Abstract
Aim and Objective: The stability of the G-quadruplex structure can increase its activity in telomerase inhibiting cancer cells. In this study, a molecular dynamics simulation method was used to study the effect of three phenanthroline-based ligands on the structure of G-quadruplex at the temperatures of 20, 40, 60 and 80°C.
Materials and Methods: RMSD values and frequency of calculated RMSD in the presence and absence of ligands show that ligands cause the relative stability of the G-quadruplex, particularly at low temperatures. The calculation of hydrogen bonds in Guanine-tetrads in three different quadruplex sheets shows that the effect of ligands on the sheets is not the same so that the bottom sheet of G-quadruplex is most affected by the ligands at high temperatures, and the Guaninetetrads in this sheet are far away. Conformation factor was calculated as a measure of ligands binding affinity for each of the G-quadruplex residues.
Results: The results show that the studied ligands interact more with the G-quadruplex than loop areas, although with increasing temperature, the binding area also includes the G-quadruplex sheets. The contribution of each of the residues involved in the G-quadruplex binding area with ligands was also calculated.
Conclusion: The calculations performed are consistent with the previous experimental observations that can help to understand the molecular mechanism of the interaction of phenanthroline and its derivatives with quadruplex.
Keywords: Phenanthroline, quadruplex, affinity, conformation factor, molecular mechanism, cancer cells.
[http://dx.doi.org/10.1039/c1cs15117g] [PMID: 21720638]
[http://dx.doi.org/10.2174/138161212799958486] [PMID: 22376108]
[http://dx.doi.org/10.2174/156802608786141106] [PMID: 18991726]
[http://dx.doi.org/10.1021/bi1005927] [PMID: 20712380]
[http://dx.doi.org/10.1021/ja806045x] [PMID: 18998644]
[http://dx.doi.org/10.1002/chem.201000167] [PMID: 20437426]
[http://dx.doi.org/10.1016/j.biochi.2010.01.003] [PMID: 20096325]
[http://dx.doi.org/10.1016/j.jinorgbio.2010.10.005] [PMID: 21194612]
[http://dx.doi.org/10.1002/cbic.200600554] [PMID: 17361982]
[http://dx.doi.org/10.1016/j.biochi.2009.04.012] [PMID: 19401211]
[http://dx.doi.org/10.1016/j.ab.2008.04.044] [PMID: 18492481]
[http://dx.doi.org/10.1021/jp809486g] [PMID: 19480441]
[http://dx.doi.org/10.1134/S0026893310050201]
[http://dx.doi.org/10.1016/j.inoche.2012.01.014]
[http://dx.doi.org/10.1039/b904630p] [PMID: 19417927]
[http://dx.doi.org/10.1021/ja067352b] [PMID: 17260991]
[http://dx.doi.org/10.1039/b709898g] [PMID: 17957288]
[http://dx.doi.org/10.1039/c0ob00961j] [PMID: 21347502]
[http://dx.doi.org/10.1039/c0dt00211a] [PMID: 20593090]
[http://dx.doi.org/10.1039/C6QI00300A]
[http://dx.doi.org/10.1515/bmc.2010.011] [PMID: 25961997]
[http://dx.doi.org/10.1371/journal.pgen.1003468] [PMID: 23637633]
[http://dx.doi.org/10.15252/embj.201490702] [PMID: 25956747]
[http://dx.doi.org/10.1093/nar/gkn517] [PMID: 18718931]
[http://dx.doi.org/10.1002/bip.20875] [PMID: 17960602]
[http://dx.doi.org/10.1038/nature755] [PMID: 12050675]
[http://dx.doi.org/10.1002/prot.22711] [PMID: 20408171]
[http://dx.doi.org/10.1073/pnas.0806378105] [PMID: 18757754]
[http://dx.doi.org/10.1063/1.2408420] [PMID: 17212484]
[http://dx.doi.org/10.1063/1.448118]
[http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463: AID-JCC4>3.0.CO;2-H]
[http://dx.doi.org/10.1063/1.464397]
[http://dx.doi.org/10.1016/j.physa.2018.09.034]
[http://dx.doi.org/10.1016/j.jtbi.2008.04.036] [PMID: 18599089]
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[http://dx.doi.org/10.1016/j.jtbi.2017.03.010] [PMID: 28300596]
[http://dx.doi.org/10.1016/j.jtbi.2014.09.015] [PMID: 25242297]
[http://dx.doi.org/10.1007/s00894-010-0811-8] [PMID: 20686909]
[http://dx.doi.org/10.1007/978-1-4939-7404-7_9]
[http://dx.doi.org/10.1002/anie.201308063] [PMID: 24356977]
[http://dx.doi.org/10.1016/S0022-2836(02)01354-2] [PMID: 12547195]
[http://dx.doi.org/10.2174/1389557033405502] [PMID: 12570851]