[1]
Colgrave, M.L.; Peter, G.A., and; Jones, A. Hydroxyproline quantification for the estimation of collagen in tissue using multiple reaction monitoring mass spectrometry. J. Chromatogr. A, 2008, 1212(1-2), 150-153.
[2]
Gelse, K.; Pöschl, E., and; Aigner, T. Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev., 2003, 55(12), 1531-1546.
[3]
Ruszczak, Zbigniew. Effect of collagen matrices on dermal wound healing. Adv. Drug Deliv. Rev., 2003, 55(12), 1595-1611.
[4]
Lee, C.H.; Singla, A., and; Lee, Y. Biomedical applications of collagen. Int. J. Pharm., 2001, 221(1-2), 1-22.
[5]
Becker, G.D.; Lawrence, A.A., and; Hackett, J. Collagen-assisted healing of facial wounds after mohs surgery. Laryngoscope, 1994, 104(10), 1267-1270.
[6]
Guszczyn, T.; Soboleweki, K. Deregulation of collagen metabolism in human stomach cancer. Pathobiology, 2004, 71(6), 308-313.
[7]
Sunila, E.S., and; Kuttan, G. A preliminary study on antimetastatic activity of Thuja occidentalis L. in mice model. Immunopharmacol. Immunotoxicol., 2006, 28(2), 269-280.
[8]
Xu, Y.; Wen, X.; Shao, X.J.; Deng, N.Y., and; Chou, K.C. iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int. J. Mol. Sci., 2014, 15(5), 7594-7610.
[9]
Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W., and; Chou, K.C. iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics, 2019, 111(1), 96-102.
[10]
Xu, Y.; Ding, J.; Wu, L.Y., and; Chou, K.C. iSNO-PseAAC: Predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS one, 2013, 8(2), e55844.
[11]
Xu, Y.; Shao, X.J.; Wu, L.Y.; Deng, N.Y., and; Chou, K.C. iSNO-AAPair: Incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ, 2013, 1, e171.
[12]
Jia, C.; Lin, X., and; Wang, Z. Prediction of protein s-nitrosylation sites based on adapted normal distribution bi-profile bayes and chou’s pseudo amino acid composition. Int. J. Mol. Sci., 2014, 15(1), 10410-10423.
[13]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B., and; Chou, K.C. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol., 2016, 394(1), 223-230.
[14]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B., and; Chou, K.C. iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 2016, 7(23), 34558-34570.
[15]
Jia, J.; Zhang, L.; Liu, Z.; Xiao, X., and; Chou, K.C. pSumo-CD: Predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics, 2016, 32(1), 3133-3141.
[16]
Khan, Y.D.; Rasool, N.; Hussain, W.; Khan, S.A., and; Chou, K.C. iPhosT-PseAAC: Identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC. Anal. Biochem., 2018, 550(1), 109-116.
[18]
Cockman, M.E.; Webb, J.D.; Kramer, H.B.; Kessler, B.M.; Ratcliffe, P.J. Proteomics-based identification of novel factor inhibiting Hypoxia-Inducible Factor (FIH) substrates indicates widespread asparaginyl hydroxylation of ankyrin repeat domain-containing proteins. Mol. Cell. Proteomics, 2009, 8(3), 535-546.
[19]
Ang, K.S.; Lakshmanan, M.; Lee, N.R.; Lee, D.Y. Metabolic modeling of microbial community interactions for health, environmental and biotechnological applications. Curr. Genomics, 2018, 19(8), 712-722.
[20]
Berg, R.A.; Steinmann, B.; Rennard, S.I., and; Crystal, R.G. Ascorbate deficiency results in decreased collagen production: under-hydroxylation of proline leads to increased intracellular degradation. Arch. Biochem. Biophys., 1983, 226(2), 681-686.
[21]
Halme, J.; Kivirikko, K.I., and; Simons, K. Isolation and partial characterization of highly purified protocollagen proline hydroxylase. Biochim. Biophys. Acta, 1970, 198(3), 460-470.
[22]
Kivirikko, K.I., and; Prockop, D.J. Hydroxylation of proline in synthetic polypeptides with purified protocollagen hydroxylase. J. Biol. Chem., 1967, 242(18), 4007-4012.
[23]
Morgan, A.A., and; Rubenstein, E. Proline: The distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome. PLoS one, 2013, 8(1), e53785.
[24]
Yamauchi, M., and; Shiiba, M. Lysine hydroxylation and crosslinking of collagen. In: Posttranslational modifications of proteins; Humana Press: New York, 2002; pp. 277-290.
[25]
Shi, S.P.; Chen, X.; Xu, H.D., and; Qiu, J.D. PredHydroxy: Computational prediction of protein hydroxylation site locations based on the primary structure. Mol. Biosyst., 2015, 11(3), 819-825.
[26]
Wu, G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Kim, S.W.; Knabe, D.A.; Li, P.; Li, X.; McKnight, J.R.; Satterfield, M.C.; Spencer, T.E. Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino acids, 2011, 40(4), 1053-1063.
[27]
Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Sig. Behav., 2012, 7(11), 1456-1466.
[28]
Yang, Z.R. Predict collagen hydroxyproline sites using support vector machines. J. Comput. Biol., 2009, 16(5), 691-702.
[29]
Hu, L.L.; Niu, S.; Huang, T.; Wang, K.; Shi, X.H., and; Cai, Y.D. Prediction and analysis of protein hydroxyproline and hydroxylysine. PLoS One, 2010, 5(12), e15917.
[30]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Chou, K.C. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget, 2016, 7(28), 44310.
[31]
Chou, K.C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol., 2011, 273(1), 236-247.
[32]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mPlant: Predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC. Mol. Biosyst., 2017, 13(1), 1722-1727.
[33]
Xiao, X.; Cheng, X.; Su, S.; Mao, Q.; Chou, K.C. pLoc-mGpos: Incorporate key gene ontology information into general PseAAC for predicting subcellular localization of gram-positive bacterial proteins. Nat. Sci., 2017, 9(1), 331-349.
[37]
Khan, Y.D.; Jamil, M.; Hussain, W.; Rasool, N.; Khan, S.A.; Chou, K.C. pSSbond-PseAAC: Prediction of disulfide bonding sites by integration of PseAAC and statistical moments. J. Theor. Biol., 2019, 463(1), 47-55.
[38]
Jia, J.; Li, X.; Qiu, W.; Xiao, X., and; Chou, K.C. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC. J. Theor. Biol., 2019, 460(1), 195-203.
[39]
Chen, J.; Liu, H.; Yang, J., and; Chou, K.C. Prediction of linear b-cell epitopes using amino acid pair antigenicity scale. Amino Acids, 2007, 33(1), 423-428.
[40]
Ehsan, A.; Mahmood, K.; Khan, Y.D.; Khan, S.A., and; Chou, K.C. A novel modeling in mathematical biology forclassification of signal peptides. Sci. Reports., 2018, 8(1), 1039.
[41]
Chou, K.C. Prediction of protein signal sequences and their cleavage sites. Proteins : Struct., Funct., Genet., 2001, 42, 136-139.
[42]
Chou, K.C. Using subsite coupling to predict signal peptides. Protein Eng., 2001, 14(1), 75-79.
[43]
Chou, K.C. Prediction of signal peptides using scaled window. Peptides, 2001, 22(1), 1973-1979.
[44]
Cheng, X.; Xiao, X., and; Chou, K.C. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics, 2018, 110(1), 231-239.
[45]
Cheng, X.; Zhao, S.G.; Xiao, X., and; Chou, K.C. iATC-mISF: A multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics, 2017, 33(3), 341-346.
[46]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C., and; Chou, K.C. iPTM-mLys: identifying multiple lysine PTM sites and their different types. Bioinformatics, 2016, 32(1), 3116-3123.
[47]
Chou, K.C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. BioSyst., 2013, 9, 1092-1100.
[48]
Chou, K.C. Graphic rule for drug metabolism systems. Curr. Drug Metab., 2010, 11(1), 369-378.
[49]
Chou, K.C.; Lin, W.Z., and; Xiao, X. Wenxiang: A web-server for drawing wenxiang diagrams. Nat. Sci., 2011, 3(1), 862.
[50]
Wu, Z.C.; Xiao, X., and; Chou, K.C. 2d-mh: A web-server for generating graphic representation of protein sequences basedon the physicochemical properties of their constituent amino acids. J. Theor. Biol., 2010, 267, 29-34.
[51]
Davis, J.; Goadrich, M. The relationship between precision-recall and roc curves. In: Proceedings of the 23rd international conference on Machine learning; ACM, 2006; pp. 233-240.
[52]
Chou, K.C.; Shen, H.B. Recent advances in developing web-servers for predicting protein attributes. Nat. Sci., 2009, 1(1), 63-92.
[53]
Chou, K.C. Impacts of bioinformatics to medicinal chemistry. Med. Chem., 2015, 11(1), 218-234.
[54]
Chou, K.C. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr. Top. Med. Chem., 2017, 17(1), 2337-2358.
[55]
Lu, C.T.; Huang, K.Y.; Su, M.G.; Lee, T.Y.; Bretana, N.A.; Chang, W.C.; Chen, Y.J.; Chen, Y.J., and; Huang, H.D. Dbptm 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications. Nucleic Acids Res., 2012, 41(1), 295-305.
[56]
Tanford, C. Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J. Am. Chem. Soc., 1962, 84(1), 4240-4247.
[57]
Hopp, T.P., and; Woods, K.R. Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci., 1981, 78(1), 3824-3828.