Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Neurotransmitters and Behavioral Alterations Induced by Nickel Exposure

Author(s): María I. Martínez-Martínez , Isabel Muñoz-Fambuena and Omar Cauli *

Volume 20, Issue 7, 2020

Page: [985 - 991] Pages: 7

DOI: 10.2174/1871530319666191202141209

Price: $65

Abstract

Background: Nickel ions (Ni2+) are a heavy metal with wide industrial uses. Environmental and occupational exposures to Ni are potential risk factors for brain dysfunction and behavioral and neurological symptoms in humans.

Methods: We reviewed the current evidence about neurochemical and behavioral alterations associated with Ni exposure in laboratory animals and humans.

Results: Ni2+ exposure can alter (both inhibition and stimulation) dopamine release and inhibit glutamate NMDA receptors. Few reports claim an effect of Ni2+ at the level of GBA and serotonin neurotransmission. At behavioral levels, exposure to Ni2+ in rodents alters motor activity, learning and memory as well as anxiety and depressive-like symptoms. However, no analysis of the dose-dependent relationship has been carried out regarding these effects and the levels of the Ni2+ in the brain, in blood or urine.

Conclusion: Further research is needed to correlate the concentration of Ni2+ in biological fluids with specific symptoms/deficits. Future studies addressing the impact of Ni2+ under environmental or occupational exposure should consider the administration protocols to find Ni2+ levels similar in the general population or occupationally exposed workers.

Keywords: Nickel, brain, behaviour, neurotransmitter, dopamine, glutamate, GABA.

« Previous
Graphical Abstract

[1]
Dennis, J.K. Butterworth-Heinemann, G; Nickel and Chromium Plating: Oxford, (UK), 2013.
[2]
Rana, S.V. Metals and apoptosis: recent developments. J. Trace Elem. Med. Biol., 2008, 22(4), 262-284.
[http://dx.doi.org/10.1016/j.jtemb.2008.08.002] [PMID: 19013355]
[3]
Zhao, J.; Shi, X.; Castranova, V.; Ding, M. Occupational toxicology of nickel and nickel compounds. J. Environ. Pathol. Toxicol. Oncol., 2009, 28(3), 177-208.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v28.i3.10] [PMID: 19888907]
[4]
IARC. (International Agency for Research on Cancer). IARC Monograph on the evaluation of carcinogenic risks to humans. IARC: Lyans, France, 1990, Vol. 49, pp 318-411.
[5]
U.S. Department of Health and Human Services (DHHS). Seventh annual report on carcinogens: Summary 1994; DHHS; National Institute of Environmental Health Sciences: Research Triangle Park, NC, USA, 1994, pp. 262-269.
[6]
Ahlström, M.G.; Thyssen, J.P.; Menné, T.; Johansen, J.D. Prevalence of nickel allergy in Europe following the EU nickel directive - A review. Contact Dermat., 2017, 77(4), 193-200.
[http://dx.doi.org/10.1111/cod.12846] [PMID: 28730624]
[7]
Borghi, A.; Corazza, M.; Maietti, E.; Patruno, C.; Napolitano, M.; Schena, D.; Musumeci, M.L.; Micali, G.; Magrone, T.; Romita, P.; Foti, C. Eyelid Dermatitis and Contact Sensitization to Nickel: Results from an Italian Multi-Centric Observational Study. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(1), 38-45.
[http://dx.doi.org/10.2174/1871530318666180731114418] [PMID: 30062976]
[8]
Song, X.; Fiati Kenston, S.S.; Kong, L.; Zhao, J. Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology, 2017, 392, 47-54.
[http://dx.doi.org/10.1016/j.tox.2017.10.006] [PMID: 29032222]
[9]
Funakoshi, T.; Inoue, T.; Shimada, H.; Kojima, S. The mechanisms of nickel uptake by rat primary hepatocyte cultures: Role of calcium channels. Toxicology, 1997, 124(1), 21-26.
[10]
Chakrabarti, S.K.; Bai, C.; Subramanian, K.S. DNA-protein crosslinks induced by nickel compounds in isolated rat lymphocytes: role of reactive oxygen species and specific amino acids. Toxicol. Appl. Pharmacol., 2001, 170(3), 153-165.
[http://dx.doi.org/10.1006/taap.2000.9097] [PMID: 11162780]
[11]
Chen, W.; Zhou, W.; He, L.; Chen, C.; Guo, L. Surface magnetic states of Ni nanochains modified by using different organic surfactants. J. Phys. Condens. Matter, 2010, 22(12) 126003
[http://dx.doi.org/10.1088/0953-8984/22/12/126003] [PMID: 21389501]
[12]
David, A.; Lobner, D. In vitro cytotoxicity of orthodontic archwires in cortical cell cultures. Eur. J. Orthod., 2004, 26(4), 421-426.
[http://dx.doi.org/10.1093/ejo/26.4.421] [PMID: 15366387]
[13]
Fatehyab, S.; Hasan, M.; Hasan, M.Z.; Anwar, J. Effect of nickel on the levels of dopamine, noradrenaline and serotonin in different regions of the rat brain. Acta Pharmacol. Toxicol. (Copenh.), 1980, 47(4), 318-320.
[PMID: 7468231]
[14]
Jia, C.; Roman, C.; Hegg, C.C. Nickel sulfate induces location-dependent atrophy of mouse olfactory epithelium: Protective and proliferative role of purinergic receptor activation. Toxicol. Sci., 2010, 115(2), 547-556.
[http://dx.doi.org/10.1093/toxsci/kfq071] [PMID: 20200219]
[15]
Henriksson, J.; Tallkvist, J.; Tjälve, H. Uptake of nickel into the brain via olfactory neurons in rats. Toxicol. Lett., 1997, 91(2), 153-162.
[http://dx.doi.org/10.1016/S0378-4274(97)03885-X] [PMID: 9175852]
[16]
Tallkvist, J.; Henriksson, J.; d’Argy, R.; Tjälve, H. Transport and subcellular distribution of nickel in the olfactory system of pikes and rats. Toxicol. Sci., 1998, 43(2), 196-203.
[http://dx.doi.org/10.1093/toxsci/43.2.196] [PMID: 9710961]
[17]
Szabo, S.T.; Harry, G.J.; Hayden, K.M.; Szabo, D.T.; Birnbaum, L. Comparison of metal levels between postmortem brain and ventricular fluid in alzheimer’s disease and non demented elderly controls. Toxicol. Sci., 2016, 150(2), 292-300.
[http://dx.doi.org/10.1093/toxsci/kfv325] [PMID: 26721301]
[18]
García, F.; Ortega, A.; Domingo, J.L.; Corbella, J. Accumulation of metals in autopsy tissues of subjects living in Tarragona County, Spain. J. Environ. Sci. Health A. Tox. Hazard Subst. Environ. Eng., 2001, 36(9), 1767-1786.
[19]
Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel, its adverse health effects & oxidative stress. Indian J. Med. Res., 2008, 128(4), 412-425.
[PMID: 19106437]
[20]
Rao, A.S.; Pal, A.; Ghosh, R.; Das, S.K. Chiral synthesis of a mononuclear nickel(II) complex formed from an achiral tripodal amine ligand: spontaneous resolution. Inorg. Chem., 2009, 48(5), 1802-1804.
[http://dx.doi.org/10.1021/ic802171b] [PMID: 19235941]
[21]
Gopal, R.; Narmada, S.; Vijayakumar, R.; Jaleel, C.A. Chelating efficacy of CaNa(2) EDTA on nickel-induced toxicity in Cirrhinus mrigala (Ham.) through its effects on glutathione peroxidase, reduced glutathione and lipid peroxidation. C. R. Biol., 2009, 332(8), 685-696.
[http://dx.doi.org/10.1016/j.crvi.2009.03.004] [PMID: 19632651]
[22]
Prophete, C.; Carlson, E.A.; Li, Y.; Duffy, J.; Steinetz, B.; Lasano, S.; Zelikoff, J.T. Effects of elevated temperature and nickel pollution on the immune status of Japanese medaka. Fish Shellfish Immunol., 2006, 21(3), 325-334.
[http://dx.doi.org/10.1016/j.fsi.2005.12.009] [PMID: 16529948]
[23]
Vijayavel, K.; Gopalakrishnan, S.; Thiagarajan, R.; Thilagam, H. Immunotoxic effects of nickel in the mud crab Scylla serrata. Fish Shellfish Immunol., 2009, 26(1), 133-139.
[http://dx.doi.org/10.1016/j.fsi.2008.02.015] [PMID: 19046900]
[24]
Ptashynski, M.D.; Pedlar, R.M.; Evans, R.E.; Wautier, K.G.; Baron, C.L.; Klaverkamp, J.F. Accumulation, distribution and toxicology of dietary nickel in lake whitefish (Coregonus clupeaformis) and lake trout (Salvelinus namaycush). Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2001, 130(2), 145-162.
[http://dx.doi.org/10.1016/S1532-0456(01)00228-9] [PMID: 11574285]
[25]
Ptashynski, M.D.; Pedlar, R.M.; Evans, R.E.; Baron, C.L.; Klaverkamp, J.F. Toxicology of dietary nickel in lake whitefish (Coregonus clupeaformis). Aquat. Toxicol., 2002, 58(3-4), 229-247.
[http://dx.doi.org/10.1016/S0166-445X(01)00239-9] [PMID: 12007877]
[26]
Lamtai, M.; Chaibat, J.; Ouakki, S.; Zghari, O.; Mesfioui, A.; El Hessni, A.; Rifi, E.H.; Marmouzi, I.; Essamri, A.; Ouichou, A. Effect of chronic administration of nickel on affective and cognitive behavior in male and female rats: possible implication of oxidative stress pathway. Brain Sci., 2018, 8(8) E141
[http://dx.doi.org/10.3390/brainsci8080141] [PMID: 30065183]
[27]
Liapi, C.; Zarros, A.; Theocharis, S.; Voumvourakis, K.; Anifantaki, F.; Gkrouzman, E.; Mellios, Z.; Skandali, N.; Al-Humadi, H.; Tsakiris, S. Short-term exposure to nickel alters the adult rat brain antioxidant status and the activities of crucial membrane-bound enzymes: Neuroprotection by L-cysteine. Biol. Trace Elem. Res., 2011, 143(3), 1673-1681.
[http://dx.doi.org/10.1007/s12011-011-9006-0] [PMID: 21360057]
[28]
Wang, M.; Wang, G. Oxidative damage effects in the copepod Tigriopus japonicus Mori experimentally exposed to nickel. Ecotoxicology, 2010, 19(2), 273-284.
[http://dx.doi.org/10.1007/s10646-009-0410-6] [PMID: 19821026]
[29]
He, M.D.; Xu, S.C.; Lu, Y.H.; Li, L.; Zhong, M.; Zhang, Y.W.; Wang, Y.; Li, M.; Yang, J.; Zhang, G.B.; Yu, Z.P.; Zhou, Z. L-carnitine protects against nickel-induced neurotoxicity by maintaining mitochondrial function in Neuro-2a cells. Toxicol. Appl. Pharmacol., 2011, 253(1), 38-44.
[http://dx.doi.org/10.1016/j.taap.2011.03.008] [PMID: 21419151]
[30]
Xu, L.; Li, B.J.; Wu, Z.H.; Lu, X.Y.; Guan, B.T.; Wang, B.Q.; Zhao, K.Q.; Shi, Z.J. Nickel-catalyzed efficient and practical Suzuki-Miyaura coupling of alkenyl and aryl carbamates with aryl boroxines. Org. Lett., 2010, 12(4), 884-887.
[http://dx.doi.org/10.1021/ol9029534] [PMID: 20099867]
[31]
Xu, Z.Y.; Jiang, Y.Y.; Yu, H.Z.; Fu, Y. Mechanism of Nickel(II)-catalyzed oxidative C(sp2)-H/C(sp3)-H coupling of benzamides and toluene derivatives. Chem. Asian J., 2015, 10(11), 2479-2483.
[http://dx.doi.org/10.1002/asia.201500599] [PMID: 26307522]
[32]
Zamponi, G.W.; Bourinet, E.; Snutch, T.P. Nickel block of a family of neuronal calcium channels: Subtype- and subunit-dependent action at multiple sites. J. Membr. Biol., 1996, 151(1), 77-90.
[http://dx.doi.org/10.1007/s002329900059] [PMID: 8661496]
[33]
Kang, J.; Wang, X.; Dong, S. Mechanism of dna strand cleavage induced by hexaaza macrocyclic Nickel (II) complex. Toxicol. Mech. Methods, 2006, 16(9), 515-523.
[http://dx.doi.org/10.1080/15376510600783858] [PMID: 20020994]
[34]
Nosal, O.V.; Lyubanova, O.P.; Naidenov, V.G.; Shuba, Y.M. Complex modulation of Ca(v)3.1 T-type calcium channel by nickel. Cell. Mol. Life Sci., 2013, 70(9), 1653-1661.
[http://dx.doi.org/10.1007/s00018-012-1225-9] [PMID: 23250353]
[35]
Minnema, D.; Michaelson, I.A. A superfusion apparatus for the examination of neurotransmitter release from synaptosomes. J. Neurosci. Methods, 1985, 14(3), 193-206.
[http://dx.doi.org/10.1016/0165-0270(85)90035-4] [PMID: 2864481]
[36]
Toner, C.C.; Stamford, J.A. Involvement of N- and P/Q- but not L- or T-type voltage-gated calcium channels in ischaemia-induced striatal dopamine release in vitro. Brain Res., 1997, 748(1-2), 85-92.
[http://dx.doi.org/10.1016/S0006-8993(96)01247-4] [PMID: 9067448]
[37]
Brimblecombe, K.R.; Cragg, S.J. Ni(2+) affects dopamine uptake which limits suitability as inhibitor of T-type voltage-gated Ca(2+) channels. ACS Chem. Neurosci., 2015, 6(1), 124-129.
[http://dx.doi.org/10.1021/cn500274g] [PMID: 25434848]
[38]
Bergquist, F.; Nissbrandt, H. Influence of R-type (Cav2.3) and t-type (Cav3.1-3.3) antagonists on nigral somatodendritic dopamine release measured by microdialysis. Neuroscience, 2003, 120(3), 757-764.
[http://dx.doi.org/10.1016/S0306-4522(03)00385-3] [PMID: 12895515]
[39]
Li, Y.; Hasenhuetl, P.S.; Schicker, K.; Sitte, H.H.; Freissmuth, M.; Sandtner, W. Dual action of Zn2+ on the transport cycle of the dopamine transporter. J. Biol. Chem., 2015, 290(52), 31069-31076.
[http://dx.doi.org/10.1074/jbc.M115.688275] [PMID: 26504078]
[40]
Bonnet, J.J. Interactions of cations and anions with the binding of uptake blockers to the dopamine transporter. Eur. J. Pharmacol., 2003, 479(1-3), 199-212.
[http://dx.doi.org/10.1016/j.ejphar.2003.08.069] [PMID: 14612150]
[41]
Slotkin, T.A.; Seidler, F.J. Developmental neurotoxicants target neurodifferentiation into the serotonin phenotype: Chlorpyrifos, diazinon, dieldrin and divalent nickel. Toxicol. Appl. Pharmacol., 2008, 233(2), 211-219.
[http://dx.doi.org/10.1016/j.taap.2008.08.020] [PMID: 18835401]
[42]
Marchetti, C.; Gavazzo, P. NMDA receptors as targets of heavy metal interaction and toxicity. Neurotox. Res., 2005, 8(3-4), 245-258.
[http://dx.doi.org/10.1007/BF03033978] [PMID: 16371319]
[43]
Gavazzo, P.; Guida, P.; Zanardi, I.; Marchetti, C. Molecular determinants of multiple effects of nickel on NMDA receptor channels. Neurotox. Res., 2009, 15(1), 38-48.
[http://dx.doi.org/10.1007/s12640-009-9003-7] [PMID: 19384586]
[44]
Marchetti, C.; Gavazzo, P. Subunit-dependent effects of nickel on NMDA receptor channels. Brain Res. Mol. Brain Res., 2003, 117(2), 139-144.
[http://dx.doi.org/10.1016/S0169-328X(03)00293-6] [PMID: 14559147]
[45]
Paoletti, P.; Neyton, J.; Ascher, P. Glycine-independent and subunit-specific potentiation of NMDA responses by extracellular Mg2+. Neuron, 1995, 15(5), 1109-1120.
[http://dx.doi.org/10.1016/0896-6273(95)90099-3] [PMID: 7576654]
[46]
Gavazzo, P.; Tedesco, M.; Chiappalone, M.; Zanardi, I.; Marchetti, C. Nickel modulates the electrical activity of cultured cortical neurons through a specific effect on N-methyl-D-aspartate receptor channels. Neuroscience, 2011, 177, 43-55.
[http://dx.doi.org/10.1016/j.neuroscience.2010.12.018] [PMID: 21182900]
[47]
Mafra, R.A.; Araújo, D.A.; Beirão, P.S.; Cruz, J.S. Glutamate transport in rat cerebellar granule cells is impaired by inorganic epileptogenic agents. Neurosci. Lett., 2001, 310(2-3), 85-88.
[http://dx.doi.org/10.1016/S0304-3940(01)02069-9] [PMID: 11585573]
[48]
Wang, Y.; Wu, J.; Rowan, M.J.; Anwyl, R. Ryanodine produces a low frequency stimulation-induced NMDA receptor-independent long-term potentiation in the rat dentate gyrus in vitro. J. Physiol., 1996, 495(Pt 3), 755-767.
[http://dx.doi.org/10.1113/jphysiol.1996.sp021631] [PMID: 8887781]
[49]
Yanovsky, Y.; Zhang, W.; Misgeld, U. Two pathways for the activation of small-conductance potassium channels in neurons of substantia nigra pars reticulata. Neuroscience, 2005, 136(4), 1027-1036.
[http://dx.doi.org/10.1016/j.neuroscience.2005.08.026] [PMID: 16203104]
[50]
Celentano, J.J.; Gyenes, M.; Gibbs, T.T.; Farb, D.H. Negative modulation of the γ-aminobutyric acid response by extracellular zinc. Mol. Pharmacol., 1991, 40(5), 766-773.
[PMID: 1658609]
[51]
Haage, D.; Karlsson, U.; Johansson, S. Heterogeneous presynaptic Ca2+ channel types triggering GABA release onto medial preoptic neurons from rat. J. Physiol., 1998, 507(Pt. 1), 77-91.
[http://dx.doi.org/10.1111/j.1469-7793.1998.077bu.x] [PMID: 9490820]
[52]
Sitges, M.; Chiu, L.M. Characterization of the type of calcium channel primarily regulating GABA exocytosis from brain nerve endings. Neurochem. Res., 1995, 20(9), 1073-1080.
[http://dx.doi.org/10.1007/BF00995562] [PMID: 8570012]
[53]
Turner, T.J.; Goldin, S.M. Multiple components of synaptosomal [3H]-gamma-aminobutyric acid release resolved by a rapid superfusion system. Biochemistry, 1989, 28(2), 586-593.
[http://dx.doi.org/10.1021/bi00428a026] [PMID: 2653424]
[54]
Fatehyab, S.; Hasan, M.; Hasan, M.Z.; Anwar, J. Effect of nickel on the levels of dopamine, noradrenaline and serotonin in different regions of the rat brain. Acta Pharmacol. Toxicol. (Copenh.), 1980, 47(4), 318-320.
[PMID: 7468231]
[55]
Nation, J.R.; Hare, M.F.; Baker, D.M.; Clark, D.E.; Bourgeois, A.E. Dietary administration of nickel: Effects on behavior and metallothionein levels. Physiol. Behav., 1985, 34(3), 349-353.
[http://dx.doi.org/10.1016/0031-9384(85)90194-5] [PMID: 4011715]
[56]
He, M.D.; Xu, S.C.; Zhang, X.; Wang, Y.; Xiong, J.C.; Zhang, X.; Lu, Y.H.; Zhang, L.; Yu, Z.P.; Zhou, Z. Disturbance of aerobic metabolism accompanies neurobehavioral changes induced by nickel in mice. Neurotoxicology, 2013, 38, 9-16.
[http://dx.doi.org/10.1016/j.neuro.2013.05.011] [PMID: 23727075]
[57]
Ijomone, O.M.; Okori, S.O.; Ijomone, O.K.; Ebokaiwe, A.P. Subacute nickel exposure impairs behavior, alters neuronal microarchitecture, and induces oxidative stress in rats’ brain. Drug Chem. Toxicol., 2018, 41(4), 377-384.
[http://dx.doi.org/10.1080/01480545.2018.1437173] [PMID: 29482365]
[58]
Seet, R.C.; Johan, A.; Teo, C.E.; Gan, S.L.; Lee, K.H. Inhalational nickel carbonyl poisoning in waste processing workers. Chest, 2005, 128(1), 424-429.
[http://dx.doi.org/10.1378/chest.128.1.424] [PMID: 16002966]
[59]
Obone, E.; Chakrabarti, S.K.; Bai, C.; Malick, M.A.; Lamontagne, L.; Subramanian, K.S. Toxicity and bioaccumulation of nickel sulfate in Sprague-Dawley rats following 13 weeks of subchronic exposure. J. Toxicol. Environ. Health A, 1999, 57(6), 379-401.
[http://dx.doi.org/10.1080/009841099157593] [PMID: 10478821]
[60]
Sunderman, F.W., Jr; Dingle, B.; Hopfer, S.M.; Swift, T. Acute nickel toxicity in electroplating workers who accidently ingested a solution of nickel sulfate and nickel chloride. Am. J. Ind. Med., 1988, 14(3), 257-266.
[http://dx.doi.org/10.1002/ajim.4700140303] [PMID: 3189343]
[61]
Kang, H.W.; Moon, H.J.; Joo, S.H.; Lee, J.H. Histidine residues in the IS3-IS4 loop are critical for nickel-sensitive inhibition of the Cav2.3 calcium channel. FEBS Lett., 2007, 581(30), 5774-5780.
[http://dx.doi.org/10.1016/j.febslet.2007.11.045] [PMID: 18037383]
[62]
Klaassen, C.D.; In Casarett and Doull’s, , Eds.; Toxicology: The basic science of poisons. Ninth edition. New York: McGraw-Hill Education; , 2019.
[63]
Templeton, D.M.; Sunderman, F.W., Jr; Herber, R.F. Tentative reference values for nickel concentrations in human serum, plasma, blood, and urine: evaluation according to the TRACY protocol. Sci. Total Environ., 1994, 148(2-3), 243-251.
[http://dx.doi.org/10.1016/0048-9697(94)90400-6] [PMID: 8029699]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy