Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Computer-aided Diagnosis of Melanoma: A Review of Existing Knowledge and Strategies

Author(s): Ananjan Maiti*, Biswajoy Chatterjee, Amira S. Ashour and Nilanjan Dey

Volume 16, Issue 7, 2020

Page: [835 - 854] Pages: 20

DOI: 10.2174/1573405615666191210104141

Price: $65

Abstract

Computer-aided diagnosis (CAD) systems are the best alternative for immediate disclosure and diagnosis of skin diseases. Such systems comprise several image processing procedures, including segmentation, feature extraction and artificial intelligence (AI) based methods. This survey highlights different CAD methodologies for diagnosing Melanoma and related skin diseases. It has also discussed types, stages, treatments and various imaging techniques of skin cancer. Currently, researchers developed new techniques to detect each stage. Extensive studies on melanoma cancer detection were performed by incorporating advanced machine learning. Still, there is a high need for an accurate, faster, affordable, portable methodology for a CAD system. This will strengthen the work in related fields and address the future direction of a similar kind of research.

Keywords: Skin cancer, melanoma, CAD, treatment, pre-processing, segmentation, classification.

Graphical Abstract

[1]
The World Health Organization. Available from: https://www.who.int/
[2]
[3]
Rogers HW, Weinstock MA, Feldman SR, Coldiron BM. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population. JAMA Dermatol 2012; 151: 1010-81.
[4]
Koh HK, Geller AC, Miller DR, Grossbart TA, Lew RA. Prevention and early detection strategies for melanoma and skin cancer. Current status. Arch Dermatol 1996; 132(4): 436-43-.
[http://dx.doi.org/10.1001/archderm.1996.03890280098014] [PMID: 8629848]
[5]
D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci 2013; 14(6): 12222-48.
[http://dx.doi.org/10.3390/ijms140612222] [PMID: 23749111]
[6]
Rana BK, Hewett-Emmett D, Jin L, et al. High polymorphism at the human melanocortin 1 receptor locus. Genetics 1999; 151(4): 1547-57.
[PMID: 10101176]
[7]
Lerner AB, Fitzpatrick TB. Biochemistry of melanin formation. Physiol Rev 1950; 30(1): 91-126.
[http://dx.doi.org/10.1152/physrev.1950.30.1.91] [PMID: 15403662]
[8]
Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 2007; 31(4-5): 198-211.
[http://dx.doi.org/10.1016/j.compmedimag.2007.02.002] [PMID: 17349778]
[9]
Rigel DS, Carucci JA. Malignant melanoma: prevention, early detection, and treatment in the 21st century. CA Cancer J Clin 2000; 50(4): 215-36.
[http://dx.doi.org/10.3322/canjclin.50.4.215] [PMID: 10986965]
[10]
Feit NE, Dusza SW, Marghoob AA. Melanomas detected with the aid of total cutaneous photography. Br J Dermatol 2004; 150(4): 706-14.
[http://dx.doi.org/10.1111/j.0007-0963.2004.05892.x] [PMID: 15099367]
[11]
Campos-do-Carmo G, Ramos-e-Silva M. Dermoscopy: basic concepts. Int J Dermatol 2008; 47(7): 712-9.
[http://dx.doi.org/10.1111/j.1365-4632.2008.03556.x] [PMID: 18613881]
[12]
Welzel J. Optical coherence tomography in dermatology: a review. Skin Res Technol 2001; 7(2001): 1-9.
[13]
Haraguchi T, Shimi T, Koujin T, Hashiguchi N, Hiraoka Y. Spectral imaging fluorescence microscopy. Genes Cells 2002; 7(9): 881-7.
[http://dx.doi.org/10.1046/j.1365-2443.2002.00575.x] [PMID: 12296819]
[14]
Hofmann-Wellenhof R, Wurm EM, Ahlgrimm-Siess V, et al. Reflectance confocal microscopy-state-of-art and research overview. Semin Cutan Med Surg 2009; 28(3): 172-9.
[http://dx.doi.org/10.1016/j.sder.2009.06.004] [PMID: 19782941]
[15]
Rani J, Ram K, Talukdar FA, Dey N. The brain tumor segmentation using fuzzy c-means technique: a study Recent advances in applied thermal imaging for industrial applications. Pennsylvania: IGI Global 2017; pp. 1-22.
[16]
Dey N, Ashour AS, Ashour AS, Arati S. Digital analysis of microscopic images in medicine. J Adv Micros Res 2015; 10(1): 1-13.
[http://dx.doi.org/10.1166/jamr.2015.1229]
[17]
Beagum S, Ashour AS, Dey N. Bag-of-features in microscopic images classification. Pennsylvania: IGI Global. 2017; pp. 1-22.
[http://dx.doi.org/10.4018/978-1-5225-0571-6.ch017]
[18]
Chakraborty S, Chatterjee S, Ashour AS, Mali K, Dey N. Intelligent computing in medical imaging: A study. In: Advancements in applied metaheuristic computing. Pennsylvania: IGI Global 2018; pp. 143-63.
[http://dx.doi.org/10.4018/978-1-5225-4151-6.ch006]
[19]
Mirbeik-Sabzevari A, Oppelaar E, Ashinoff R, Tavassolian N. High- contrast, low-cost, 3D visu- alization of skin cancer using ultra-high- resolution millimeter-wave imaging. IEEE Trans Med Imaging 2019; 38(9): 2188-97.
[20]
Choudhury A, Samanta S, Dey N, et al. Microscopic image segmentation using quantum inspired evolutionary algorithm. J Adv Micros Res 2015; 10(3): 164-73.
[http://dx.doi.org/10.1166/jamr.2015.1257]
[21]
Society AC. Cancer facts figures. Society 2019.
[22]
Dey N, Ashour AS. Computing in medical image analysis. In: Soft computing based medical image analysis. Amsterdam: Elsevier 2018.
[http://dx.doi.org/10.1016/B978-0-12-813087-2.00025-7]
[23]
Baker JA, Rosen EL, Lo JY, Gimenez EI, Walsh R, Soo MS. Computeraided detection (CAD) in screening mammography: sensitivity of commercial CAD systems for detecting architectural distortion. AJR Am J Roentgenol 2003; 181(4): 1083-8.
[http://dx.doi.org/10.2214/ajr.181.4.1811083] [PMID: 14500236]
[24]
Dey N, Karâa W B. Biomedical Image analysis and mining techniques for improved health outcomes. Pennsylvania IGI Global 2015.
[25]
Dey N, Ashour AS, Borra S, et al. Classification in BioApps: Automation of Decision Making. In Classification in BioApps: Automation of Decision Making. Springer 2017.
[26]
Chakraborty S, Chatterjee S, Ashour AS, Mali K, Dey N. Intelligent computing in medical imaging: A study. Pennsylvania: IGI Global. 2018.
[http://dx.doi.org/10.4018/978-1-5225-4151-6.ch006]
[27]
Nguyen GN, Ashour AS, Dey N. A survey of the state-of-the- arts on neutrosophic sets in biomedical diagnoses. Int J Mach Learn Cybern 2019; 10: 1-13.
[http://dx.doi.org/10.1007/s13042-017-0691-7]
[28]
Roy P, Goswami S, Chakraborty S, Azar AT, Dey N. Image segmentation using rough set theory: a review. Int J Rough Sets Data Anal 2014; 1: 62-74.
[http://dx.doi.org/10.4018/ijrsda.2014070105]
[29]
Chakraborty S, Patra PK, Maji P, Ashour AS, Dey N. Image registration techniques and frameworks: A review. In: Applied video processing in surveillance and monitoring systems. Pennsylvania: IGI Global 2017.
[http://dx.doi.org/10.4018/978-1-5225-1022-2.ch005]
[30]
Giger M, MacMahon H. Image processing and computer-aided diagnosis. Radiol Clin North Am 1996; 34(3): 565-96.
[PMID: 8657872]
[31]
Chang W Y, Huang A, Yang C Y, et al. Computer-aided diagnosis of skin lesions using conventional digital photography: a reliability and feasibility study. PLOS one 2013 2013: 0076212.
[http://dx.doi.org/10.1371/journal.pone.0076212]
[32]
Klinger T. Image processing with LabVIEW and IMAQ vision. 1st ed. Upper Saddle River: Prentice Hall Inc. 2003.
[33]
Blajer JAGW, Krawczyk M. The inverse simulation study of aircraft flight path reconstruction Transport 2002; XVII(3): 103-7.
[http://dx.doi.org/10.3846/16483840.2002.10414022]
[34]
Codella NC, Gutman D, Celebi ME, et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 International Symposium on Biomedical Imaging (ISBI). International Symposium on Biomedical Imaging (ISBI 2018) hosted by the International Skin Imaging Collaboration (ISIC); 2018; New Jersey: IEEE; pp. 168-72. arXiv:1902.03368.
[35]
Giotis I, Molders N, Land S, Biehl M, Jonkman MF, Petkov N. MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images Expert Syst Appl 2015; 42(19): 6578-85.
[http://dx.doi.org/10.1016/j.eswa.2015.04.034]
[36]
Gutman D, Codella NC, Celebi E, et al. Skin lesion analysis toward melanoma detection: A challenge at the International Symposium on Biomedical Imaging (ISBI). Hosted by the International Skin Imaging Collaboration (ISIC); 2016; New Jersey: IEEE. arXiv preprint arXiv:1605 2016; 01397.
[37]
Dermatology Atlas. August 13, 2019.http://www.atlasdermatology.com/2019
[38]
Braun RP, Rabinovitz HS, Oliviero M, Kopf AW, Saurat J-H. Dermoscopy of pigmented skin lesions. J Am Acad Dermatol 2005; 52(1): 109-21.
[http://dx.doi.org/10.1016/j.jaad.2001.11.001] [PMID: 15627088]
[39]
DermNet NZ’s dermatology library. (last access date: August 13,2019) Available from https://www.dermnetnz.org/
[40]
Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 2018; 2018: 5180161.
[http://dx.doi.org/10.1038/sdata.2018.161] [PMID: 30106392]
[41]
DERMOFIT. A cognitive prosthesis to aid focal skin lesion diagnosis. 2019 Available fromhttps://homepages.inf.ed.ac.uk/rbf/DERMOFIT/
[42]
Zhang X, Xiong Y. Impulse noise removal using directional difference based noise detector and adaptive weighted mean filter. IEEE Signal Process Lett 2009; 16: 4-295.
[http://dx.doi.org/10.1109/LSP.2009.2014293]
[43]
Oliveira RB, Filho ME, Ma Z, Papa JP, Pereira AS, Tavares JMR. Computational methods for the image segmentation of pigmented skin lesions: A review Comput Methods Programs Biomed 2016; 131: 127-41.
[http://dx.doi.org/10.1016/j.cmpb.2016.03.032] [PMID: 27265054]
[44]
Celebi ME, Aslandogan YA, Bergstresser PR. Unsupervised border detection of skin lesion images. International Conference on Information Technology: Coding and Computing (ITCC’05)- Volume II; 2005 Apr 4-6; Las Vegas, NV, USA New Jersey: IEEE 2005.
[http://dx.doi.org/10.1109/ITCC.2005.283]
[45]
Karargyris A, Karargyris O, Pantelopoulos A. Derma/care: An advanced image-processing mobile application for monitoring skin cancer. 24th International Conference on Tools with Artificial Intelligence 2012 Nov 7-9 Athens, Greece New Jersey IEEE 2013
[46]
Martin ME, Wabuyele MB, Chen K, et al. Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection. Ann Biomed Eng 2006; 34: 6-1061.
[47]
Claridge E, Cotton S, Hall P, Moncrieff M. From colour to tissue histology: Physics-based interpretation of images of pigmented skin lesions. Med Image Anal 2003; 7(4): 489-502.
[http://dx.doi.org/10.1016/S1361-8415(03)00033-1] [PMID: 14561553]
[48]
Hoshyar AN, Al-Jumaily A, Hoshyar AN. The beneficial techniques in preprocessing step of skin cancer detection system comparing Procedia Comput Sci 2014; 42: 25-31.
[http://dx.doi.org/10.1016/j.procs.2014.11.029]
[49]
Chaki J, Dey N. A Beginners Guide to Image Preprocessing Techniques Boca Raton: CRC Press 2018.
[http://dx.doi.org/10.1201/9780429441134]
[50]
Chaki J, Dey N. A Beginner’s Guide to Image Shape Feature Extraction Techniques. Boca Raton: CRC Press 2019.
[51]
Borra S, Thanki R, Dey N. Satellite image enhancement and analysis. In: Satellite Image Analysis: Clustering and Classification. Berlin: Springer 2019.
[http://dx.doi.org/10.1007/978-981-13-6424-2_2]
[52]
Kurt B, Nabiyev VV, Turhan K. Medical images enhancement by using anisotropic filter and CLAHE. International Symposium on Innovations in Intelligent Systems and Applications 2012 July 2-4; Trabzon, Turkey New Jersey: IEEE 2012.
[http://dx.doi.org/10.1109/INISTA.2012.6246971]
[53]
Yu Y, Acton ST. Speckle reducing anisotropic diffusion IEEE Trans Image Process 2002; 11(11): 1260-70.
[http://dx.doi.org/10.1109/TIP.2002.804276] [PMID: 18249696]
[54]
Greenberg S, Kogan D. Improved structure-adaptive anisotropic filter Pattern Recognit Lett 2006; 27: 59-65.
[http://dx.doi.org/10.1016/j.patrec.2005.07.001]
[55]
Fogel I, Sagi D. Gabor filters as texture discriminator Biol Cybern 1989; 61: 103-13.
[http://dx.doi.org/10.1007/BF00204594]
[56]
Xu X, Quan C, Ren F. Facial expression recognition based on gabor wavelet transform and histogram of oriented gradients. International Conference on Mechatronics and Automation (ICMA) 2015 Aug 2-5 Beijing, China New Jersey: IEEE 2015.
[http://dx.doi.org/10.1109/ICMA.2015.7237813]
[57]
Gao W, Tedrake R. FilterReg: Robust and efficient probabilistic point-set registration using gaussian filter and twist parameterization. arXiv:1811.10136.
[58]
Farbiz F, Menhaj MB, Motamedi SA, Hagan MT. A new fuzzy logic filter for image enhancement. EEE Trans Syst Man Cybern B Cybern. 2000; 30(1): 110-9.
[http://dx.doi.org/10.1109/3477.826951] [PMID: 18244733]
[59]
Chen T, Wu H R. Adaptive impulse detection using center-weighted median filters IEEE Sign Process Lett 2001; 8(1): 1-3.
[http://dx.doi.org/10.1109/97.889633]
[60]
Zhang B, Allebach JP. Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Trans Image Process 2008; 17(5): 664-78.
[61]
Salinas HM, Fernández DC. Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optiComputeraided Diagnosis of Melanoma Current Medical Imaging, 2020, Vol. 16, No. 7 851 cal coherence tomography. IEEE Trans Med Imaging 2007; 26(6): 761-71.
[http://dx.doi.org/10.1109/TMI.2006.887375] [PMID: 17679327]
[62]
Tom VT, Peli T, Leung M, Bondaryk JE. Morphology-based algorithm for point target detection in infrared backgrounds SPIE Dig Lib 1993; 1993; 1-10.
[http://dx.doi.org/10.1117/12.157758]
[63]
Schowengerdt RA. Techniques for image processing and classifications in remote sensing. Cambridge: Academic Press 2012.
[64]
Jaleel JA, Salim S, Aswin R. Computer aided detection of skin cancer. International Conference on Circuits, Power and Computing Technologies (ICCPCT) 2013 Mar 20-21 Nagercoil, India New Jersey: IEEE 2013.
[http://dx.doi.org/10.1109/ICCPCT.2013.6528879]
[65]
Chatterjee S, Dey D, Munshi S. Mathematical morphology aided shape, texture and colour feature extraction from skin lesion for identification of malignant melanoma. International Conference on Condition Assessment Techniques in Electrical Systems (CATCON) 2015 Dec 10-12 Bangalore, India New Jersey: IEEE 2016.
[http://dx.doi.org/10.1109/CATCON.2015.7449534]
[66]
Celebi ME, Iyatomi H, Schaefer G, Stoecker WV. Lesion border detection in dermoscopy images Comput Med Imaging Graph 2009; 33(2): 148-53.
[http://dx.doi.org/10.1016/j.compmedimag.2008.11.002] [PMID: 19121917]
[67]
Joseph S, Panicker JR. Skin lesion analysis system for melanoma detection with an effective hair segmentation method International Conference on Information Science (ICIS) 2016 Aug 12-13 Kochi, India New Jersey: IEEE 2017.
[http://dx.doi.org/10.1109/INFOSCI.2016.7845307]
[68]
Lin BS, Michael K, Kalra S, Tizhoosh HR. Skin lesion segmentation: U-nets versus clustering. Symposium Series on Computational Intelligence (SSCI) 2017 Nov27-Dec 1; Honolulu, HI, USA New Jersey: IEEE 2018.
[69]
Sau K, Maiti A, Ghosh A. Preprocessing of skin cancer using anisotropic diffusion and sigmoidfunction. In: Advanced computational and communication paradigms. Berlin: Springer 2018.
[http://dx.doi.org/10.1007/978-981-10-8237-5_6]
[70]
Sankaran S, Sethumadhavan G. Entropy-based colour splitting in dermoscopy images to identify internal borders. International Conference on Inventive Research in Computing Applications (ICIRCA) 2018 July 11-12 Coimbatore, India New Jersey: IEEE. 2019.
[71]
Arora G, Dubey AK, Jaffery ZA. Design of DMEY wavelet gaussian filter (DWGF) for de-noising of skin lesion images. Berlin: Springer 2019.
[http://dx.doi.org/10.1007/978-981-13-2414-7_44]
[72]
Pandey P, Saurabh P, Verma B, Tiwari B. A multi-scale retinex with color restoration (msr-cr) technique for skin cancer detection. Soft 2019; 2019; 465-73.
[http://dx.doi.org/10.1007/978-981-13-1595-4_37]
[73]
Aima A, Sharma AK. Predictive approach for melanoma skin cancer detection using CNN. SSRN Electronic J 2019; 20193352407
[74]
Hameed N, Shabut A, Hossain M. A computer-aided diagnosis system for classifying prominent skin lesions using machine learning. 10th Computer Science and Electronic Engineering (CEEC); 2018 Sept 19-21; Colchester, UK. New Jersey: IEEE 2019.
[http://dx.doi.org/10.1109/CEEC.2018.8674183]
[75]
Singh S, Singh A, Gupta R, Sinha S. Automatic segmentation of melanoma affected region for computer-aided diagnosis International Conference on Computing, Power and Communication Technologies (GUCON) 2018 Sept 28-29 Greater Noida, Uttar Pradesh, India. New Jersey: IEEE 2019.
[http://dx.doi.org/10.1109/GUCON.2018.8675085]
[76]
Ketheesan T, Venuja S. Melanoma lesion segmentation in dermoscopic image using multi-level features. E-Repository. 2018 Available fromhttp://ir.lib.seu.ac.lk/handle/123456789/3508
[77]
Santosh KC, Antani S, Guru DS, Dey N. Medical Imaging: Artificial Intelligence. In: Image recognition, and machine learning techniques. Boca Raton CRC Press 2019.
[78]
Jaisakthi SM, Mirunalini P, Aravindan C. Automated skin lesion segmentation of dermoscopic images using grabcut and k-means algorithms IET Comput Vis 2018; 12(8): 1088-95.
[http://dx.doi.org/10.1049/iet-cvi.2018.5289]
[79]
Satapathy SC, Raja N S M, Rajinikanth V, Ashour A S, Dey N. Multi-level image thresholding using Otsu and chaotic. Neural Comput Applic 2018; 29: 1285-307.
[80]
Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J Ambient Intell Humaniz Comput 2018; 2018: 1-12.
[81]
Anitha P, Bindhiya S, Abinaya A, Satapathy SC, Dey N, Rajinikanth V. RGB image multi-thresholding based on Kapur’s entropy-A study with heuristic algorithms. Second International Conference on Electrical, Computer and Communication Technologies (ICECCT) 2017 Feb 22-24 Coimbatore, India New Jersey: IEEE 2017.
[http://dx.doi.org/10.1109/ICECCT.2017.8117823]
[82]
Xu L, Jackowski M, Goshtasby A, et al. Segmentation of skin cancer images Image Vis Comput 1999; 17: 65-74.
[http://dx.doi.org/10.1016/S0262-8856(98)00091-2]
[83]
Roy P, Dutta S, Dey N, et al. Adaptive thresholding: a comparative study IEEE. International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT) 2014 July 10-11 Kanyakumari, India New Jersey: IEEE 2014.
[84]
Premaladha J, Ravichandran KS. Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms. J Med Syst 2016; 40(4): 96.
[http://dx.doi.org/10.1007/s10916-016-0460-2] [PMID: 26872778]
[85]
Vesal S, Patil SM, Ravikumar N, Maier AK. A multi-task framework for skin lesion detection and segmentation. Berlin: Springer 2018.
[86]
He Y, Xie F. Automatic skin lesion segmentation based on texture analysis and supervised learning. Berlin: Springer 2012.
[87]
Hu K, Liu S, Zhang Y, et al. A skin lesion segmentation method based on saliency and adaptive thresholding in wavelet domain. Berlin: Springer 2018.
[88]
Bi L, Kim J, Ahn E, Feng D, Fulham M. Automated skin lesion segmentation via image-wise supervised learning and multi-scale superpixel based cellular automata. 13th International Symposium on Biomedical Imaging (ISBI) 2016 Apr 13-16 Prague, Czech Republic New Jersey: IEEE 2016.
[http://dx.doi.org/10.1109/ISBI.2016.7493448]
[89]
Tushar FI. Automatic skin lesion segmentation using grabcut in HSV colour space. arXiv preprint arXiv 1810.
[90]
Ho L. Fully automated growcut-based segmentation of melanoma in dermoscopic images. J Young Investig 2019; 36(2): 1-10.
[91]
Dey N, Maji P, Das P, Biswas S, Das A, Chaudhuri SS. An edge based blind watermarking technique of medical images without devalorizing diagnostic parameters. International Conference on Advances in Technology and Engineering (ICATE) 2013 Jan 23-25 Mumbai, India New Jersey: IEEE 2013.
[92]
Mishra N K, Kaur R, Kasmi R, et al. Automatic lesion border selection in dermoscopy images using morphology and color features. Skin Res Technol 2019; 25(4): 544-52.
[93]
Masood A, Al-Jumaily A. Orientation sensitive fuzzy c means based fast level set evolution for segmentation of histopathological images to detect skin cancer. Berlin: Springer 2018.
[94]
Chatterjee S, Sarkar S, Dey N, Ashour AS. Application of cuckoo search in water quality prediction using artificial neural network. Int J Comput Intell Stud 2017; 6(2-3): 229-44.
[95]
Dey N, Ashour A S, Bhattacharyya S. Applied nature-inspired computing: algorithms and case studies. Berlin: Springer 2020.
[96]
Youssef A, Bloisi D D, Muscio M, Pennisi A, Nardi D, Facchiano A. Deep convolutional pixel-wise labeling for skin lesion image segmentation. International Symposium on Medical Measurements and Applications (MeMeA); 2018 June 11-13; Rome, Italy. NewJersey: IEEE 2018.
[http://dx.doi.org/10.1109/MeMeA.2018.8438669]
[97]
Xu H, Hwang T H. Automatic skin lesion segmentation using deep fully convolutional networks. arXiv:1807.06466.
[98]
Bolelli F, Pollastri F, Palacios R P, Grana C. Improving skin lesion segmentation with generative adversarial networks. 31st International Symposium on Computer-Based Medical Systems (CBMS) 2018 June 18-21 Karlstad, Sweden New Jersey: IEEE 2018.
[99]
Zeng G, Zheng G. Multi-scale fully convolutional densenets for automated skin lesion segmentation in dermoscopy images Berlin: Springer 2018.
[http://dx.doi.org/10.1007/978-3-319-93000-8_58]
[100]
Kawahara J, Hamarneh G. Fully convolutional neural networks to detect clinical dermoscopic features. IEEE J Biomed Health Inform 2019; 23(2): 578-85.
[101]
Xie Y, Zhang J, Xia Y, Shen C. Semi-and weakly supervised directional bootstrapping model for automated skin lesion segmentation Ground A1 2019; 2019; 1-8.
[102]
Vesal S, Patil SM, Ravikumar N, Maier AK. A multi-task framework for skin lesion detection and segmentation. Berlin: Springer 2018.
[103]
Goyal M, Yap MH. Region of interest detection in dermoscopic images for natural data- augmentation. arXiv preprint arXiv:1807 10711.
[104]
Bi L, Feng D, Kim J. Improving automatic skin lesion segmentation using adversarial learning based data argumentation. arXiv p 2018.
[105]
Zhou H, Schaefer G, Celebi ME, Lin F, Liu T. Gradient vector flow with mean shift for skin lesion segmentation Comput Med Imaging Graph 2011; 35(2): 121-7.
[http://dx.doi.org/10.1016/j.compmedimag.2010.08.002] [PMID: 20832242]
[106]
Pennisi A, Bloisi DD, Nardi D, Giampetruzzi AR, Mondino C, Facchiano A. Skin lesion image segmentation using Delaunay Triangulation for melanoma detection Comput Med Imaging Graph 2016; 52: 89-103.
[http://dx.doi.org/10.1016/j.compmedimag.2016.05.002] [PMID: 27215953]
[107]
Ng VT, Fung BY, Lee TK. Determining the asymmetry of skin lesion with fuzzy borders Comput Biol Med 2005; 35(2): 103-20.
[http://dx.doi.org/10.1016/j.compbiomed.2003.11.004] [PMID: 15567181]
[108]
Santosh K C, Antani S, Guru D S, Dey N. Medical Imaging 1st ed Milton: Taylor & Francis. 2019.
[http://dx.doi.org/10.1201/9780429029417]
[109]
Chaki J, Dey N, Shi F. Pattern mining approaches used in sensor-based biometric recognition: A review IEEE Sens J 2019; 19(10): 3569-80.
[http://dx.doi.org/10.1109/JSEN.2019.2894972]
[110]
Rajinikanth V, Satapathy SC, Dey N, Fernandes SL, Manic KS. Skin melanoma assessment using kapur’s entropy and level set-a study with bat algorithm. Singapore: Springer 2019.
[111]
Dey N, Karâa WB, Chakraborty S, Banerjee S, Salem MAM, Azar AT. Image mining framework and techniques: a review Int J Image Mining 2015; 1(1): 45-64.
[http://dx.doi.org/10.1504/IJIM.2015.070028]
[112]
Wang D, He T, Li Z, et al. Image feature-based affective retrieval employing improved parameter and structure identification of adaptive neuro-fuzzy inference system. Neural Comput Applic 2018; 29: 1087-102.
[113]
Chaki J, Dey N. A beginner’s guide to image shape feature extraction techniques. Boca Raton: CRC Press 2019.
[114]
Bono A, Tomatis S, Bartoli C, et al. The ABCD system of melanoma detection: a spectrophotometric analysis of the Asymmetry, Border, Color, and Dimension. Cancer 1999; 85(1): 72-7.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19990101)85:1<72::AID-CNCR10>3.0.CO;2-Q] [PMID: 9921976]
[115]
Chaki J, Dey N, Moraru L, Shi F. Fragmented plant leaf recognition: Bag-of-features, fuzzy-color and edge-texture histogram descriptors with multi-layer perceptron. Optik (Stuttg) 2019; 2019; 181
[http://dx.doi.org/10.1016/j.ijleo.2018.12.107]
[116]
Caicedo JC, Cruz A, Gonzalez FA. Histopathology image classification using bag of features and kernel functions. Conference on Artificial Intelligence in Medicine in Europe 2009 July 18-22 Verona, Italy Berlin: Springer 2009.
[http://dx.doi.org/10.1007/978-3-642-02976-9_17]
[117]
Kavitha JC, Suruliandi A, Nagarajan D, Nadu T. Melanoma detection in dermoscopic images using global and local feature extraction Int J Multimedia Ubiquitous Engineer 2017; 12(5): 19-28.
[http://dx.doi.org/10.14257/ijmue.2017.12.5.02]
[118]
Das N, Pal A, Mazumder S, Sarkar S, Gangopadhyay D, Nasipuri M. An SVM based skin disease identification using Local Binary Patterns. Third International Conference on Advances in Computing and Communications 2013 Aug 29-31 Cochin, India New Jersey: IEEE 2013.
[http://dx.doi.org/10.1109/ICACC.2013.48]
[119]
Mikolajczyk A, Grochowski M, Kwasigroch A. Optimal selection of input features and an acompanying neural network structure for the classification purposes-skin lesions case study. 23rd International Conference on Methods & Models in Automation & Robotics (MMAR) 2018 Aug 27-30 Miedzyzdroje, Poland New Jersey: IEEE 2018.
[http://dx.doi.org/10.1109/MMAR.2018.8485936]
[120]
Grochowski M, Mikołajczyk A, Kwasigroch A. Diagnosis of malignant melanoma by neural network ensemble-based system utilising hand-crafted skin lesion features. Metrol Meas Syst 2019; 26(1): 2-12.
[121]
Rothwell PM, Giles MF, Flossmann E, et al. A simple score (ABCD) to identify individuals at high early risk of stroke after transient ischaemic attack. Lancet 2005; 366(9479): 29-36.
[http://dx.doi.org/10.1016/S0140-6736(05)66702-5] [PMID: 15993230]
[122]
Argenziano G, Catricalà C, Ardigo M. Seven-point checklist of dermoscopy revisited. Br J Dermatol 2011; 164(4): 785-90.
[123]
Soyer HP, Argenziano G, Zalaudek I, et al. Three-point checklist of dermoscopy. A new screening method for early detection of melanoma. Dermatology (Basel) 2004; 208(1): 27-31.
[http://dx.doi.org/10.1159/000075042] [PMID: 14730233]
[124]
Seidenari S, Pellacani G, Grana C. Colors in atypical nevi: a computer description reproducing clinical assessment Skin Res Technol 2005; 11(1): 36-41.
[http://dx.doi.org/10.1111/j.1600-0846.2005.00097.x] [PMID: 15691257]
[125]
Stoecker WV, Gupta K, Stanley RJ, Moss RH, Shrestha B. Detection of asymmetric blotches (asymmetric structureless areas) in dermoscopy images of malignant melanoma using relative color. Skin Res Technol 2005; 11(3): 179-84.
[http://dx.doi.org/10.1111/j.1600-0846.2005.00117.x] [PMID: 15998328]
[126]
Naz S, Majeed H, Irshad H. Image segmentation using fuzzy clustering: A survey. 6th International Conference on Emerging Technologies (ICET) 2010 Oct 18-19 Islamabad, Pakistan New Jersey: IEEE 2010.
[http://dx.doi.org/10.1109/ICET.2010.5638492]
[127]
Faziloglu Y, Stanley RJ, Moss RH, Van Stoecker W, McLean RP. Colour histogram analysis for melanoma discrimination in clinical images Skin Res Technol 2003; 9(2): 147-56.
[http://dx.doi.org/10.1034/j.1600-0846.2003.00030.x] [PMID: 12709133]
[128]
Schmid P, Fischer S. Colour segmentation for the analysis of pigmented skin lesions. Sixth International Conference on Image Processing and Its Applications 1997 July 14-17 Dublin, Ireland New Jersey: IEEE 2002.
[http://dx.doi.org/10.1049/cp:19970983]
[129]
Stoecker WV, Chiang CS, Moss RH. Texture in skin images: comparison of three methods to determine smoothness Comput Med Imaging Graph 1992; 16(3): 179-90.
[http://dx.doi.org/10.1016/0895-6111(92)90072-H] [PMID: 1623493]
[130]
Manjunath BS, Ohm JR, Vasudevan VV, Yamada A. Color and texture descriptors. IEEE Trans Circ Syst Video Tech. 2001; 11: 6-703.
[http://dx.doi.org/10.1109/76.927424]
[131]
Fink-Puches R, Soyer HP, Hofer A, Kerl H, Wolf P. Long-term follow-up and histological changes of superficial nonmelanoma skin cancers treated with topical delta-aminolevulinic acid photodynamic therapy Arch Dermatol 1998; 134(7): 821-6.
[http://dx.doi.org/10.1001/archderm.134.7.821] [PMID: 9681345]
[132]
Moraru L, Moldovanu S. a Culea-Florescu A-L, et al. Textureanalysis of parasitological liver fibrosis images. Microscopy research 2017; 80(8): 862-9.
[133]
Ahmed HM, Al-azawi RJ, Abdulhameed AA. Evaluation methodology between globalization and localization features approaches for skin cancer lesions classification. Bristol, UK: IOP Publishing 2018.
[134]
Xu H, Lu C, Berendt R, Jha N, Mandal M. Automated analysis and classification of melanocytic tumor on skin whole slide images. Comput Med Imaging Graph. 2018; 66: 124-34.
[http://dx.doi.org/10.1016/j.compmedimag.2018.01.008] [PMID: 29426714]
[135]
Khan MA, Akram T, Sharif M, et al. Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion. Microsc Res Tech 2019; 82(6): 741-63.
[136]
Plants identification using feature fusion technique and bagging classifier. Beni Suef, Egypt 2016 2016; 461-71.
[137]
Dey N, Borra S AS, Ashour , Shi F. Machine learning in bio-signal analysis and diagnostic imaging. Cambridge: Academic Press 2018.
[138]
Dey N, Wagh S, Mahalle PN, Pathan MS. Applied machine learning for smart data analysis. Boca Raton: CRC Press 2019.
[139]
Noreen K, Azween A, Belhaouari BS. Ensemble clustering algorithm with supervised classification of clinical data for early diagnosis of coronary artery disease. J. Med. Imaging Health Inf. 2014; 2014: 226-39.
[140]
Mishra N K, Celebi M E. An overview of melanoma detection in dermoscopy images using image processing and machine learning. arXiv:1601.07843.
[141]
Serrano C, Acha B. Pattern analysis of dermoscopic images based on markov random fields. Pattern Recognit. 2009; 42: 6-1052.
[http://dx.doi.org/10.1016/j.patcog.2008.07.011]
[142]
Alquran H, Qasmieh IA, Alqudah AM, et al. The melanoma skin cancer detection and classification using support vector machine IEEE Jordan Conf Appl Electric Engineer 2017 2017; 1-5.
[http://dx.doi.org/10.1109/AEECT.2017.8257738]
[143]
Barata C, Marques JS, Rozeira J. Evaluation of color based key- points and features for the classification of melanomas using the bag- of-features model. Berlin Springer 2013.
[144]
Abbas Q, Celebi ME, Serrano C, Garcl IF, Ma AG. Pattern classification of dermoscopy images: A perceptually uniform model Pattern Recognit 2013; 46: 86-97.
[http://dx.doi.org/10.1016/j.patcog.2012.07.027]
[145]
Abbas Q, Emre Celebi M, Garcia IF, Ahmad W. Melanoma recognition framework based on expert definition of ABCD for dermoscopic images Skin Res Technol 2013; 19(1): e93-e102.
[http://dx.doi.org/10.1111/j.1600-0846.2012.00614.x] [PMID: 22672769]
[146]
Schaefer G, Krawczyk B, Celebi ME, Iyatomi H. Melanoma classification using dermoscopy imaging and ensemble learning. 2nd IAPR Asian Conference on Pattern Recognition 2013 Nov 5-8 Naha, Japan New Jersey: IEEE 2014.
[http://dx.doi.org/10.1109/ACPR.2013.102]
[147]
Alfed N, Khelifi F. Bagged textural and color features for melanoma skin cancer detection in dermoscopic and standard images. Expert Syst Appl 2017; 2017: 90.
[148]
Ferris LK, Harkes JA, Gilbert B, et al. Computer-aided classification of melanocytic lesions using dermoscopic images. J Am Acad Dermatol 2015; 73(5): 769-76.
[http://dx.doi.org/10.1016/j.jaad.2015.07.028] [PMID: 26386631]
[149]
Capdehourat G, Corez A, Bazzano A, Alonso R, Muse P. Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions Pattern Recognit Lett 2011; 32: 2187-96.
[http://dx.doi.org/10.1016/j.patrec.2011.06.015]
[150]
Barata C, Marques JS, Celebi ME. Improving dermoscopy image analysis using color constancy. International Conference on Image Processing (ICIP) 2014 Oct 27-30 Paris, France New Jersey: IEEE 2015.
[http://dx.doi.org/10.1109/ICIP.2014.7025716]
[151]
Codella N, Cai J, Abedini M, Garnavi R, Halpern A, Smith JR. Deep learning, sparse coding, and svm for melanoma recognition in dermoscopy images Berlin: Springer 2015.
[http://dx.doi.org/10.1007/978-3-319-24888-2_15]
[152]
Skvara H, Teban L, Fiebiger M, Binder M, Kittler H. Limitations of dermoscopy in the recognition of melanoma Arch Dermatol 2005; 141(2): 155-60.
[http://dx.doi.org/10.1001/archderm.141.2.155] [PMID: 15724011]
[153]
Xie F, Bovik AC. Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm Pattern Recognit 2013; 46: 3-1012.
[http://dx.doi.org/10.1016/j.patcog.2012.08.012]
[154]
Surowka G. Supervised learning of melanocytic skin lesion images. Human Syst Interac 2008. 2008; 1-8.
[http://dx.doi.org/10.1109/HSI.2008.4581420]
[155]
Dey N, Wagh S, Mahalle PN, Pathan MS. Applied machine learning for smart data analysis. Boca Raton: CRC Press/Taylor Francis Group 2019.
[156]
Borra S, Lakshmi H, Dey N, Ashour A, Shi F. Digital image watermarking tools: state-of-the-art. 2nd International Conference on Information Technology and Intelligent Transportation Systems (ITITS 2017) 2017 June 10; Xian, China. Netherlands: IOS Press. 2017.
[157]
Lan KD, Wang T, Fong S, Liu LS, Wong KK, Dey N. A survey of data mining and deep learning in bioinformatics. J Med Syst 2018; 42: 8-139.
[http://dx.doi.org/10.1007/s10916-018-1003-9]
[158]
Nilanjan D, Nhu NG, Dac-Nhuong L. A special section on machine learning in medical imaging and, health informatics. J Med Imaging Health Inform 2018; 8(4): 809-10.
[http://dx.doi.org/10.1166/jmihi.2018.2401]
[159]
Lan K, Wang DT, Fong S, Liu LS, Wong KKL, Dey N. A survey of data mining and deep learning in bioinformatics. J Med Syst 2018; 42(8): 139.
[http://dx.doi.org/10.1007/s10916-018-1003-9] [PMID: 29956014]
[160]
Li Z, Dey N, Ashour AS, Cao L. Convolutional neural network based clustering and manifold learning method for diabetic plantar pressure imaging dataset. J Med Imaging Health Inform 2017; 7(3): 639-52.
[http://dx.doi.org/10.1166/jmihi.2017.2082]
[161]
Mahbod A, Ecker R, Ellinger I. Skin lesion classification using hybrid deep neural networks. arXiv:1702.08434.
[162]
She Z, Liu Y, Damatoa A. Combination of features from skin pattern and ABCD analysis for lesion classification Skin Res Technol 2007; 13(1): 25-33.
[http://dx.doi.org/10.1111/j.1600-0846.2007.00181.x] [PMID: 17250529]
[163]
Masood A, Al-Jumaily A, Anam K. Self-supervised learning model for skin cancer diagnosis. 7th International IEEE/EMBS Conference on Neural Engineering (NER) 2015 Apr 22-24 Montpellier, France New Jersey: IEEE 2015.
[http://dx.doi.org/10.1109/NER.2015.7146798]
[164]
Pomponiu V, Nejati H, Cheung N M. Deepmole: Deep neural networks for skin mole lesion classification. International Conference on Image Processing (ICIP) 2016 Sep 25-28 Phoenix, AZ, USA New Jersey: IEEE 2016.
[165]
Jafari MH, Karimi N, Nasr-Esfahani E, et al. Skin lesion segmentation in clinical images using deep learning. 23rd International Conference on Pattern Recognition (ICPR) 2016 Dec 4-8 Cancun, Mexico New Jersey: IEEE 2017.
[http://dx.doi.org/10.1109/ICPR.2016.7899656]
[166]
Golden JA. Deep learning algorithms for detection of lymph node metas- tases from breast cancer: helping artificial intelligence be seen. JAMA 2017; 318(22): 2184-6.
[http://dx.doi.org/10.1001/jama.2017.14580] [PMID: 29234791]
[167]
Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK. Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv:1802.06955.
[168]
Attia M, Hossny M, Nahavandi S, Yazdabadi A. Skin melanoma segmentation using recurrent and convolutional neural networks IEEE 2017: 2017; 20-8.
[http://dx.doi.org/10.1109/ISBI.2017.7950522]
[169]
Cruz-Roa AA, Ovalle JEA, Madabhushi A, Osorio FAG. A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. Berlin: Springer 2013.
[170]
Codella NC, Nguyen QB, Pankanti S, et al. Deep learning ensembles for melanoma recognition in dermoscopy images IBM J Res Develop 2017; 61: 4-5.
[http://dx.doi.org/10.1147/JRD.2017.2708299]
[171]
Lopez AR, Giro-i-Nieto X, Burdick J, Marques O. Skin lesion classification from dermoscopic images using deep learning techniques. 13th IASTED International Conference on Biomedical Engineering (BioMed) 2017 Feb 20-21 Innsbruck, Austria, Austria New Jersey: IEEE 2017.
[172]
Bi L, Kim J, Ahn E, Feng D. Automatic skin lesion analysis using large-scale dermoscopy images and deep residual networks. arXiv:1703.04197.
[173]
Yu L, Chen H, Dou Q, Qin J, Heng PA. Automated melanoma recognition in dermoscopy images via very deep residual networks IEEE Trans Med Imaging 2017; 36(4): 994-1004.
[http://dx.doi.org/10.1109/TMI.2016.2642839] [PMID: 28026754]
[174]
Menegola A, Fornaciali M, Pires R, Bittencourt FV, Avila S, Valle E. Knowledge transfer for melanoma screening with deep learning. IEEE 2017. 2017; 1-8.
[http://dx.doi.org/10.1109/ISBI.2017.7950523]
[175]
Singh V, Nwogu I. Analyzing skin lesions in dermoscopy images using convolutional neural networks. International Conference on Systems, Man, and Cybernetics (SMC) 2018 Oct 7-10 Miyazaki, Japan New Jersey: IEEE 2019.
[http://dx.doi.org/10.1109/SMC.2018.00684]
[176]
Dorj U O, Lee K K, Choi J Y, Lee M. The skin cancer classification using deep convolutional neural network Multimedia Tools Applic 2018; 77: 9909-24.
[http://dx.doi.org/10.1007/s11042-018-5714-1]
[177]
Majtner T, Yildirim-Yayilgan S, Hardeberg J Y. Combining deep learning and hand-crafted fea-tures for skin lesion classification. Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA) 2016 Dec 12-15 Oulu, Finland New Jersey: IEEE 2017.
[178]
Shoieb DA, Youssef SM, Aly WM. Computer-aided model for skin diagnosis using deep learning. J Image Graphics 2016; 4: 2-122.
[http://dx.doi.org/10.18178/joig.4.2.122-129]
[179]
Harangi B. Skin lesion detection based on an ensemble of deep convolutional neural network. arXiv:1705.03360.
[180]
Qi J, Le M, Li C, Zhou P. Global and local information based deep network for skin lesion segmentation. arXiv:1703.05467.
[181]
Liao H. A deep learning approach to universal skin disease classification. CSC 400-Graduate Problem Seminar - Project Report 2015; pp. 1-8.
[182]
Yang X, Zeng Z, Yeo S Y, Tan C, Tey H L, Su Y. A novel multi-task deep learning model for skin lesion segmentation and classification Available from: https://arxiv.org/ftp/arxiv/papers/1703/1703.01025.pdf
[183]
Kawahara J, Hamarneh G. Multi-resolution-tract CNN with hybrid pretrained and skin-lesion trained layers Berlin: Springer 2016.
[http://dx.doi.org/10.1007/978-3-319-47157-0_20]
[184]
Ge Z, Demyanov S, Chakravorty R, Bowling A, Garnavi R. Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images Berlin: Springer 2017.
[http://dx.doi.org/10.1007/978-3-319-66179-7_29]
[185]
Holm-Schou ASS, Philipsen PA, Wulf HC. Skin cancer phototype: A new classification directly related to skin cancer and based on responses from 2869 individuals. Photodermatol Photoimmunol Photomed. 2019; 35(2): 116-23.
[http://dx.doi.org/10.1111/phpp.12432] [PMID: 30312498]
[186]
Aima A, Sharma A K. Predictive Approach for Melanoma Skin Cancer Detection using CNN. SSRN Electronic J 2019; 2019: 1-7.
[187]
Carrera E. A computer aided diagnosis system for skin cancer detection. 4th International Conference on Technology Trends. 2018 Aug 29-31; Babahoyo, Ecuador.
[188]
Rehman M, Khan S H, Rizvi S D, Abbas Z, Zafar A. Classification of skin lesion by interference of segmentation and convolotion neural network. 2nd International Conference on Engineering Innovation (ICEI) 2018 July 5-6 Bangkok, Thailand New Jersey: IEEE 2018.
[http://dx.doi.org/10.1109/ICEI18.2018.8448814]
[189]
Arora G, Dubey AK, Jaffery ZA. Classifiers for the detection of skin cancer Berlin: Springer 2018.
[http://dx.doi.org/10.1007/978-981-10-5547-8_36]
[190]
Ekici S. Multi-class support vector machines for classification of transmission line faults. Energy Educ Sci Technol Part A Energy Sci Res 2012; 2012: 1015-26.
[191]
Codella N C, Gutman D, Dusza S, et al. Skin lesion analysis toward melanoma detection. 2nd International Conference on Engineering Innovation (ICEI) 2018 July 5-6 Bangkok, Thailand New Jersey: IEEE 2018.
[192]
Mahmood F, Johnson J, Yang Z, Durr NJ. Fusing attributes predicted via conditional gans for improved skin lesion classification (conference presentation). Comput Aid Diagnos 2019; 2019: 10950109501.
[http://dx.doi.org/10.1117/12.2513139]
[193]
Mahbod A, Schaefer G, Ellinger I, Ecker R, Pitiot A, Wang C. Fusing fine-tuned deep features for skin lesion classification Comput Med Imaging Graph 2019; 71: 19-29.
[http://dx.doi.org/10.1016/j.compmedimag.2018.10.007] [PMID: 30458354]
[194]
Alheejawi S, Xu H, Berendt R, Jha N, Mandal M. Novel lymph node segmentation and proliferation index measurement for skin melanoma biopsy images. Comput Med Imaging Graph. 2019; 73: 19-29.
[http://dx.doi.org/10.1016/j.compmedimag.2019.01.006] [PMID: 30822606]
[195]
Li H, He X, Zhou F, et al. Dense deconvolutional network for skin lesion segmentation IEEE J Biomed Health Inform 2019; 23(2): 527-37.
[http://dx.doi.org/10.1109/JBHI.2018.2859898] [PMID: 30047917]
[196]
Li F, Yang Y. A loss function analysis for classification methods in text categorization. Proceedings of the 20th international conference on machine learning (ICML-03) 2019 San Diego, California, USA. Bellingham: SPIE Dig Lib pp. 472-9
[197]
Bibicu D, Moraru L, Biswas A. Thyroid nodule recognition based on feature selection and pixel classification methods. J Digit Imaging 2013; 26(1): 119-28.
[http://dx.doi.org/10.1007/s10278-012-9475-5] [PMID: 22546981]
[198]
Moldovanu S, Moraru L, Bibicu D. Characterization of myocardium muscle biostructure using first order features. Dig J Nanomater Biostruct 2011; 6(3): 1357-65.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy