Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Role of Cdk5 in Amyloid-beta Pathology of Alzheimer’s Disease

Author(s): Tao-Tao Lu, Chengqun Wan, Wenming Yang* and Zhiyou Cai*

Volume 16, Issue 13, 2019

Page: [1206 - 1215] Pages: 10

DOI: 10.2174/1567205016666191210094435

Price: $65

Abstract

Alzheimer’s Disease (AD) is a progressive neurodegenerative disease with irreversible cognitive impairment. So far, successful treatment and prevention for this disease are deficient in spite of delaying the progression of cognitive impairment and dementia. Cyclin dependent kinase 5 (Cdk5), a unique member of the cyclin-dependent kinase family, is involved in AD pathogenesis and may be a pathophysiological mediator that links the major pathological features of AD. Cdk5 dysregulation interferes with the proteolytic processing of Amyloid-beta Protein Precursor (APP) and modulates amyloidbeta (Aβ) by affecting three enzymes called α-, β- and γ-secretase, which are critical for the hydrolysis of APP. Given that the accumulation and deposition of Aβ derived from APP are a common hinge point in the numerous pathogenic hypotheses of AD, figuring out that influence of specific mechanisms of Cdk5 on Aβ pathology will deepen our understanding of AD.

Keywords: Cyclin dependent kinase 5, amyloid-beta, amyloid-beta protein precursor, Alzheimer’s disease.

[1]
Sibener L, Zaganjor I, Snyder H, Bain L, Egge R, Carrillo M. Alzheimer’s Disease prevalence, costs, and prevention for military personnel and veterans. Alzheimers Dement 10(3): S105-10. (2014)
[2]
Chang KH, Vincent F, Shah K. Deregulated Cdk5 triggers aberrant activation of cell cycle kinases and phosphatases inducing neuronal death. J Cell Sci 125(21): 5124-37. (2012)
[3]
Padmanabhan J, Chen J, Li S, Sun W, Li J. Anti-diabetes drug pioglitazone ameliorates synaptic defects in AD transgenic mice by inhibiting cyclin-dependent kinase5 activity. PLoS One 10(4)e0123864 (2015)
[4]
Sheng Y, Zhang L, Su SC, Tsai L-H, Julius Zhu J. Cdk5 is a new rapid synaptic homeostasis regulator capable of initiating the early alzheimer-like pathology. Cereb Cortex 26(7): 2937-51. (2016)
[5]
Shukla V, Skuntz S, Pant HC. Deregulated Cdk5 activity is involved in inducing Alzheimer’s disease. Arch Med Res 43(8): 655-62. (2012)
[6]
Wilkaniec A, Czapski GA, Adamczyk A. Cdk5 at crossroads of protein oligomerization in neurodegenerative diseases: facts and hypotheses. J Neurochem 136(2): 222-33. (2016)
[7]
Ma P, Li Y, Zhang W, Fang F, Sun J, Liu M, et al. Long non-coding RNA malat1 inhibits neuron apoptosis and neuroinflammation while stimulates neurite outgrowth and its correlation with MiR-125b mediates PTGS2, CDK5 and FOXQ1 in Alzheimer’s disease. Curr Alzheimer Res 16(7): 596-612. (2019)
[8]
Liu F, Su Y, Li B, Zhou Y, Ryder J, Gonzalez-DeWhitt P, et al. Regulation of amyloid precursor protein (APP) phosphorylation and processing by p35/Cdk5 and p25/Cdk5. FEBS Lett 547(1-3): 193-6. (2003)
[9]
Gupta KK, Singh SK. Cdk5: a main culprit in neurodegeneration. Int J Neurosci 129(12): 1192-7. (2019)
[10]
Nikhil K, Viccaro K, Shah K. Multifaceted regulation of ALDH1A1 by Cdk5 in Alzheimer’s disease pathogenesis. Mol Neurobiol 56(2): 1366-90. (2019)
[11]
LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer’s disease. Nat Rev Neurosci 8(7): 499-509. (2007)
[12]
Thal DR. The role of astrocytes in amyloid β-protein toxicity and clearance. Exp Neurol 236(1): 1-5. (2012)
[13]
Leissring MA. The AβCs of Aβ-cleaving Proteases. J Biol Chem 283(44): 29645-9. (2008)
[14]
Cheung ZH, Ip NY. Cdk5: a multifaceted kinase in neurodegenerative diseases. Trends Cell Biol 22(3): 169-75. (2012)
[15]
Li W, Allen M, Rui Y, Ku L, Liu G, Bankston A, et al. p39 Is responsible for increasing Cdk5 activity during postnatal neuron differentiation and governs neuronal network formation and epileptic responses. J Neurosci 36(44): 11283-94. (2016)
[16]
Zhang Q, Xie H, Ji Z, He R, Xu M, He Y, et al. Cdk5/p25 specific inhibitory peptide TFP5 rescues the loss of dopaminergic neurons in a sub-acute MPTP induced PD mouse model. Neurosci Lett 632: 1-7. (2016)
[17]
Sahlgren C, Mikhailov A, Vaittinen S, Pallari H, Kalimo H, Pant H, et al. Cdk5 regulates the organization of Nestin and its association with p35. Mol Cell Biol 23(14): 5090-106. (2003)
[18]
Zhao W, Yan J, Gao L, Zhao J, Zhao C, Gao C, et al. Cdk5 is required for the neuroprotective effect of transforming growth factor-β1 against cerebral ischemia-reperfusion. Biochem Biophys Res Commun 485(4): 775-81. (2017)
[19]
Quan Q, Qian Y, Li X, Li M. CDK5 Participates in amyloid-β production by regulating PPARγ phosphorylation in primary rat hippocampal neurons. J Alzheimers Dis 71(2): 443-60. (2019)
[20]
Wen Y, Yu WH, Maloney B, Bailey J, Ma J, Marié I, et al. Transcriptional regulation of β-secretase by p25/cdk5 leads to enhanced amyloidogenic processing. Neuron 57(5): 680-90. (2008)
[21]
Sadleir K, Vassar R. Cdk5 protein inhibition and Aβ42 increase BACE1 protein level in primary neurons by a post-transcriptional mechanism: implications of CDK5 as a therapeutic target for Alzheimer disease. J Biol Chem 287(10): 7224-35. (2012)
[22]
Cruz J, Kim D, Moy L, Dobbin M, Sun X, Bronson R, et al. p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid beta in vivo. J Neurosci 26(41): 10536-41. (2006)
[23]
Castro-Alvarez JF, Uribe-Arias SA, Mejía-Raigosa D, Cardona-Gómez GP. Cyclin-dependent kinase 5, a node protein in diminished tauopathy: a systems biology approach. Front Aging Neurosci 6: 232. (2014)
[24]
Lopes JP, Agostinho P. Cdk5: multitasking between physiological and pathological conditions. Prog Neurobiol 94(1): 49-63. (2011)
[25]
Kimura T, Ishiguro K, Hisanaga S. Physiological and pathological phosphorylation of tau by Cdk5. Front Mol Neurosci 7: 65. (2014)
[26]
Peterson D, Ando D, Taketa D, Zhou H, Dahlquist F, Lew J. No difference in kinetics of tau or histone phosphorylation by CDK5/p25 versus CDK5/p35 in vitro. Proc Natl Acad Sci USA 107(7): 2884-9. (2010)
[27]
Li T, Hawkes C, Qureshi H, Kar S, Paudel H. Cyclin-dependent protein kinase 5 primes microtubule-associated protein tau site-specifically for glycogen synthase kinase 3beta. Biochemistry 45(10): 3134-45. (2006)
[28]
Liu J, Yang J, Xu Y, Guo G, Cai L, Wu H, et al. Roscovitine, a CDK5 inhibitor, alleviates sevoflurane-induced cognitive dysfunction via regulation Tau/GSK3β and ERK/PPARγ/CREB signaling. Cell Physiol Biochem 44(2): 423-35. (2017)
[29]
Hu Y, Pan S, Zhang H. Interaction of Cdk5 and cAMP/PKA signaling in the mediation of neuropsychiatric and neurodegenerative diseases. Adv Neurobiol 17: 45-61. (2017)
[30]
Chow H, Guo D, Zhou J, Zhang G, Li H, Herrup K, et al. CDK5 activator protein p25 preferentially binds and activates GSK3β. Proc Natl Acad Sci USA 111(45): E4887-95. (2014)
[31]
Castro-Alvarez J, Uribe-Arias A, Cardona-Gómez G. Cyclin-Dependent kinase 5 targeting prevents β-Amyloid aggregation involving glycogen synthase kinase 3β and phosphatases. J Neurosci Res 93(8): 1258-66. (2015)
[32]
Zhou J, Li H, Li X, et al. The roles of Cdk5-mediated subcellular localization of FOXO1 in neuronal death. J Neurosci 35(6): 2624-35. (2015)
[33]
Ning X, Tao T, Shen J, Ji Y, Xie L, Wang H, et al. The O-GlcNAc Modification of CDK5 involved in neuronal apoptosis following in vitro intracerebral hemorrhage. Cell Mol Neurobiol 37(3): 527-36. (2017)
[34]
Li X, Zhang H, Niu Q, Yuan F. Changes of cdk5, p35 and p53 gene expression levels in arsenic-induced neural cell apoptosis. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 30(2): 85-8. (2012)
[35]
Li B, Zhang L, Takahashi S, et al. Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3. EMBO J 21(3): 324-33. (2002)
[36]
Khan I, Kang S. Apoptotic activity of lactobacillus plantarum DGK-17-fermented soybean seed extract in human colon cancer cells via ROS-JNK signaling pathway. J Food Sci 82(6): 1475-83. (2017)
[37]
Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, et al. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440): 735-41. (1999)
[38]
Song W, Son M, Lee H, Seo H, Kim J, Chung S. Enhancement of BACE1 activity by p25/Cdk5-mediated phosphorylation in alzheimer’s disease. PLoS One 10(8)e0136950 (2015)
[39]
Liu L, Martin R, Kohler G, Chan C. Palmitate induces transcriptional regulation of BACE1 and presenilin by STAT3 in neurons mediated by astrocytes. Exp Neurol 248: 482-90. (2013)
[40]
Sadleir KR, Vassar R. Cdk5 protein inhibition and aβ42 increase bace1 protein level in primary neurons by a post-transcriptional mechanism. J Biol Chem 287(10): 7224-35. (2012)
[41]
Tomita T. Molecular mechanism of intramembrane proteolysis by γ-secretase. J Biochem 156(4): 195-201. (2014)
[42]
Sherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375(6534): 754-60. (1995)
[43]
Lessard CB, Wagner SL, Koo EH. And four equals one: presenilin takes the γ-secretase role by itself. Proc Natl Acad Sci USA 107(50): 21236-7. (2010)
[44]
Lau L, Ahlijanian M. Role of cdk5 in the pathogenesis of Alzheimer’s disease. Neurosignals 12(4-5): 209-14. (2003)
[45]
Lau K-F, Howlett DR, Kesavapany S, et al. Cyclin-Dependent Kinase-5/p35 Phosphorylates Presenilin 1 to Regulate Carboxy-Terminal Fragment Stability. Molecular and Cellular Neuroscience 20(1): 13-20. (2002)
[46]
Zhou J, Liyanage U, Medina M, et al. Presenilin 1 interaction in the brain with a novel member of the Armadillo family. Neuroreport 8(6): 1489-94. (1997)
[47]
Murayama M, Tanaka S, Palacino J, et al. Direct association of presenilin-1 with beta-catenin. FEBS Lett 433(1-2): 73-7. (1998)
[48]
Kesavapany S, Lau KF, McLoughlin DM, et al. p35/cdk5 binds and phosphorylates beta-catenin and regulates beta-catenin/presenilin-1 interaction. Eur J Neurosci 13(2): 241-7. (2001)
[49]
Yu G, Chen F, Levesque G, et al. The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains beta-catenin. J Biol Chem 273(26): 16470-5. (1998)
[50]
Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10(12): 1443-54. (1996)
[51]
Daniel JM, Reynolds AB. Tyrosine phosphorylation and cadherin/catenin function. BioEssays 19(10): 883-91. (1997)
[52]
Heese K. G proteins, p60TRP, and neurodegenerative diseases. Mol Neurobiol 47(3): 1103-11. (2003)
[53]
Thathiah A, De Strooper B. The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nat Rev Neurosci 12(2): 73-87. (2011)
[54]
Teng L, Zhao J, Wang F, Ma L, Pei GA. GPCR/secretase complex regulates beta- and gamma-secretase specificity for Abeta production and contributes to AD pathogenesis. Cell Res 20(2): 138-53. (2010)
[55]
Barthet G, Georgakopoulos A, Robakis NK. Cellular mechanisms of γ-secretase substrate selection, processing and toxicity. Prog Neurobiol 98(2): 166-75. (2012)
[56]
Barnett D, Bibb J. The role of Cdk5 in cognition and neuropsychiatric and neurological pathology. Brain Res Bull 85(1-2): 9-13. (2011)
[57]
Nguyen C, Nishi A, Kansy J, Fernandez J, Hayashi K, Gillardon F, et al. Regulation of protein phosphatase inhibitor-1 by cyclin-dependent kinase 5. J Biol Chem 282(22): 16511-20. (2007)
[58]
Jacobshagen M, Niquille M, Chaumont-Dubel S, Marin P, Dayer A. The serotonin 6 receptor controls neuronal migration during corticogenesis via a ligand-independent Cdk5-dependent mechanism. Development 141(17): 3370-7. (2014)
[59]
Duhr F, Déléris P, Raynaud F, Séveno M, Morisset-Lopez S, Mannoury la Cour C, et al. Cdk5 induces constitutive activation of 5-HT6 receptors to promote neurite growth. Nat Chem Biol 10: 590. (2014)
[60]
Sisodia SS, Koo EH, Beyreuther K, Unterbeck A, Price DL. Evidence that beta-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science 248(4954): 492-5. (1990)
[61]
Sisodia SS. Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci USA 89(13): 6075-9. (1992)
[62]
Postina R. A closer look at alpha-secretase. Curr Alzheimer Res 5(2): 179-86. (2008)
[63]
Vincent B, Cisse MA, Sunyach C, Guillot-Sestier MV, Checler F. Regulation of betaAPP and PrPc cleavage by alpha-secretase: mechanistic and therapeutic perspectives. Curr Alzheimer Res 5(2): 202-11. (2008)
[64]
Tippmann F, Hundt J, Schneider A, Endres K, Fahrenholz F. Up-regulation of the alpha-secretase ADAM10 by retinoic acid receptors and acitretin. FASEB J 23(6): 1643-54. (2009)
[65]
Mingaud F, Mormede C, Etchamendy N, Mons N, Niedergang B, Wietrzych M, et al. Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice. J Neurosci 28(1): 279-91. (2008)
[66]
Bai B, Vanhoutte PM, Wang Y. CDK5-mediated phosphorylation of SIRT1 at serine 47 contributes to the development of endothelial senescence.In: International Symposium on Atherosclerosis, ISA 2012 vol Monday Abstracts Australia: International Symposium on Atherosclerosis.
[67]
Zhang Q, Zhang P, Qi G, Zhang Z, He F, Lv Z, et al. Cdk5 suppression blocks SIRT1 degradation via the ubiquitin-proteasome pathway in Parkinson’s disease models. Biochim Biophys Acta 1862(6): 1443-51. (2018)
[68]
Kretzschmar D, Hartl D, Klatt S, Roch M, Konthur Z, Klose J, et al. Soluble Alpha-APP (sAPPalpha) Regulates CDK5 Expression and Activity in Neurons. PLoS One 8(6)e65920 (2013)
[69]
Han P. Suppression of Cyclin-Dependent Kinase 5 Activation by Amyloid Precursor Protein: A Novel Excitoprotective Mechanism Involving Modulation of Tau Phosphorylation. J Neurosci 25(50): 11542-52. (2005)
[70]
Iijima K, Ando K, Takeda S, Satoh Y, Seki T, Itohara S, et al. Neuron-specific phosphorylation of Alzheimer’s beta-amyloid precursor protein by cyclin-dependent kinase 5. J Neurochem 75(3): 1085-91. (2000)
[71]
Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40(3): 471-83. (2003)
[72]
Lee MS, Kao SC, Lemere CA, Xia W, Tseng HC, Zhou Y, et al. APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 163(1): 83-95. (2003)
[73]
Liu SL, Wang C, Jiang T, Tan L, Xing A, Yu JT. The role of Cdk5 in Alzheimer’s disease. Mol Neurobiol 53(7): 4328-42. (2016)
[74]
Paglini G, Peris L, Diez-Guerra J, Quiroga S, Caceres A. The Cdk5-p35 kinase associates with the Golgi apparatus and regulates membrane traffic. EMBO Rep 2(12): 1139-44. (2001)
[75]
Tang D, Yuan H, Vielemeyer O, Perez F, Wang Y. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly. Biol Open 1(12): 1204-14. (2012)
[76]
Puthenveedu MA, Bachert C, Puri S, Lanni F, Linstedt AD. GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nat Cell Biol 8(3): 238-48. (2006)
[77]
Sun K, de Pablo Y, Vincent F, Johnson E, Chavers A, Shah K. Novel genetic tools reveal Cdk5's major role in Golgi fragmentation in Alzheimer’s disease. Mol Biol Cell 19(7): 3052-69. (2008)
[78]
Joshi G, Chi Y, Huang Z, Wang Y. Abeta-induced golgi fragmentation in Alzheimer’s disease enhances Abeta production. Proc Natl Acad Sci USA 111(13): 17. (2014)
[79]
Jiang Q, Wang L, Guan Y, Xu H, Niu Y, Han L, et al. Golgin-84-associated Golgi fragmentation triggers tau hyperphosphorylation by activation of cyclin-dependent kinase-5 and extracellular signal-regulated kinase. Neurobiol Aging 35(6): 1352-63. (2014)
[80]
Yarza R, Vela S, Solas M, Ramirez MJ. C-jun n-terminal kinase (jnk) signaling as a therapeutic target for Alzheimer’s disease. Front Pharmacol 6: 321. (2016)
[81]
Ploia C, Antoniou X, Sclip A, Grande V, Cardinetti D, Colombo A, et al. JNK plays a key role in tau hyperphosphorylation in Alzheimer’s disease models. J Alzheimers Dis 26(2): 315-29. (2011)
[82]
Colombo A, Bastone A, Ploia C, Sclip A, Salmona M, Forloni G, et al. JNK regulates APP cleavage and degradation in a model of Alzheimer’s disease. Neurobiol Dis 33(3): 518-25. (2009)
[83]
Sclip A, Antoniou X, Colombo A, Camici G, Pozzi L, Cardinetti D, et al. c-Jun N-terminal kinase regulates soluble Aβ oligomers and cognitive impairment in AD mouse model. J Biol Chem 286(51): 43871-80. (2011)
[84]
Yoon S, Park D, Ryu J, Ozer H, Tep C, Shin Y, et al. JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron 75(5): 824-37. (2012)
[85]
Gourmaud S, Paquet C, Dumurgier J, Pace C, Bouras C, Gray F, et al. Increased levels of cerebrospinal fluid JNK3 associated with amyloid pathology: links to cognitive decline. J Psychiatry Neurosci 40(3): 151-61. (2015)
[86]
Killick R, Ribe EM, Al-Shawi R, Malik B, Hooper C, Fernandes C, et al. Clusterin regulates beta-amyloid toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway. Mol Psychiatry 19(1): 88-98. (2014)
[87]
Sun K-H, Lee H-g. A. Smith M, Shah K. Direct and Indirect Roles of Cyclin-dependent Kinase 5 as an Upstream Regulator in the c-Jun NH2Terminal Kinase Cascade: Relevance to Neurotoxic Insults in Alzheimer’s Disease. Mol Biol Cell 20(21): 4611-9. (2009)
[88]
Zhou Q, Wang M, Du Y, Zhang W, Bai M, Zhang Z, et al. Inhibition of c-Jun N-terminal kinase activation reverses Alzheimer disease phenotypes in APPswe/PS1dE9 mice. Ann Neurol 77(4): 637-54. (2015)
[89]
Yenki P, Khodagholi F, Shaerzadeh F. Inhibition of phosphorylation of JNK suppresses Abeta-induced ER stress and upregulates prosurvival mitochondrial proteins in rat hippocampus. J Mol Neurosci 49(2): 262-9. (2013)
[90]
Ahn J, So S, Kim N, Kim H, Yoon S, Kim D. c-Jun N-terminal Kinase (JNK) induces phosphorylation of amyloid precursor protein (APP) at Thr668, in okadaic acid-induced neurodegeneration. BMB Rep 49(7): 376-81. (2016)
[91]
Yoshida H, Hastie C, McLauchlan H, Cohen P, Goedert M. Phosphorylation of microtubule-associated protein tau by isoforms of c-Jun N-terminal kinase (JNK). J Neurochem 90(2): 352-8. (2004)
[92]
Braithwaite SP, Schmid RS, He DN, Sung ML, Cho S, Resnick L, et al. Inhibition of c-Jun kinase provides neuroprotection in a model of Alzheimer’s disease. Neurobiol Dis 39(3): 311-7. (2010)

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy