Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Active Targeting Towards and Inside the Brain based on Nanoparticles: A Review

Author(s): Morteza Rabiei, Soheila Kashanian*, Seyedeh S. Samavati, Shahriar Jamasb and Steven J.P. McInnes

Volume 21, Issue 5, 2020

Page: [374 - 383] Pages: 10

DOI: 10.2174/1389201020666191203094057

Price: $65

Abstract

Background: Treatment of neurological diseases using systemic and non-surgical techniques presents a significant challenge in medicine. This challenge is chiefly associated with the condensation and coherence of the brain tissue.

Methods: The coherence structure of the brain is due to the presence of the blood-brain barrier (BBB), which consists of a continuous layer of capillary endothelial cells. The BBB prevents most drugs from entering the brain tissue and is highly selective, permitting only metabolic substances and nutrients to pass through.

Results: Although this challenge has caused difficulties for the treatment of neurological diseases, it has opened up a broad research area in the field of drug delivery. Through the utilization of nanoparticles (NPs), nanotechnology can provide the ideal condition for passing through the BBB.

Conclusion: NPs with suitable dimensions and optimum hydrophobicity and charge, as well as appropriate functionalization, can accumulate in the brain. Furthermore, NPs can facilitate the targeted delivery of therapeutics into the brain areas involved in Alzheimer’s disease, Parkinson’s disease, stroke, glioma, migraine, and other neurological disorders. This review describes these methods of actively targeting specific areas of the brain.

Keywords: Neurological diseases, blood-brain barrier, nanotechnology, nanoparticles, targeted delivery, hydrophobicity.

Graphical Abstract

[1]
Karthivashan, G.; Ganesan, P.; Park, S-Y.; Kim, J-S.; Choi, D-K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv., 2018, 25(1), 307-320.
[http://dx.doi.org/10.1080/10717544.2018.1428243] [PMID: 29350055]
[2]
Bell, R.D.; Ehlers, M.D. Breaching the blood-brain barrier for drug delivery. Neuron, 2014, 81(1), 1-3.
[http://dx.doi.org/10.1016/j.neuron.2013.12.023] [PMID: 24411725]
[3]
Choonara, Y.E.; Kumar, P.; Modi, G.; Pillay, V. Improving drug delivery technology for treating neurodegenerative diseases. Expert Opin. Drug Deliv., 2016, 13(7), 1029-1043.
[http://dx.doi.org/10.1517/17425247.2016.1162152] [PMID: 26967508]
[4]
Kreuter, J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv. Drug Deliv. Rev., 2014, 71, 2-14.
[http://dx.doi.org/10.1016/j.addr.2013.08.008] [PMID: 23981489]
[5]
Muhamad, N.; Plengsuriyakarn, T.; Na-Bangchang, K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int. J. Nanomedicine, 2018, 13, 3921-3935.
[http://dx.doi.org/10.2147/IJN.S165210] [PMID: 30013345]
[6]
Dong, X. Current strategies for brain drug delivery. Theranostics, 2018, 8(6), 1481-1493.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[7]
Gao, H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm. Sin. B, 2016, 6(4), 268-286.
[http://dx.doi.org/10.1016/j.apsb.2016.05.013] [PMID: 27471668]
[8]
Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release, 2016, 235, 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[9]
Banks, W.A. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov., 2016, 15(4), 275-292.
[http://dx.doi.org/10.1038/nrd.2015.21] [PMID: 26794270]
[10]
Das, S.; Carnicer-Lombarte, A.; Fawcett, J.W.; Bora, U. Bio-inspired nano tools for neuroscience. Prog. Neurobiol., 2016, 142, 1-22.
[http://dx.doi.org/10.1016/j.pneurobio.2016.04.008] [PMID: 27107796]
[11]
Katare, Y.K.; Piazza, J.E.; Bhandari, J.; Daya, R.P.; Akilan, K.; Simpson, M.J.; Hoare, T.; Mishra, R.K. Intranasal delivery of antipsychotic drugs. Schizophr. Res., 2017, 184, 2-13.
[http://dx.doi.org/10.1016/j.schres.2016.11.027] [PMID: 27913162]
[12]
Chen, Y.; Liu, L. Modern methods for delivery of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev., 2012, 64(7), 640-665.
[http://dx.doi.org/10.1016/j.addr.2011.11.010] [PMID: 22154620]
[13]
Parodi, A.; Rudzińska, M.; Deviatkin, A.A.; Soond, S.M.; Baldin, A.V.; Zamyatnin, A.A., Jr Established and Emerging Strategies for Drug Delivery Across the Blood-Brain Barrier in Brain Cancer. Pharmaceutics, 2019, 11(5), 245.
[http://dx.doi.org/10.3390/pharmaceutics11050245] [PMID: 31137689]
[14]
Patel, M.M.; Patel, B.M. Crossing the blood–brain barrier: recent advances in drug delivery to the brain. CNS Drugs, 2017, 31(2), 109-133.
[http://dx.doi.org/10.1007/s40263-016-0405-9] [PMID: 28101766]
[15]
Sharma, K.; Harikumar, S. Recent Advancement in drug delivery system for brain: An Overview. 2017.
[16]
Garg, P.; Pandey, S.; Seonwoo, H.; Yeom, S.; Choung, Y-H.; Cho, C-S.; Choung, P-H.; Hoon Chung, J. Hyperosmotic polydixylitol for crossing the blood brain barrier and efficient nucleic acid delivery. Chem. Commun. (Camb.), 2015, 51(17), 3645-3648.
[http://dx.doi.org/10.1039/C4CC09871D] [PMID: 25645149]
[17]
Timbie, K.F.; Mead, B.P.; Price, R.J. Drug and gene delivery across the blood-brain barrier with focused ultrasound. J. Control. Release, 2015, 219, 61-75.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.059] [PMID: 26362698]
[18]
Warnken, Z.N.; Smyth, H.D.; Watts, A.B.; Weitman, S.; Kuhn, J.G.; Williams, R.O., III Formulation and device design to increase nose to brain drug delivery. J. Drug Deliv. Sci. Technol., 2016, 35, 213-222.
[http://dx.doi.org/10.1016/j.jddst.2016.05.003]
[19]
Borodina, T.; Trushina, D.; Marchenko, I.; Bukreeva, T. Calcium carbonate-based mucoadhesive microcontainers for intranasal delivery of drugs bypassing the blood–brain barrier. Bionanoscience, 2016, 6(3), 261-268.
[http://dx.doi.org/10.1007/s12668-016-0212-2]
[20]
Hirschberg, H.; Madsen, S.J. Cell mediated photothermal therapy of brain tumors. J. Neuroimmune Pharmacol., 2017, 12(1), 99-106.
[http://dx.doi.org/10.1007/s11481-016-9690-9] [PMID: 27289473]
[21]
Georgieva, J.V.; Hoekstra, D.; Zuhorn, I.S. Smuggling drugs into the brain: an overview of ligands targeting transcytosis for drug delivery across the blood–brain barrier. Pharmaceutics, 2014, 6(4), 557-583.
[http://dx.doi.org/10.3390/pharmaceutics6040557] [PMID: 25407801]
[22]
Patching, S.G. Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol. Neurobiol., 2017, 54(2), 1046-1077.
[http://dx.doi.org/10.1007/s12035-015-9672-6] [PMID: 26801191]
[23]
Lungare, S.; Hallam, K.; Badhan, R.K. Phytochemical-loaded mesoporous silica nanoparticles for nose-to-brain olfactory drug delivery. Int. J. Pharm., 2016, 513(1-2), 280-293.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.042] [PMID: 27633279]
[24]
Ghasemian, E.; Vatanara, A.; Navidi, N.; Rouini, M.R. Brain delivery of baclofen as a hydrophilic drug by nanolipid carriers: Characteristics and pharmacokinetics evaluation. J. Drug Deliv. Sci. Technol., 2017, 37, 67-73.
[http://dx.doi.org/10.1016/j.jddst.2016.06.012]
[25]
Wang, J-Z.; Xiao, N.; Zhang, Y-Z.; Zhao, C-X.; Guo, X-H.; Lu, L-M. Mfsd2a-based pharmacological strategies for drug delivery across the blood-brain barrier. Pharmacol. Res., 2016, 104, 124-131.
[http://dx.doi.org/10.1016/j.phrs.2015.12.024] [PMID: 26747400]
[26]
Dai, T.; Jiang, K.; Lu, W. Liposomes and lipid disks traverse the BBB and BBTB as intact forms as revealed by two-step Förster resonance energy transfer imaging. Acta Pharm. Sin. B, 2018, 8(2), 261-271.
[http://dx.doi.org/10.1016/j.apsb.2018.01.004] [PMID: 29719787]
[27]
Nakao, Y.; Horiguchi, M.; Nakamura, R.; Sasaki-Hamada, S.; Ozawa, C.; Funane, T.; Ozawa, R.; Oka, J-I.; Yamashita, C. LARETH-25 and β-CD improve central transitivity and central pharmacological effect of the GLP-2 peptide. Int. J. Pharm., 2016, 515(1-2), 37-45.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.054] [PMID: 27720872]
[28]
Neves, A.R.; Queiroz, J.F.; Reis, S. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J. Nanobiotechnology, 2016, 14(1), 27.
[http://dx.doi.org/10.1186/s12951-016-0177-x] [PMID: 27061902]
[29]
Gomes, M.J.; Fernandes, C.; Martins, S.; Borges, F.; Sarmento, B. Tailoring lipid and polymeric nanoparticles as siRNA carriers towards the blood-brain barrier–from targeting to safe administration. J. Neuroimmune Pharmacol., 2017, 12(1), 107-119.
[http://dx.doi.org/10.1007/s11481-016-9685-6] [PMID: 27209050]
[30]
Mäger, I.; Meyer, A. H.; Li, J.; Lenter, M.; Hildebrandt, T.; Leparc, G.; Wood, M. Targeting blood-brain-barrier transcytosis— perspectives for drug delivery.Neuropharmacology, 2016, 30 1e4
[31]
Mann, A.P.; Scodeller, P.; Hussain, S.; Joo, J.; Kwon, E.; Braun, G.B.; Mölder, T.; She, Z-G.; Kotamraju, V.R.; Ranscht, B.; Krajewski, S.; Teesalu, T.; Bhatia, S.; Sailor, M.J.; Ruoslahti, E. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat. Commun., 2016, 7, 11980.
[http://dx.doi.org/10.1038/ncomms11980] [PMID: 27351915]
[32]
Zhang, C.; Wan, X.; Zheng, X.; Shao, X.; Liu, Q.; Zhang, Q.; Qian, Y. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials, 2014, 35(1), 456-465.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.063] [PMID: 24099709]
[33]
Li, H.Y.; Zhang, B.; Chan, P.S.; Weng, J.; Tsang, C.K.; Lee, W.Y.T. Convergent synthesis and characterization of fatty acid-conjugated poly (ethylene glycol)-block-poly (epsilon-caprolactone) nanoparticles for improved drug delivery to the brain. Eur. Polym. J., 2018, 98, 394-401.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.11.038]
[34]
Wang, L.; Zhao, Y.; Lu, R.; Peng, Y.; Guo, L.; Hai, L.; Guan, M.; Wu, Y. Preparation and Characterization of Novel Brain Targeting Magnetic Nanoparticles Modified with Ascorbic Acid. Nano, 2018, 13(01) 1850008
[http://dx.doi.org/10.1142/S179329201850008X]
[35]
Alam, M.; Najmi, A.K.; Ahmad, I.; Ahmad, F.J.; Akhtar, M.J.; Imam, S.S.; Akhtar, M. Formulation and evaluation of nano lipid formulation containing CNS acting drug: molecular docking, in-vitro assessment and bioactivity detail in rats.Artif. Cells Nanomed. Biotechnol, 2018, 46(sup2), 46-57.
[http://dx.doi.org/10.1080/21691401.2018.1451873] [PMID: 29560744]
[36]
Zhang, Z.; Guan, J.; Jiang, Z.; Yang, Y.; Liu, J.; Hua, W.; Mao, Y.; Li, C.; Lu, W.; Qian, J.; Zhan, C. Brain-targeted drug delivery by manipulating protein corona functions. Nat. Commun., 2019, 10(1), 3561.
[http://dx.doi.org/10.1038/s41467-019-11593-z] [PMID: 31395892]
[37]
Blanco-Prieto, M. J.; Luquin, M. R.; Carmona-Abellan, M.; Garbayo, E.; Rodriguez-Nogales, C. Brain aging and Parkinson's disease: new therapeutic approaches using drugs delivery systems., 2015.
[38]
Lindqvist, A.; Rip, J.; van Kregten, J.; Gaillard, P.J.; Hammarlund-Udenaes, M. In vivo functional evaluation of increased brain delivery of the opioid peptide DAMGO by Glutathione-PEGylated liposomes. Pharm. Res., 2016, 33(1), 177-185.
[http://dx.doi.org/10.1007/s11095-015-1774-3] [PMID: 26275529]
[39]
Fu, S.; Liang, M.; Wang, Y.; Cui, L.; Gao, C.; Chu, X.; Liu, Q.; Feng, Y.; Gong, W.; Yang, M.; Li, Z.; Yang, C.; Xie, X.; Yang, Y.; Gao, C. Dual-Modified Novel Biomimetic Nanocarriers Improve Targeting and Therapeutic Efficacy in Glioma. ACS Appl. Mater. Interfaces, 2019, 11(2), 1841-1854.
[http://dx.doi.org/10.1021/acsami.8b18664] [PMID: 30582685]
[40]
Girotra, P.; Singh, S.K. A comparative study of orally delivered PBCA and ApoE coupled BSA nanoparticles for brain targeting of sumatriptan succinate in therapeutic management of migraine. Pharm. Res., 2016, 33(7), 1682-1695.
[http://dx.doi.org/10.1007/s11095-016-1910-8] [PMID: 27003706]
[41]
Nair, M.; Jayant, R.D.; Kaushik, A.; Sagar, V. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS. Adv. Drug Deliv. Rev., 2016, 103, 202-217.
[http://dx.doi.org/10.1016/j.addr.2016.02.008] [PMID: 26944096]
[42]
Zamanlu, M.; Farhoudi, M.; Eskandani, M.; Mahmoudi, J.; Barar, J.; Rafi, M.; Omidi, Y. Recent advances in targeted delivery of tissue plasminogen activator for enhanced thrombolysis in ischaemic stroke. J. Drug Target., 2018, 26(2), 95-109.
[http://dx.doi.org/10.1080/1061186X.2017.1365874] [PMID: 28796540]
[43]
Gaudin, A.; Yemisci, M.; Eroglu, H.; Lepetre-Mouelhi, S.; Turkoglu, O.F.; Dönmez-Demir, B.; Caban, S.; Sargon, M.F.; Garcia-Argote, S.; Pieters, G.; Loreau, O.; Rousseau, B.; Tagit, O.; Hildebrandt, N.; Le Dantec, Y.; Mougin, J.; Valetti, S.; Chacun, H.; Nicolas, V.; Desmaële, D.; Andrieux, K.; Capan, Y.; Dalkara, T.; Couvreur, P. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat. Nanotechnol., 2014, 9(12), 1054-1062.
[http://dx.doi.org/10.1038/nnano.2014.274] [PMID: 25420034]
[44]
Tang, C.; Xue, H.; Bai, C.; Fu, R.; Wu, A. The effects of Tanshinone IIA on blood-brain barrier and brain edema after transient middle cerebral artery occlusion in rats. Phytomedicine, 2010, 17(14), 1145-1149.
[http://dx.doi.org/10.1016/j.phymed.2010.03.017] [PMID: 20570121]
[45]
Kurakhmaeva, K.B.; Djindjikhashvili, I.A.; Petrov, V.E.; Balabanyan, V.U.; Voronina, T.A.; Trofimov, S.S.; Kreuter, J.; Gelperina, S.; Begley, D.; Alyautdin, R.N. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J. Drug Target., 2009, 17(8), 564-574.
[http://dx.doi.org/10.1080/10611860903112842] [PMID: 19694610]
[46]
Liu, Z.; Gao, X.; Kang, T.; Jiang, M.; Miao, D.; Gu, G.; Hu, Q.; Song, Q.; Yao, L.; Tu, Y.; Chen, H.; Jiang, X.; Chen, J. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug. Chem., 2013, 24(6), 997-1007.
[http://dx.doi.org/10.1021/bc400055h] [PMID: 23718945]
[47]
Wang, Z.H.; Wang, Z.Y.; Sun, C.S.; Wang, C.Y.; Jiang, T.Y.; Wang, S.L. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials, 2010, 31(5), 908-915.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.104] [PMID: 19853292]
[48]
Baysal, I.; Ucar, G.; Gultekinoglu, M.; Ulubayram, K.; Yabanoglu-Ciftci, S. Donepezil loaded PLGA-b-PEG nanoparticles: their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro. J. Neural Transm. (Vienna), 2017, 124(1), 33-45.
[http://dx.doi.org/10.1007/s00702-016-1527-4] [PMID: 26911385]
[49]
Mathew, A.; Fukuda, T.; Nagaoka, Y.; Hasumura, T.; Morimoto, H.; Yoshida, Y.; Maekawa, T.; Venugopal, K.; Kumar, D.S. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One, 2012, 7(3) e32616
[http://dx.doi.org/10.1371/journal.pone.0032616] [PMID: 22403681]
[50]
Bhatt, P.C.; Verma, A.; Al-Abbasi, F.A.; Anwar, F.; Kumar, V.; Panda, B.P. Development of surface-engineered PLGA nanoparticulate-delivery system of Tet1-conjugated nattokinase enzyme for inhibition of Aβ40 plaques in Alzheimer’s disease. Int. J. Nanomedicine, 2017, 12, 8749-8768.
[http://dx.doi.org/10.2147/IJN.S144545] [PMID: 29263666]
[51]
Jiang, Y.; Fay, J.M.; Poon, C.D.; Vinod, N.; Zhao, Y.; Bullock, K.; Qin, S.; Manickam, D.S.; Yi, X.; Banks, W.A.; Kabanov, A.V. Nanoformulation of Brain-Derived Neurotrophic Factor with Target Receptor-Triggered-Release in the Central Nervous System. Adv. Funct. Mater., 2018, 28(6) 1703982
[http://dx.doi.org/10.1002/adfm.201703982] [PMID: 29785179]
[52]
Pahuja, R.; Seth, K.; Shukla, A.; Shukla, R.K.; Bhatnagar, P.; Chauhan, L.K.S.; Saxena, P.N.; Arun, J.; Chaudhari, B.P.; Patel, D.K.; Singh, S.P.; Shukla, R.; Khanna, V.K.; Kumar, P.; Chaturvedi, R.K.; Gupta, K.C. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano, 2015, 9(5), 4850-4871.
[http://dx.doi.org/10.1021/nn506408v] [PMID: 25825926]
[53]
Huang, R.; Han, L.; Li, J.; Ren, F.; Ke, W.; Jiang, C.; Pei, Y. Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles. J. Gene Med.: A Cross- Discipl. J. Res. Sci. Gene Transfer Clin. Appl., 2009, 11(9), 754-763.
[54]
Yang, J.A.; Lin, W.; Woods, W.S.; George, J.M.; Murphy, C.J. α-Synuclein’s adsorption, conformation, and orientation on cationic gold nanoparticle surfaces seeds global conformation change. J. Phys. Chem. B, 2014, 118(13), 3559-3571.
[http://dx.doi.org/10.1021/jp501114h] [PMID: 24635210]
[55]
Dong, H.; Jin, M.; Liu, Z.; Xiong, H.; Qiu, X.; Zhang, W.; Guo, Z. In vitro and in vivo brain-targeting chemo-photothermal therapy using graphene oxide conjugated with transferrin for Gliomas. Lasers Med. Sci., 2016, 31(6), 1123-1131.
[http://dx.doi.org/10.1007/s10103-016-1955-2] [PMID: 27189185]
[56]
Garanti, T.; Stasik, A.; Burrow, A.J.; Alhnan, M.A.; Wan, K-W. Anti-glioma activity and the mechanism of cellular uptake of asiatic acid-loaded solid lipid nanoparticles. Int. J. Pharm., 2016, 500(1-2), 305-315.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.018] [PMID: 26775062]
[57]
El-Zaafarany, G.M.; Soliman, M.E.; Mansour, S.; Awad, G.A. Identifying lipidic emulsomes for improved oxcarbazepine brain targeting: In vitro and rat in vivo studies. Int. J. Pharm., 2016, 503(1-2), 127-140.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.038] [PMID: 26924357]
[58]
Girotra, P.; Singh, S.K. Multivariate optimization of rizatriptan benzoate-loaded solid lipid nanoparticles for brain targeting and migraine management. AAPS PharmSciTech, 2017, 18(2), 517-528.
[http://dx.doi.org/10.1208/s12249-016-0532-0] [PMID: 27126007]
[59]
Krishnan, J.K.S.; Arun, P.; Appu, A.P.; Vijayakumar, N.; Figueiredo, T.H.; Braga, M.F.M.; Baskota, S.; Olsen, C.H.; Farkas, N.; Dagata, J.; Frey, W.H., II; Moffett, J.R.; Namboodiri, A.M.A. Intranasal delivery of obidoxime to the brain prevents mortality and CNS damage from organophosphate poisoning. Neurotoxicology, 2016, 53, 64-73.
[http://dx.doi.org/10.1016/j.neuro.2015.12.020] [PMID: 26751814]
[60]
Jayant, R.D.; Tiwari, S.; Atluri, V.; Kaushik, A.; Tomitaka, A.; Yndart, A.; Colon-Perez, L.; Febo, M.; Nair, M. Multifunctional Nanotherapeutics for the Treatment of neuroAIDS in Drug Abusers. Sci. Rep., 2018, 8(1), 12991.
[http://dx.doi.org/10.1038/s41598-018-31285-w] [PMID: 30154522]
[61]
Ma, J.; Porter, A.L.; Aminabhavi, T.M.; Zhu, D. Nano-enabled drug delivery systems for brain cancer and Alzheimer’s disease: research patterns and opportunities. Nanomedicine (Lond.), 2015, 11(7), 1763-1771.
[http://dx.doi.org/10.1016/j.nano.2015.06.006] [PMID: 26115642]
[62]
Tavares, M.; De Menezes, L.; Do Nascimento, D.; Souza, D.; Reynaud, F.; Marques, M.; Tavares, M. Polymeric nanoparticles assembled with microfluidics for drug delivery across the blood-brain barrier. Eur. Phys. J. Spec. Top., 2016, 225(4), 779-795.
[http://dx.doi.org/10.1140/epjst/e2015-50266-2]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy