesel, F.L.; Knorr, K.; Spohn, F.; Will, L.; Maurer, T.; Flechsig, P.; Neels, O.; Schiller, K.; Amaral, H.; Weber, W.A.; Haberkorn, U.; Schwaiger, M.; Kratochwil, C.; Choyke, P.; Kramer, V.; Kopka, K.; Eiber, M. Detection efficacy of 18F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy. J. Nucl. Med., 2019, 60(3), 362-368.
[http://dx.doi.org/10.2967/jnumed.118.212233] [PMID: 30042163]
[35]
Zechmann, C.M.; Afshar-Oromieh, A.; Armor, T.; Stubbs, J.B.; Mier, W.; Hadaschik, B.; Joyal, J.; Kopka, K.; Debus, J.; Babich, J.W.; Haberkorn, U. Radiation dosimetry and first therapy results with a (124)I/(131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(7), 1280-1292.
[http://dx.doi.org/10.1007/s00259-014-2713-y] [PMID: 24577951]
[36]
Zhou, Y.; Li, J.; Xu, X.; Zhao, M.; Zhang, B.; Deng, S.; Wu, Y. 64Cu-based radiopharmaceuticals in molecular imaging. Technol. Cancer Res. Treat., 2019, 181533033819830758
[http://dx.doi.org/10.1177/1533033819830758] [PMID: 30764737]
[37]
Dos Santos, J.C.; Beijer, B.; Bauder-Wüst, U.; Schäfer, M.; Leotta, K.; Eder, M.; Benešová, M.; Kleist, C.; Giesel, F.; Kratochwil, C. Development of novel PSMA ligands for imaging and therapy with copper isotopes. J. Nucl. Med., 2020, 61(1), 70-79.
[http://dx.doi.org/10.2967/jnumed.119.229054] [PMID: 31541034]
[38]
Barrett, J.A.; Coleman, R.E.; Goldsmith, S.J.; Vallabhajosula, S.; Petry, N.A.; Cho, S.; Armor, T.; Stubbs, J.B.; Maresca, K.P.; Stabin, M.G.; Joyal, J.L.; Eckelman, W.C.; Babich, J.W. First-in-man evaluation of 2 high-affinity PSMA-avid small molecules for imaging prostate cancer. J. Nucl. Med., 2013, 54(3), 380-387.
[http://dx.doi.org/10.2967/jnumed.112.111203] [PMID: 23303962]
[39]
Schmidkonz, C.; Hollweg, C.; Beck, M.; Reinfelder, J.; Goetz, T.I.; Sanders, J.C.; Schmidt, D.; Prante, O.; Bäuerle, T.; Cavallaro, A.; Uder, M.; Wullich, B.; Goebell, P.; Kuwert, T.; Ritt, P. 99m Tc-MIP-1404-SPECT/CT for the detection of PSMA-positive lesions in 225 patients with biochemical recurrence of prostate cancer. Prostate, 2018, 78(1), 54-63.
[http://dx.doi.org/10.1002/pros.23444] [PMID: 29105797]
[40]
Hillier, S.M.; Maresca, K.P.; Lu, G.; Merkin, R.D.; Marquis, J.C.; Zimmerman, C.N.; Eckelman, W.C.; Joyal, J.L.; Babich, J.W. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen for molecular imaging of prostate cancer. J. Nucl. Med., 2013, 54(8), 1369-1376.
[http://dx.doi.org/10.2967/jnumed.112.116624] [PMID: 23733925]
[41]
Abergel, R.; Arnedo-Sanchez, L. Challenges of actinium coordination chemistry for nuclear medicine. J. Med. Imaging Radiat. Sci., 2019, 50(1), S39.
[http://dx.doi.org/10.1016/j.jmir.2019.03.119]
[42]
Ferro-Flores, G.; Luna-Gutiérrez, M.; Ocampo-García, B.; Santos-Cuevas, C.; Azorín-Vega, E.; Jiménez-Mancilla, N.; Orocio-Rodríguez, E.; Davanzo, J.; García-Pérez, F.O. Clinical translation of a PSMA inhibitor for 99mTc-based SPECT. Nucl. Med. Biol., 2017, 48, 36-44.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.01.012] [PMID: 28193503]
[43]
Santos-Cuevas, C.; Davanzo, J.; Ferro-Flores, G.; García-Pérez, F.O.; Ocampo-García, B.; Ignacio-Alvarez, E.; Gómez-Argumosa, E.; Pedraza-López, M. 99mTc-labeled PSMA inhibitor: Biokinetics and radiation dosimetry in healthy subjects and imaging of prostate cancer tumors in patients. Nucl. Med. Biol., 2017, 52, 1-6.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.05.005] [PMID: 28575794]
[44]
Santos-Cuevas, C.; Ferro-Flores, G.; García-Pérez, F.O.; Jiménez-Mancilla, N.; Ramírez-Nava, G.; Ocampo-García, B.; Luna-Gutiérrez, M.; Azorín-Vega, E.; Davanzo, J.; Soldevilla-Gallardo, I. 177Lu-DOTA-HYNIC-Lys (Nal)-Urea-Glu: biokinetics, dosimetry, and evaluation in patients with advanced prostate cancer. Contrast Media Mol. Imaging, 2018, 20185247153
[http://dx.doi.org/10.1155/2018/5247153] [PMID: 30534027]
[45]
Robu, S.; Schottelius, M.; Eiber, M.; Maurer, T.; Gschwend, J.; Schwaiger, M.; Wester, H-J. Preclinical evaluation and first patient application of 99mTc-PSMA-I&S for SPECT imaging and radioguided surgery in prostate cancer. J. Nucl. Med., 2017, 58(2), 235-242.
[http://dx.doi.org/10.2967/jnumed.116.178939] [PMID: 27635024]
[46]
Maurer, T.; Weirich, G.; Schottelius, M.; Weineisen, M.; Frisch, B.; Okur, A.; Kübler, H.; Thalgott, M.; Navab, N.; Schwaiger, M.; Wester, H.J.; Gschwend, J.E.; Eiber, M. Prostate-specific membrane antigen-radioguided surgery for metastatic lymph nodes in prostate cancer. Eur. Urol., 2015, 68(3), 530-534.
[http://dx.doi.org/10.1016/j.eururo.2015.04.034] [PMID: 25957851]
[47]
García-Pérez, F.O.; Davanzo, J.; López-Buenrostro, S.; Santos-Cuevas, C.; Ferro-Flores, G.; Jímenez-Ríos, M.A.; Scavuzzo, A.; San-tana-Ríos, Z.; Medina-Ornelas, S. Head to head comparison performance of 99mTc-EDDA/HYNIC-iPSMA SPECT/CT and 68Ga-PSMA-11 PET/CT a prospective study in biochemical recurrence prostate cancer patients. Am. J. Nucl. Med. Mol. Imaging, 2018, 8(5), 332-340.
[PMID: 30510850]
[48]
Ahmadzadehfar, H.; Rahbar, K.; Kürpig, S.; Bögemann, M.; Claesener, M.; Eppard, E.; Gärtner, F.; Rogenhofer, S.; Schäfers, M.; Essler, M. Early side effects and first results of radioligand therapy with (177)Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study. EJNMMI Res., 2015, 5(1), 114.
[http://dx.doi.org/10.1186/s13550-015-0114-2] [PMID: 26099227]
[49]
Kratochwil, C.; Giesel, F.L.; Eder, M.; Afshar-Oromieh, A.; Benešová, M.; Mier, W.; Kopka, K.; Haberkorn, U. [177Lu]Lutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(6), 987-988.
[http://dx.doi.org/10.1007/s00259-014-2978-1] [PMID: 25573634]
[50]
Baum, R.P.; Kulkarni, H.R.; Schuchardt, C.; Singh, A.; Wirtz, M.; Wiessalla, S.; Schottelius, M.; Mueller, D.; Klette, I.; Wester, H-J. Lutetium-177 PSMA radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J. Nucl. Med., 2016, 57(7), 1006-1013.
[http://dx.doi.org/10.2967/jnumed.115.168443] [PMID: 26795286]
[51]
Kratochwil, C.; Giesel, F.L.; Stefanova, M.; Benešová, M.; Bronzel, M.; Afshar-Oromieh, A.; Mier, W.; Eder, M.; Kopka, K.; Haberkorn, U. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J. Nucl. Med., 2016, 57(8), 1170-1176.
[http://dx.doi.org/10.2967/jnumed.115.171397] [PMID: 26985056]
[52]
Rahbar, K.; Schmidt, M.; Heinzel, A.; Eppard, E.; Bode, A.; Yordanova, A.; Claesener, M.; Ahmadzadehfar, H. Response and tolera-bility of a single dose of 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer: a multicenter retrospective analysis. J. Nucl. Med., 2016, 57(9), 1334-1338.
[http://dx.doi.org/10.2967/jnumed.116.173757] [PMID: 27056618]
[53]
Rahbar, K.; Ahmadzadehfar, H.; Kratochwil, C.; Haberkorn, U.; Schäfers, M.; Essler, M.; Baum, R.P.; Kulkarni, H.R.; Schmidt, M.; Drzezga, A.; Bartenstein, P.; Pfestroff, A.; Luster, M.; Lützen, U.; Marx, M.; Prasad, V.; Brenner, W.; Heinzel, A.; Mottaghy, F.M.; Ruf, J.; Meyer, P.T.; Heuschkel, M.; Eveslage, M.; Bögemann, M.; Fendler, W.P.; Krause, B.J. German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J. Nucl. Med., 2017, 58(1), 85-90.
[http://dx.doi.org/10.2967/jnumed.116.183194] [PMID: 27765862]
[54]
Langbein, T.; Weber, W.A.; Eiber, M. Future of theranostics: an outlook on precision oncology in nuclear medicine. J. Nucl. Med., 2019, 60(Suppl. 2), 13S-19S.
[http://dx.doi.org/10.2967/jnumed.118.220566] [PMID: 31481583]
[55]
Miederer, M.; Scheinberg, D.A.; McDevitt, M.R. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv. Drug Deliv. Rev., 2008, 60(12), 1371-1382.
[http://dx.doi.org/10.1016/j.addr.2008.04.009] [PMID: 18514364]
[56]
Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J. Nucl. Med., 2016, 57(12), 1941-1944.
[http://dx.doi.org/10.2967/jnumed.116.178673] [PMID: 27390158]
[57]
Sathekge, M.; Bruchertseifer, F.; Knoesen, O.; Reyneke, F.; Lawal, I.; Lengana, T.; Davis, C.; Mahapane, J.; Corbett, C.; Vorster, M.; Morgenstern, A. 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(1), 129-138.
[http://dx.doi.org/10.1007/s00259-018-4167-0] [PMID: 30232539]
[58]
Kratochwil, C.; Schmidt, K.; Afshar-Oromieh, A.; Bruchertseifer, F.; Rathke, H.; Morgenstern, A.; Haberkorn, U.; Giesel, F.L. Targeted alpha therapy of mCRPC: Dosimetry estimate of 213Bismuth-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(1), 31-37.
[http://dx.doi.org/10.1007/s00259-017-3817-y] [PMID: 28891033]
[59]
Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Bronzel, M.; Apostolidis, C.; Weichert, W.; Haberkorn, U.; Giesel, F.L.; Morgenstern, A. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J. Nucl. Med., 2017, 58(10), 1624-1631.
[http://dx.doi.org/10.2967/jnumed.117.191395] [PMID: 28408529]
[60]
Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Hohenfellner, M.; Giesel, F.L.; Haberkorn, U.; Morgenstern, A. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J. Nucl. Med., 2018, 59(5), 795-802.
[http://dx.doi.org/10.2967/jnumed.117.203539] [PMID: 29326358]
[61]
Nonnekens, J.; Chatalic, K.L.; Molkenboer-Kuenen, J.D.; Beerens, C.E.; Bruchertseifer, F.; Morgenstern, A.; Veldhoven-Zweistra, J.; Schottelius, M.; Wester, H-J.; van Gent, D.C.; van Weerden, W.M.; Boerman, O.C.; de Jong, M.; Heskamp, S. 213Bi-labeled prostate-specific membrane antigen-targeting agents induce DNA double-strand breaks in prostate cancer xenografts. Cancer Biother. Radiopharm., 2017, 32(2), 67-73.
[http://dx.doi.org/10.1089/cbr.2016.2155] [PMID: 28301262]
[62]
Sathekge, M.; Knoesen, O.; Meckel, M.; Modiselle, M.; Vorster, M.; Marx, S. 213Bi-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(6), 1099-1100.
[http://dx.doi.org/10.1007/s00259-017-3657-9] [PMID: 28255795]
[63]
Chakravarty, R.; Siamof, C.M.; Dash, A.; Cai, W. Targeted α-therapy of prostate cancer using radiolabeled PSMA inhibitors: a game changer in nuclear medicine. Am. J. Nucl. Med. Mol. Imaging, 2018, 8(4), 247-267.
[PMID: 30245917]
[64]
Azorín-Vega, E.; Rojas-Calderón, E.; Ferro-Flores, G.; Aranda-Lara, L.; Jiménez-Mancilla, N.; Nava-Cabrera, M.A. Assessment of the radiation absorbed dose produced by 177Lu-iPSMA, 225Ac-iPSMA and 223RaCl2 to prostate cancer cell nuclei in a bone microenvi-ronment model. Appl. Radiat. Isot., 2019, 146, 66-71.
[http://dx.doi.org/10.1016/j.apradiso.2019.01.020] [PMID: 30753987]
[65]
Rathke, H.; Kratochwil, C.; Hohenberger, R.; Giesel, F.L.; Bruchertseifer, F.; Flechsig, P.; Morgenstern, A.; Hein, M.; Plinkert, P.; Haberkorn, U.; Bulut, O.C. Initial clinical experience performing sialendoscopy for salivary gland protection in patients undergoing 225Ac-PSMA-617 RLT. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(1), 139-147.
[http://dx.doi.org/10.1007/s00259-018-4135-8] [PMID: 30151743]
[66]
Morgenstern, A.; Apostolidis, C.; Kratochwil, C.; Sathekge, M.; Krolicki, L.; Bruchertseifer, F. An overview of targeted alpha therapy with 225Actinium and 213Bismuth. Curr. Radiopharm., 2018, 11(3), 200-208.
[http://dx.doi.org/10.2174/1874471011666180502104524] [PMID: 29732998]
[67]
Afshar-Oromieh, A.; Haberkorn, U.; Zechmann, C.; Armor, T.; Mier, W.; Spohn, F.; Debus, N.; Holland-Letz, T.; Babich, J.; Kratochwil, C. Repeated PSMA-targeting radioligand therapy of metastatic prostate cancer with 131I-MIP-1095. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(6), 950-959.
[http://dx.doi.org/10.1007/s00259-017-3665-9] [PMID: 28280855]
[68]
Hamson, E.J.; Keane, F.M.; Tholen, S.; Schilling, O.; Gorrell, M.D. Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. Proteomics Clin. Appl., 2014, 8(5-6), 454-463.
[http://dx.doi.org/10.1002/prca.201300095] [PMID: 24470260]
[69]
Jansen, K.; Heirbaut, L.; Verkerk, R.; Cheng, J.D.; Joossens, J.; Cos, P.; Maes, L.; Lambeir, A-M.; De Meester, I.; Augustyns, K.; Van der Veken, P. Extended structure-activity relationship and pharmacokinetic investigation of (4-quinolinoyl)glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP). J. Med. Chem., 2014, 57(7), 3053-3074.
[http://dx.doi.org/10.1021/jm500031w] [PMID: 24617858]
[70]
Jansen, K.; Heirbaut, L.; Cheng, J.D.; Joossens, J.; Ryabtsova, O.; Cos, P.; Maes, L.; Lambeir, A-M.; De Meester, I.; Augustyns, K.; Van der Veken, P. Selective inhibitors of fibroblast activation protein (FAP) with a (4-quinolinoyl)-glycyl-2-cyanopyrrolidine scaffold. ACS Med. Chem. Lett., 2013, 4(5), 491-496.
[http://dx.doi.org/10.1021/ml300410d] [PMID: 24900696]
[71]
Poplawski, S.E.; Lai, J.H.; Li, Y.; Jin, Z.; Liu, Y.; Wu, W.; Wu, Y.; Zhou, Y.; Sudmeier, J.L.; Sanford, D.G.; Bachovchin, W.W. Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase. J. Med. Chem., 2013, 56(9), 3467-3477.
[http://dx.doi.org/10.1021/jm400351a] [PMID: 23594271]
[72]
Meletta, R.; Müller Herde, A.; Chiotellis, A.; Isa, M.; Rancic, Z.; Borel, N.; Ametamey, S.M.; Krämer, S.D.; Schibli, R. Evaluation of the radiolabeled boronic acid-based FAP inhibitor MIP-1232 for atherosclerotic plaque imaging. Molecules, 2015, 20(2), 2081-2099.
[http://dx.doi.org/10.3390/molecules20022081] [PMID: 25633335]
[73]
Loktev, A.; Lindner, T.; Mier, W.; Debus, J.; Altmann, A.; Jäger, D.; Giesel, F.; Kratochwil, C.; Barthe, P.; Roumestand, C.; Haberkorn, U. A tumor-imaging method targeting cancer-associated fibroblasts. J. Nucl. Med., 2018, 59(9), 1423-1429.
[http://dx.doi.org/10.2967/jnumed.118.210435] [PMID: 29626120]
[74]
Lindner, T.; Loktev, A.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Jäger, D.; Mier, W.; Haberkorn, U. Development of quin-oline-based theranostic ligands for the targeting of fibroblast activation protein. J. Nucl. Med., 2018, 59(9), 1415-1422.
[http://dx.doi.org/10.2967/jnumed.118.210443] [PMID: 29626119]
[75]
Giesel, F.L.; Kratochwil, C.; Lindner, T.; Marschalek, M.M.; Loktev, A.; Lehnert, W.; Debus, J.; Jäger, D.; Flechsig, P.; Altmann, A.; Mier, W.; Haberkorn, U. 68Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J. Nucl. Med., 2019, 60(3), 386-392.
[http://dx.doi.org/10.2967/jnumed.118.215913] [PMID: 30072500]
[76]
Kratochwil, C.; Flechsig, P.; Lindner, T.; Abderrahim, L.; Altmann, A.; Mier, W.; Adeberg, S.; Rathke, H.; Röhrich, M.; Winter, H.; Plinkert, P.K.; Marme, F.; Lang, M.; Kauczor, H.U.; Jäger, D.; Debus, J.; Haberkorn, U.; Giesel, F.L. 68Ga-FAPI PET/CT: Tracer Up-take in 28 Different Kinds of Cancer. J. Nucl. Med., 2019, 60(6), 801-805.
[http://dx.doi.org/10.2967/jnumed.119.227967] [PMID: 30954939]
[77]
Watabe, T.; Liu, Y.; Kaneda-Nakashima, K.; Shirakami, Y.; Lindner, T.; Ooe, K.; Toyoshima, A.; Nagata, K.; Shimosegawa, E.; Haberkorn, U. Theranostics targeting fibroblast activation protein in the tumor stroma: 64Cu and 225Ac labelled FAPI-04 in pancreatic cancer xenograft mouse models. J. Nucl. Med., 2020, 61(4), 563-569.
[http://dx.doi.org/10.2967/jnumed.119.233122] [PMID: 31586001]
[78]
Lapa, C.; Lückerath, K.; Kleinlein, I.; Monoranu, C.M.; Linsenmann, T.; Kessler, A.F.; Rudelius, M.; Kropf, S.; Buck, A.K.; Ernestus, R-I.; Wester, H.J.; Löhr, M.; Herrmann, K. 68Ga-pentixafor-PET/CT for imaging of chemokine receptor 4 expression in glioblastoma. Theranostics, 2016, 6(3), 428-434.
[http://dx.doi.org/10.7150/thno.13986] [PMID: 26909116]
[79]
Gourni, E.; Demmer, O.; Schottelius, M.; D’Alessandria, C.; Schulz, S.; Dijkgraaf, I.; Schumacher, U.; Schwaiger, M.; Kessler, H.; Wester, H-J. PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. J. Nucl. Med., 2011, 52(11), 1803-1810.
[http://dx.doi.org/10.2967/jnumed.111.098798] [PMID: 22045709]
[80]
Herrmann, K.; Lapa, C.; Wester, H-J.; Schottelius, M.; Schiepers, C.; Eberlein, U.; Bluemel, C.; Keller, U.; Knop, S.; Kropf, S.; Schirbel, A.; Buck, A.K.; Lassmann, M. Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. J. Nucl. Med., 2015, 56(3), 410-416.
[http://dx.doi.org/10.2967/jnumed.114.151647] [PMID: 25698782]
[81]
Hartimath, S.V.; van Waarde, A.; Dierckx, R.A.; de Vries, E.F. Evaluation of N-[(11)C]methyl-AMD3465 as a PET tracer for imaging of CXCR4 receptor expression in a C6 glioma tumor model. Mol. Pharm., 2014, 11(11), 3810-3817.
[http://dx.doi.org/10.1021/mp500398r] [PMID: 25094028]
[82]
Tamamura, H.; Omagari, A.; Oishi, S.; Kanamoto, T.; Yamamoto, N.; Peiper, S.C.; Nakashima, H.; Otaka, A.; Fujii, N. Pharmacophore identification of a specific CXCR4 inhibitor, T140, leads to development of effective anti-HIV agents with very high selectivity indexes. Bioorg. Med. Chem. Lett., 2000, 10(23), 2633-2637.
[http://dx.doi.org/10.1016/S0960-894X(00)00535-7] [PMID: 11128640]
[83]
Fujii, N.; Oishi, S.; Hiramatsu, K.; Araki, T.; Ueda, S.; Tamamura, H.; Otaka, A.; Kusano, S.; Terakubo, S.; Nakashima, H.; Broach, J.A.; Trent, J.O.; Wang, Z.X.; Peiper, S.C. Molecular-size reduction of a potent CXCR4-chemokine antagonist using orthogonal com-bination of conformation- and sequence-based libraries. Angew. Chem. Int. Ed. Engl., 2003, 42(28), 3251-3253.
[http://dx.doi.org/10.1002/anie.200351024] [PMID: 12876735]
[84]
Demmer, O.; Gourni, E.; Schumacher, U.; Kessler, H.; Wester, H.J. PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem, 2011, 6(10), 1789-1791.
[http://dx.doi.org/10.1002/cmdc.201100320] [PMID: 21780290]
[85]
Mikaeili, A.; Erfani, M.; Shafiei, M.; Kobarfard, F.; Abdi, K.; Sabzevari, O. Development of a 99mTc-Labeled CXCR4 antagonist derivative as a new tumor radiotracer. Cancer Biother. Radiopharm., 2018, 33(1), 17-24.
[http://dx.doi.org/10.1089/cbr.2017.2226] [PMID: 29389241]
[86]
Ávila-Sánchez, J.M.; Ferro-Flores, G.; Jiménez-Mancilla, N.; Ocampo-García, B.; Bravo-Villegas, G.; Luna-Gutiérrez, M.; Santos-Cuevas, C.; Azorín-Vega, E.; Aranda-Lara, L.; Isaac-Olivé, K.; Melendez-Alafort, L. Synthesis and evaluation of the 99mTc-/177Lu-CXCR4-L theranostic pair for in-vivo chemokine-4 receptor-specific targeting. J. Radioanal. Nucl. Chem., 2020, 342, 21-23.
[http://dx.doi.org/10.1007/s10967-020-07043-6]
[87]
Mayerhoefer, M.E.; Jaeger, U.; Staber, P.; Raderer, M.; Wadsak, W.; Pfaff, S.; Kornauth, C.; Senn, D.; Weber, M.; Wester, H-J.; Skrabs, C.; Haug, A. [68Ga]Ga-pentixafor PET/MRI for CXCR4 imaging of chronic lymphocytic leukemia: preliminary results. Invest. Radiol., 2018, 53(7), 403-408.
[http://dx.doi.org/10.1097/RLI.0000000000000469] [PMID: 29642081]
[88]
Pan, Q.; Luo, Y.; Cao, X.; Ma, Y.; Li, F. Multiple myeloma presenting as a superscan on 68Ga-pentixafor PET/CT. Clin. Nucl. Med., 2018, 43(6), 462-463.
[http://dx.doi.org/10.1097/RLU.0000000000002067] [PMID: 29538035]
[89]
Xu, L.; Tetteh, G.; Lipkova, J.; Zhao, Y.; Li, H.; Christ, P.; Piraud, M.; Buck, A.; Shi, K.; Menze, B.H. Automated whole-body bone lesion detection for multiple myeloma on 68Ga-Pentixafor PET/CT imaging using deep learning methods. Contrast Media Mol. Imaging, 2018, 20182391925
[http://dx.doi.org/10.1155/2018/2391925] [PMID: 29531504 ]
[90]
Reiter, T.; Kircher, M.; Schirbel, A.; Werner, R.A.; Kropf, S.; Ertl, G.; Buck, A.K.; Wester, H-J.; Bauer, W.R.; Lapa, C. Imaging of CXC motif chemokine receptor CXCR4 expression after myocardial infarction with [68Ga] pentixafor-PET/CT in correlation with cardiac MRI. JACC Cardiovasc. Imaging, 2018, 11(10), 1541-1543.
[http://dx.doi.org/10.1016/j.jcmg.2018.01.001] [PMID: 29454781]
[91]
Heinze, B.; Fuss, C.T.; Mulatero, P.; Beuschlein, F.; Reincke, M.; Mustafa, M.; Schirbel, A.; Deutschbein, T.; Williams, T.A.; Rhayem, Y.; Quinkler, M.; Rayes, N.; Monticone, S.; Wild, V.; Gomez-Sanchez, C.E.; Reis, A.C.; Petersenn, S.; Wester, H.J.; Kropf, S.; Fassnacht, M.; Lang, K.; Herrmann, K.; Buck, A.K.; Bluemel, C.; Hahner, S. Targeting CXCR4 (CXC Chemokine Receptor Type 4) for molecular imaging of aldosterone-producing adenoma. Hypertension, 2018, 71(2), 317-325.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09975] [PMID: 29279316]
[92]
Fang, H-Y.; Münch, N.S.; Schottelius, M.; Ingermann, J.; Liu, H.; Schauer, M.; Stangl, S.; Multhoff, G.; Steiger, K.; Gerngroß, C.; Jesinghaus, M.; Weichert, W.; Kühl, A.A.; Sepulveda, A.R.; Wester, H.J.; Wang, T.C.; Quante, M. CXCR4 is a potential target for diagnostic PET/CT imaging in Barrett’s dysplasia and esophageal adenocarcinoma. Clin. Cancer Res., 2018, 24(5), 1048-1061.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1756] [PMID: 29208671]
[93]
Li, X.; Heber, D.; Leike, T.; Beitzke, D.; Lu, X.; Zhang, X.; Wei, Y.; Mitterhauser, M.; Wadsak, W.; Kropf, S.; Wester, H.J.; Loewe, C.; Hacker, M.; Haug, A.R. [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(4), 558-566.
[http://dx.doi.org/10.1007/s00259-017-3831-0] [PMID: 28932900]
[94]
Weiberg, D.; Thackeray, J.T.; Daum, G.; Sohns, J.M.; Kropf, S.; Wester, H-J.; Ross, T.L.; Bengel, F.M.; Derlin, T. Clinical molecular imaging of chemokine receptor CXCR4 expression in atherosclerotic plaque using 68Ga-pentixafor PET: correlation with cardiovascular risk factors and calcified plaque burden. J. Nucl. Med., 2018, 59(2), 266-272.
[http://dx.doi.org/10.2967/jnumed.117.196485] [PMID: 28775206]
[95]
Bouter, C.; Meller, B.; Sahlmann, C.O.; Staab, W.; Wester, H.J.; Kropf, S.; Meller, J. 68Ga-pentixafor PET/CT imaging of chemokine receptor CXCR4 in chronic infection of the bone: first insights. J. Nucl. Med., 2018, 59(2), 320-326.
[http://dx.doi.org/10.2967/jnumed.117.193854] [PMID: 28729430]
[96]
Herhaus, P.; Habringer, S.; Vag, T.; Steiger, K.; Slotta-Huspenina, J.; Gerngroß, C.; Wiestler, B.; Wester, H-J.; Schwaiger, M.; Keller, U. Response assessment with the CXCR4-directed positron emission tomography tracer [68Ga]Pentixafor in a patient with extranodal marginal zone lymphoma of the orbital cavities. EJNMMI Res., 2017, 7(1), 51.
[http://dx.doi.org/10.1186/s13550-017-0294-z] [PMID: 28577295]
[97]
Vallejo-Armenta, P.; Santos-Cuevas, C.; Soto-Andonaegui, J.; Villanueva-Pérez, R.M.; González-Díaz, J.I.; García-Pérez, F.O. Ar-rellano-Zarate, A.; Luna-Gutiérrez, M.; Azorín-Vega, E.; Ocampo-García, B.; Ferro-Flores, G. 99mTc-CXCR4-L for imaging of the chemokine-4 receptor associated with brain tumor invasiveness: biokinetics, radiation dosimetry, and proof of concept in humans. Contrast Media Mol. Imaging, 2020, 20202525037
[http://dx.doi.org/10.1155/2020/2525037] [PMID: 32410920]
[98]
Schottelius, M.; Osl, T.; Poschenrieder, A.; Hoffmann, F.; Beykan, S.; Hänscheid, H.; Schirbel, A.; Buck, A.K.; Kropf, S.; Schwaiger, M.; Keller, U.; Lassmann, M.; Wester, H.J. [177Lu] pentixather: comprehensive preclinical characterization of a first CXCR4-directed endoradiotherapeutic agent. Theranostics, 2017, 7(9), 2350-2362.
[http://dx.doi.org/10.7150/thno.19119] [PMID: 28744319]
[99]
Habringer, S.; Lapa, C.; Herhaus, P.; Schottelius, M.; Istvanffy, R.; Steiger, K.; Slotta-Huspenina, J.; Schirbel, A.; Hänscheid, H.; Kircher, S.; Buck, A.K.; Götze, K.; Vick, B.; Jeremias, I.; Schwaiger, M.; Peschel, C.; Oostendorp, R.; Wester, H.J.; Grigoleit, G.U.; Keller, U. Dual targeting of acute leukemia and supporting niche by CXCR4-directed theranostics. Theranostics, 2018, 8(2), 369-383.
[http://dx.doi.org/10.7150/thno.21397] [PMID: 29290814]
[100]
Buck, A.K.; Stolzenburg, A.; Hänscheid, H.; Schirbel, A.; Lückerath, K.; Schottelius, M.; Wester, H-J.; Lapa, C. Chemokine receptor - directed imaging and therapy. Methods, 2017, 130, 63-71.
[http://dx.doi.org/10.1016/j.ymeth.2017.09.002] [PMID: 28916148]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy