Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Antimicrobial Exploration Between Counterpart Endosymbiont and Host Plant (Tamarindus indica Linn.)

Author(s): Sridevi Chigurupati*, Shantini Vijayabalan, Kesavanarayanan K. Selvarajan, Maha Aldubayan, Ahmad Alhowail, Vasudevan Mani and Suprava Das

Volume 21, Issue 5, 2020

Page: [384 - 389] Pages: 6

DOI: 10.2174/1389201020666191028105325

Price: $65

Abstract

Background: Endophytic bacteria produce various bioactive secondary metabolites, which benefit human health. Tamarindus indica L. is well known for its medicinal value in human health care. Several studies have reported on its biological effects from various parts of T. indica, but only a few studies have been devoted to examining the biological activity of endophytes of T. indica.

Objectives: In the present study, an endophyte was isolated from the leaves of T. indica and screened for its antimicrobial potential.

Methods: The selected endophyte was identified by 16s rRNA partial genome sequencing and investigated for their antimicrobial potency. The preliminary phytochemical tests were conducted for the affirmation of phytoconstituents in the endophytic crude ethyl acetate extract of T. indica (TIM) and total phenolic content was performed. The antimicrobial potential of TIM was evaluated against human pathogenic ATCC gram-positive and gram-negative bacterial strains.

Results: TIM exhibited an appreciable amount of gallic acid equivalent phenolic content (21.6 ± 0.04 mg GAE/g of crude extract). TIM showed the Minimum Inhibitory Concentration (MIC) at 250 μg/mL and Minimum Bactericidal Concentration (MBC) at 500 μg/mL among the selected human pathogenic ATCC strains. At MIC of 500 μg/mL, TIM displayed a significant zone of inhibition against P. aeruginosa and N. gonorrhoeae.

Conclusion: The results from our study highlighted for the first time the antimicrobial potential of endophytic bacterial strain Bacillus velezensis in T. indica leaves and it could be further explored as a source of natural antimicrobial agents.

Keywords: Tamarindus Indica, endophyte, phytochemical analysis, antimicrobial, phytoconstituents, rRNA, phytoconstituents.

Graphical Abstract

[1]
Strobel, G.; Daisy, B.; Castillo, U.; Harper, J. Natural products from endophytic microorganisms. J. Nat. Prod., 2004, 67(2), 257-268.
[http://dx.doi.org/10.1021/np030397v] [PMID: 14987067]
[2]
Malhadas, C.; Malheiro, R.; Pereira, J.A.; de Pinho, P.G.; Baptista, P. Antimicrobial activity of endophytic fungi from olive tree leaves. World J. Microbiol. Biotechnol., 2017, 33(3), 46.
[http://dx.doi.org/10.1007/s11274-017-2216-7] [PMID: 28168624]
[3]
Khan, A.R.; Ullah, I.; Waqas, M.; Shahzad, R.; Hong, S.J.; Park, G.S.; Jung, B.K.; Lee, I.J.; Shin, J.H. Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J. Microbiol. Biotechnol., 2015, 31(9), 1461-1466.
[http://dx.doi.org/10.1007/s11274-015-1888-0] [PMID: 26081602]
[4]
Murphy, B.R.; Doohan, F.M.; Hodkinson, T.R. Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis, 2014, 62(1), 29-39.
[http://dx.doi.org/10.1007/s13199-014-0268-0]
[5]
Matsuoka, H.; Akiyama, M.; Kobayashi, K.; Yamaji, K. Fe and P solubilization under limiting conditions by bacteria isolated from Carex kobomugi roots at the Hasaki coast. Curr. Microbiol., 2013, 66(3), 314-321.
[http://dx.doi.org/10.1007/s00284-012-0276-3] [PMID: 23196704]
[6]
Shi, Y.; Lou, K.; Li, C. Growth promotion effects of the endophyte Acinetobacter johnsonii strain 3-1 on sugar beet. Symbiosis, 2011, 54(3), 159-166.
[http://dx.doi.org/10.1007/s13199-011-0139-x]
[7]
Theuretzbacher, U.; Mouton, J.W. Update on antibacterial and antifungal drugs - can we master the resistance crisis? Curr. Opin. Pharmacol., 2011, 11(5), 429-432.
[http://dx.doi.org/10.1016/j.coph.2011.08.002] [PMID: 21903474]
[8]
Walsh, T.R.; Toleman, M.A. The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response. J. Antimicrob. Chemother., 2012, 67(1), 1-3.
[http://dx.doi.org/10.1093/jac/dkr378] [PMID: 21994911]
[9]
Monowar, T.; Bhore, S.J. Antibiotic resistance needs global solutions. Lancet Infect. Dis., 2014, 14(7), 549.
[http://dx.doi.org/10.1016/S1473-3099(14)70799-6] [PMID: 24964938]
[10]
Srivastava, J.; Chandra, H.; Nautiyal, A.R.; Kalra, S.J. Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDAms) as an alternative drug line to control infections. Biotech, 2014, 4(5), 451-460.
[11]
Lowy, F.D. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest., 2003, 111(9), 1265-1273.
[12]
Escalona-Arranz, J.C.; Péres-Roses, R.; Urdaneta-Laffita, I.; Camacho-Pozo, M.I.; Rodríguez-Amado, J.; Licea-Jiménez, I. Antimicrobial activity of extracts from Tamarindus indica L. leaves. Pharmacogn. Mag., 2010, 6(23), 242-247.
[http://dx.doi.org/10.4103/0973-1296.66944] [PMID: 20931087]
[13]
Doughari, J.H. Antimicrobial activity of Tamarindus indica Linn. Trop. J. Pharm. Res., 2007, 5(2), 597-603.
[http://dx.doi.org/10.4314/tjpr.v5i2.14637]
[14]
Chigurupati, S.; Kwang Yiik, E.; Islam Mohammad, J.; Vijayabalan, S.; Krishnan Selvarajan, K.; Ramana Reddy, M.V.; Sekhar Nanda, S. Screening antimicrobial potential for Malaysian originated Tamarindus indica ethanolic leaves extract. Asian J. Pharm. Clin. Res., 2018, 11(3), 361-363.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i3.22614]
[15]
Das, I.; Panda, M.K.; Rath, C.C.; Tayung, K. Bioactivities of bacterial endophytes isolated from leaf tissues of Hyptis suaveolens against some clinically significant pathogens. J. Appl. Pharm. Sci., 2017, 7(8), 131-136.
[16]
Bhore, S.J.; Ravichantar, N.; Loh, C.Y. Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bioinformation, 2010, 5(5), 191-197.
[http://dx.doi.org/10.6026/97320630005191] [PMID: 21364796]
[17]
Ramasamy, K.; Lim, S.M.; Abu Bakar, H.; Ismail, N.; Ismail, M.S.; Ali, M.F.; Weber, J.F.; Cole, A.L. Antimicrobial and cytotoxic activities of Malaysian endophytes. Phytother. Res., 2010, 24(5), 640-643.
[http://dx.doi.org/10.1002/ptr.2891] [PMID: 19468989]
[18]
Prabhavathi, R.; Prasad, M.; Jayaramu, M. Studies on qualitative and quantitative phytochemical analysis of Cissus quadrangularis. Pelagia Res. Libr. Adv. Appl. Sci. Res., 2016, 7(4), 11-17.
[19]
Raman, N. Phytochemical techniques. New India publishing agency. New Delhi; , 2006.
[20]
Ataee, R.A.; Mehrabi-Tavana, A.; Hosseini, S.M.J.; Moridi, K.; Zadegan, M.G. A method for antibiotic susceptibility testing: Applicable and accurate. Jundishapur J. Microbiol., 2012, 5(1), 341-345.
[21]
Chigurupati, S.; Fuloria, N.K.; Fuloria, S.; Karupiah, S.; Veerasamy, R.; Nemala, A.R.; Yi, L.J.; Ilan, A.X.; Shah, S.A.A. Synthesis and antibacterial profile of novel azomethine derivatives of β-phenylacrolein moiety. Trop. J. Pharm. Res., 2016, 15(4), 821-826.
[http://dx.doi.org/10.4314/tjpr.v15i4.22]
[22]
Subhas Chandrappa, M.; Harsha, R.; Dinesha, R.; Thammanna Gowda, S.S. Antibacterial activity of Coleus aromaticus leaves. Int. J. Pharm. Pharm. Sci., 2010, 2(3), 63-66.
[23]
Chigurupati, S. Designing new vanillin schiff bases and their antibacterial Studies. J. Med. Bioeng., 2015, 4(5), 363-366.
[http://dx.doi.org/10.12720/jomb.4.5.363-366]
[24]
Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev., 2003, 67(4), 491-502.
[http://dx.doi.org/10.1128/MMBR.67.4.491-502.2003] [PMID: 14665674]
[25]
Fan, B.; Blom, J.; Klenk, H.P.; Borriss, R. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an “Operational group B. amyloliquefaciens” within the B. subtilis species complex. Front. Microbiol., 2017, 8, 22.
[http://dx.doi.org/10.3389/fmicb.2017.00022] [PMID: 28163698]
[26]
Subbulakshmi, G.; Thalavaipandian, A.; Bagyalakshmi, R.; Rajendran, A. Bioactive endophytic fungal isolates of Biota orientalis (L) Endl., Pinus excelsa wall and Thuja occidentalis L. Int. J. Adv. Life Sci., 2012, 4, 9-15.
[27]
Chigurupati, S.; Marri, M.R.; Vijayabalan, S.; Selvarajan, K.K. Bacterial Endo-symbiont inhabiting Durio zibethinus leaves and their antibacterial potential. Int. J. Pharm. Tech. Res., 2018, 11(3), 198-205.
[http://dx.doi.org/10.20902/IJPTR.2018.11301]
[28]
Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci., 2004, 74(17), 2157-2184.
[http://dx.doi.org/10.1016/j.lfs.2003.09.047] [PMID: 14969719]
[29]
Verma, V.C.; Gond, S.K.; Kumar, A.; Mishra, A.; Kharwar, R.N.; Gange, A.C. Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity. Microb. Ecol., 2009, 57(4), 749-756.
[http://dx.doi.org/10.1007/s00248-008-9450-3] [PMID: 18853084]
[30]
Castillo, U.F.; Browne, L.; Strobel, G.; Hess, W.M.; Ezra, S.; Pacheco, G.; Ezra, D. Biologically active endophytic streptomycetes from Nothofagus spp. and other plants in Patagonia. Microb. Ecol., 2007, 53(1), 12-19.
[http://dx.doi.org/10.1007/s00248-006-9129-6] [PMID: 16944339]
[31]
Joseph, B.; Priya, R.M. Bioactive compounds from endophytes and their potential in pharmaceutical effect: A review. Amer. J. Biochem. Mol. Biol., 2011, 1(3), 291-309.
[32]
Palanichamy, P.; Krishnamoorthy, G.; Kannan, S.; Marudhamuthu, M. Bioactive potential of secondary metabolites derived from medicinal plant endophytes. Egypt. J. Basic Appl. Sci., 2018, 5(4), 303-312.
[http://dx.doi.org/10.1016/j.ejbas.2018.07.002]
[33]
Jessy, E.; Sambanthan, A.T.; Alex, J.; Sridevi, C.; Srinivasan, K. Synthesis and biological evaluation of some novel quinazolones. Indian J. Pharm. Sci., 2007, 69(3), 476. [http://dx.doi.org/10.4103/0250-474X.34571].
[34]
Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol., 2012, 23(2), 174-181.
[http://dx.doi.org/10.1016/j.copbio.2011.08.007] [PMID: 21925860]
[35]
Lima, Z.M.; da Trindade, L.S.; Santana, G.C.; Padilha, F.F.; da Costa Mendonça, M.; da Costa, L.P.; López, J.A.; Macedo, M.L.H. Effect of Tamarindus indica L. and Manihot esculenta extracts on antibiotic-resistant bacteria. Pharmacognosy Res., 2017, 9(2), 195-199.
[PMID: 28539745]
[36]
Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf‐life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. Food Saf., 2017, 16, 1243-1268.
[http://dx.doi.org/10.1111/1541-4337.12298]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy