Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Highly Concentrated Multifunctional Silver Nanoparticle Fabrication through Green Reduction of Silver Ions in Terms of Mechanics and Therapeutic Potentials

Author(s): Mohammad A. Ebrahimzadeh, Pourya Biparva, Hamidreza Mohammadi, Shirin Tavakoli, Alireza Rafiei, Mostafa Kardan, Hamid Badali and Shahram Eslami*

Volume 19, Issue 17, 2019

Page: [2140 - 2153] Pages: 14

DOI: 10.2174/1871520619666191021115609

Price: $65

Abstract

Background: Green synthesis of silver nanoparticles (AgNPs) is limited to produce AgNPs with only relatively low concentrations, and is unsuitable for large-scale productions. The use of Myrtus communis (MC) leaf methanolic extract (rich in hydrolyzable tannins) has been recommended to resolve the issues related to the aggregation of nanoparticles at high concentrations of silver ions with added facet of antioxidant properties.

Methods: The produced highly concentrated MC-AgNPs were characterized by using imaging and spectroscopic methods. Subsequently, antioxidant, anticancer and antifungal activities of the nanoparticles were evaluated.

Results: The thermogravimetric analysis and energy dispersive spectroscopy quantitative results suggested that the nanoparticles are biphasic in nature (bio-molecule + Ag0) and layered in structure, suggesting the formation of nanoparticles through a different mechanism than those described in the literature. MC-AgNPs showed greater scavenging activity of nitric oxide and iron (II) chelating ability than the extract. It also showed good reducing power compared to the standard antioxidant. Remarkable anticancer activity of MC-AgNPs (IC50 = 5.99µg/mL) was found against HCT-116 (human colon carcinoma) cell lines after 24h exposure with a therapeutic index value 2-fold higher than the therapeutic index of standard doxorubicin. Furthermore, distinct antifungal activity (MIC = 4µg/mL) was found against Candida krusei.

Conclusion: The current method outperforms the existing methods because it produces a large amount of multifunctional nanoscale hybrid materials more efficiently using natural sources; thus, it may be used for diverse biomedical applications.

Keywords: Myrtus communis, green synthesis, silver nanoparticle, antioxidant, anticancer, antifungal.

« Previous
Graphical Abstract

[1]
Chen, X.; Schluesener, H.J. Nanosilver: A nanoproduct in medical application. Toxicol. Lett., 2008, 176(1), 1-12.
[http://dx.doi.org/10.1016/j.toxlet.2007.10.004] [PMID: 18022772]
[2]
Allafchian, A.R.; Jalali, S.A.; Aghaei, F.; Farhang, H.R. Green synthesis of silver nanoparticles using Glaucium corniculatum (L.) Curtis extract and evaluation of its antibacterial activity. ET Nanobiotechnol., 2018, 12(5), 574-578.
[3]
Vithiya, K.; Sen, S. Biosynthesis of nanoparticles. Int. J. Pharm. Sci. Res., 2011, 2(11), 2781.
[4]
Jain, N.; Bhargava, A.; Majumdar, S.; Tarafdar, J.C.; Panwar, J. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale, 2011, 3(2), 635-641.
[http://dx.doi.org/10.1039/C0NR00656D] [PMID: 21088776]
[5]
Ebrahimzadeh, M.A.; Tafazoli, A.; Akhtari, J.; Biparva, P.; Eslami, S. Engineered Silver nanoparticles, a new nanoweapon against cancer. Anticancer. Agents Med. Chem., 2018, 18(14), 1962-1969.
[http://dx.doi.org/10.2174/1871520618666180808093040] [PMID: 30088451]
[6]
Sun, Y.; Yin, Y.; Mayers, B.T.; Herricks, T.; Xia, Y. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chem. Mater., 2002, 14(11), 4736-4745.
[http://dx.doi.org/10.1021/cm020587b]
[7]
Yin, B.; Ma, H.; Wang, S.; Chen, S. Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). J. Phys. Chem. B, 2003, 107(34), 8898-8904.
[8]
Dimitrijevic, N.M.; Bartels, D.M.; Jonah, C.D.; Takahashi, K.; Rajh, T. Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane. J. Phys. Chem. B, 2001, 105(5), 954-959.
[9]
Callegari, A.; Tonti, D.; Chergui, M. Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett., 2003, 3(11), 1565-1568.
[http://dx.doi.org/10.1021/nl034757a]
[10]
Naik, R.R.; Stringer, S.J.; Agarwal, G.; Jones, S.E.; Stone, M.O. Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater., 2002, 1(3), 169-172.
[http://dx.doi.org/10.1038/nmat758] [PMID: 12618805]
[11]
Nadagouda, M.N.; Hoag, G.; Collins, J.; Varma, R.S. Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants. Cryst. Growth Des., 2009, 9(11), 4979-4983.
[http://dx.doi.org/10.1021/cg9007685]
[12]
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13(10), 2638-2650.
[http://dx.doi.org/10.1039/c1gc15386b]
[13]
Sadeghi, B.; Gholamhoseinpoor, F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 134, 310-315.
[http://dx.doi.org/10.1016/j.saa.2014.06.046] [PMID: 25022503]
[14]
Subramanian, R.; Subbramaniyan, P.; Raj, V. Antioxidant activity of the stem bark of Shorea roxburghii and its silver reducing power. Springerplus, 2013, 2(1), 28.
[http://dx.doi.org/10.1186/2193-1801-2-28] [PMID: 23519327]
[15]
Manjamadha, V.P.; Muthukumar, K. Ultrasound assisted green synthesis of silver nanoparticles using weed plant. Bioprocess Biosyst. Eng., 2016, 39(3), 401-411.
[http://dx.doi.org/10.1007/s00449-015-1523-3] [PMID: 26753832]
[16]
Daniel, M-C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104(1), 293-346.
[http://dx.doi.org/10.1021/cr030698+] [PMID: 14719978]
[17]
El-Sayed, I.H.; Huang, X.; El-Sayed, M.A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett., 2005, 5(5), 829-834.
[http://dx.doi.org/10.1021/nl050074e] [PMID: 15884879]
[18]
Mukunthan, K.; Balaji, S. Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. Int. J. Green Nanotechnol., 2012, 4(2), 71-79.
[http://dx.doi.org/10.1080/19430892.2012.676900]
[19]
Subba Rao, Y.; Kotakadi, V.S.; Prasad, T.N.; Reddy, A.V.; Sai Gopal, D.V. Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 103, 156-159.
[http://dx.doi.org/10.1016/j.saa.2012.11.028] [PMID: 23257344]
[20]
Kiran Kumar, H.A.; Mandal, B.K.; Mohan Kumar, K.; Maddinedi, S.; Sai Kumar, T.; Madhiyazhagan, P.; Ghosh, A.R. Antimicrobial and antioxidant activities of mimusops elengi seed extract mediated isotropic silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 130, 13-18.
[http://dx.doi.org/10.1016/j.saa.2014.03.024] [PMID: 24759779]
[21]
Korbekandi, H.; Asghari, G.; Chitsazi, M.R.; Bahri Najafi, R.; Badii, A.; Iravani, S. Green biosynthesis of silver nanoparticles using Althaea officinalis radix hydroalcoholic extract. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 209-215.
[http://dx.doi.org/10.3109/21691401.2014.936064] [PMID: 25058031]
[22]
Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(3), 594-598.
[http://dx.doi.org/10.1016/j.saa.2011.03.040] [PMID: 21536485]
[23]
Mittal, A.K.; Kaler, A.; Banerjee, U.C. Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of Rhododendron dauricum. Nano Biomed. Eng., 2012, 4(3), 118-124.
[http://dx.doi.org/10.5101/nbe.v4i3.p118-124]
[24]
Veerasamy, R.; Xin, T.Z.; Gunasagaran, S.; Xiang, T.F.W.; Yang, E.F.C.; Jeyakumar, N.; Dhanaraj, S.A. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc., 2011, 15(2), 113-120.
[http://dx.doi.org/10.1016/j.jscs.2010.06.004]
[25]
Cheng, F.; Betts, J.W.; Kelly, S.M.; Schaller, J.; Heinze, T. Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent. Green Chem., 2013, 15(4), 989-998.
[http://dx.doi.org/10.1039/c3gc36831a]
[26]
Cheng, F.; Betts, J.W.; Kelly, S.M.; Hector, A.L. Green synthesis of highly concentrated aqueous colloidal solutions of large starch-stabilised silver nanoplatelets. Mater. Sci. Eng. C, 2015, 46, 530-537.
[http://dx.doi.org/10.1016/j.msec.2014.10.041] [PMID: 25492018]
[27]
Sondi, I.; Goia, D.V.; Matijević, E. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J. Colloid Interface Sci., 2003, 260(1), 75-81.
[http://dx.doi.org/10.1016/S0021-9797(02)00205-9] [PMID: 12742036]
[28]
Sumbul, S.; Ahmad, M.A.; Asif, M.; Akhtar, M. Myrtus communis Linn- A review. Indian J. Nat. Prod. Resour., 2011, 2(4), 395-402.
[29]
Heilmeyer, M. Ancient herbs; Getty Publications: UK, 2007.
[30]
Aidi Wannes, W.; Mhamdi, B.; Sriti, J.; Ben Jemia, M.; Ouchikh, O.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem. Toxicol., 2010, 48(5), 1362-1370.
[http://dx.doi.org/10.1016/j.fct.2010.03.002] [PMID: 20211674]
[31]
Aidi Wannes, W.; Marzouk, B. Differences between Myrtle Fruit Parts (Myrtus communis var. italica) in phenolics and antioxidant contents. J. Food Biochem., 2013, 37(5), 585-594.
[32]
Huang, X.; Pang, Y.; Liu, Y.; Zhou, Y.; Wang, Z.; Hu, Q. Green synthesis of silver nanoparticles with high antimicrobial activity and low cytotoxicity using catechol-conjugated chitosan. RSC Advances, 2016, 6(69), 64357-64363.
[http://dx.doi.org/10.1039/C6RA09035D]
[33]
Tutaj, K.; Szlazak, R.; Szalapata, K.; Starzyk, J.; Luchowski, R.; Grudzinski, W.; Osinska-Jaroszuk, M.; Jarosz-Wilkolazka, A.; Szuster-Ciesielska, A.; Gruszecki, W.I. Amphotericin B-silver hybrid nanoparticles: Synthesis, properties and antifungal activity. Nanomedicine (Lond.), 2016, 12(4), 1095-1103.
[http://dx.doi.org/10.1016/j.nano.2015.12.378] [PMID: 26772425]
[34]
Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14, 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[35]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.M.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; Ashraf, S.S.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.; Bishayee, A.; Blain, S.W.; Block, P.B.; Boosani, C.S.; Carey, T.E.; Carnero, A.; Carotenuto, M.; Casey, S.C.; Chakrabarti, M.; Chaturvedi, R.; Chen, G.Z.; Chen, H.; Chen, S.; Chen, Y.C.; Choi, B.K.; Ciriolo, M.R.; Coley, H.M.; Collins, A.R.; Connell, M.; Crawford, S.; Curran, C.S.; Dabrosin, C.; Damia, G.; Dasgupta, S.; DeBerardinis, R.J.; Decker, W.K.; Dhawan, P.; Diehl, A.M.E.; Dong, J.T.; Dou, Q.P.; Drew, J.E.; Elkord, E.; El-Rayes, B.; Feitelson, M.A.; Felsher, D.W.; Ferguson, L.R.; Fimognari, C.; Firestone, G.L.; Frezza, C.; Fujii, H.; Fuster, M.M.; Generali, D.; Georgakilas, A.G.; Gieseler, F.; Gilbertson, M.; Green, M.F.; Grue, B.; Guha, G.; Halicka, D.; Helferich, W.G.; Heneberg, P.; Hentosh, P.; Hirschey, M.D.; Hofseth, L.J.; Holcombe, R.F.; Honoki, K.; Hsu, H.Y.; Huang, G.S.; Jensen, L.D.; Jiang, W.G.; Jones, L.W.; Karpowicz, P.A.; Keith, W.N.; Kerkar, S.P.; Khan, G.N.; Khatami, M.; Ko, Y.H.; Kucuk, O.; Kulathinal, R.J.; Kumar, N.B.; Kwon, B.S.; Le, A.; Lea, M.A.; Lee, H.Y.; Lichtor, T.; Lin, L.T.; Locasale, J.W.; Lokeshwar, B.L.; Longo, V.D.; Lyssiotis, C.A.; MacKenzie, K.L.; Malhotra, M.; Marino, M.; Martinez-Chantar, M.L.; Matheu, A.; Maxwell, C.; McDonnell, E.; Meeker, A.K.; Mehrmohamadi, M.; Mehta, K.; Michelotti, G.A.; Mohammad, R.M.; Mohammed, S.I.; Morre, D.J.; Muralidhar, V.; Muqbil, I.; Murphy, M.P.; Nagaraju, G.P.; Nahta, R.; Niccolai, E.; Nowsheen, S.; Panis, C.; Pantano, F.; Parslow, V.R.; Pawelec, G.; Pedersen, P.L.; Poore, B.; Poudyal, D.; Prakash, S.; Prince, M.; Raffaghello, L.; Rathmell, J.C.; Rathmell, W.K.; Ray, S.K.; Reichrath, J.; Rezazadeh, S.; Ribatti, D.; Ricciardiello, L.; Robey, R.B.; Rodier, F.; Rupasinghe, H.P.V.; Russo, G.L.; Ryan, E.P.; Samadi, A.K.; Sanchez-Garcia, I.; Sanders, A.J.; Santini, D.; Sarkar, M.; Sasada, T.; Saxena, N.K.; Shackelford, R.E.; Shantha Kumara, H.M.C.; Sharma, D.; Shin, D.M.; Sidransky, D.; Siegelin, M.D.; Signori, E.; Singh, N.; Sivanand, S.; Sliva, D.; Smythe, C.; Spagnuolo, C.; Stafforini, D.M.; Stagg, J.; Subbarayan, P.R.; Sundin, T.; Talib, W.H.; Thompson, S.K.; Tran, P.T.; Ungefroren, H.; Vander Heiden, M.G.; Venkateswaran, V.; Vinay, D.S.; Vlachostergios, P.J.; Wang, Z.; Wellen, K.E.; Whelan, R.L.; Yang, E.S.; Yang, H.; Yang, X.; Yaswen, P.; Yedjou, C.; Yin, X.; Zhu, J.; Zollo, M. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin. Cancer Biol., 2015, 35(Suppl.), S276-S304.
[http://dx.doi.org/10.1016/j.semcancer.2015.09.007] [PMID: 26590477]
[36]
Crawford, S. Anti-inflammatory/antioxidant use in long-term maintenance cancer therapy: A new therapeutic approach to disease progression and recurrence. Ther. Adv. Med. Oncol., 2014, 6(2), 52-68.
[http://dx.doi.org/10.1177/1758834014521111] [PMID: 24587831]
[37]
Wang, Y.; Fan, X.; Qu, H.; Gao, X.; Cheng, Y. Strategies and techniques for multi-component drug design from medicinal herbs and traditional Chinese medicine. Curr. Top. Med. Chem., 2012, 12(12), 1356-1362.
[http://dx.doi.org/10.2174/156802612801319034] [PMID: 22690682]
[38]
Saif, M.W.; Li, J.; Lamb, L.; Kaley, K.; Elligers, K.; Jiang, Z.; Bussom, S.; Liu, S.H.; Cheng, Y.C. First-in-human phase II trial of the botanical formulation PHY906 with capecitabine as second-line therapy in patients with advanced pancreatic cancer. Cancer Chemother. Pharmacol., 2014, 73(2), 373-380.
[http://dx.doi.org/10.1007/s00280-013-2359-7] [PMID: 24297682]
[39]
Al-Zahrani, S.S.; Al-Garni, S.M. Biosynthesis of silver nanoparticles from Allium ampeloprasum leaves extract and its antifungal activity. J. Biomater. Nanobiotechnol., 2019, 10, 11-25.
[http://dx.doi.org/10.4236/jbnb.2019.101002]
[40]
Sharma, V.; Kaushik, S.; Pandit, P.; Dhull, D.; Yadav, J.P.; Kaushik, S. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl. Microbiol. Biotechnol., 2019, 103(2), 881-891.
[http://dx.doi.org/10.1007/s00253-018-9488-1] [PMID: 30413849]
[41]
Rolim, W.R.; Pelegrino, M.T.; de Araújo Lima, B.; Ferraz, L.S.; Costa, F.N.; Bernardes, J.S.; Rodigues, T.; Brocchi, M.; Seabra, A.B. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci., 2019, 463, 66-74.
[http://dx.doi.org/10.1016/j.apsusc.2018.08.203]
[42]
Bhakya, S.; Muthukrishnan, S.; Sukumaran, M.; Grijalva, M.; Cumbal, L.; Benjamin, J.F.; Kumar, T.S.; Rao, M. Antimicrobial, antioxidant and anticancer activity of biogenic silver nanoparticles–an experimental report. RSC Advances, 2016, 6(84), 81436-81446.
[http://dx.doi.org/10.1039/C6RA17569D]
[43]
Brand-Williams, W.; Cuvelier, M-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 1995, 28(1), 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[44]
Sousa, A.; Ferreira, I.C.; Barros, L.; Bento, A.; Pereira, J.A. Effect of solvent and extraction temperatures on the antioxidant potential of traditional stoned table olives “alcaparras”. Lebensm. Wiss. Technol., 2008, 41(4), 739-745.
[http://dx.doi.org/10.1016/j.lwt.2007.04.003]
[45]
Dinis, T.C.; Maderia, V.M.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys., 1994, 315(1), 161-169.
[http://dx.doi.org/10.1006/abbi.1994.1485] [PMID: 7979394]
[46]
Oyaizu, M. Studies on products of browning reaction. Eiyogaku Zasshi, 1986, 44(6), 307-315.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[47]
Ebrahimzadeh, M.A.; Nabavi, S.F.; Nabavi, S.M.; Eslami, B. Antihemolytic and antioxidant activities of Allium paradoxum. Cent. Eur. J. Biol., 2010, 5(3), 338-345.
[48]
Chang, C-C.; Yang, M-H.; Wen, H-M.; Chern, J-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Yao Wu Shi Pin Fen Xi, 2002, 10(3), 178-182.
[49]
Willis, R.B. Improved method for measuring hydrolyzable tannins using potassium iodate. Analyst (Lond.), 1998, 123(3), 435-439.
[http://dx.doi.org/10.1039/a706862j]
[50]
Porter, L.J.; Hrstich, L.N.; Chan, B.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 1985, 25(1), 223-230.
[http://dx.doi.org/10.1016/S0031-9422(00)94533-3]
[51]
Standard, A. National Committee for Clinical Laboratory Standards; Wayne, Pennsylvania, USA, 2002, p. 22.
[52]
Pfaller, M.A.; Boyken, L.; Hollis, R.J.; Kroeger, J.; Messer, S.A.; Tendolkar, S.; Diekema, D.J. In vitro susceptibility of clinical isolates of Aspergillus spp. to anidulafungin, caspofungin, and micafungin: A head-to-head comparison using the CLSI M38-A2 broth microdilution method. J. Clin. Microbiol., 2009, 47(10), 3323-3325.
[http://dx.doi.org/10.1128/JCM.01155-09] [PMID: 19710267]
[53]
Eslami, S.; Ebrahimzadeh, M.A.; Biparva, P. Green synthesis of safe zero valent iron nanoparticles by Myrtus communis leaf extract as an effective agent for reducing excessive iron in iron-overloaded mice, a thalassemia model. RSC Advances, 2018, 8(46), 26144-26155.
[http://dx.doi.org/10.1039/C8RA04451A]
[54]
Yi, Z.; Li, X.; Xu, X.; Luo, B.; Luo, J.; Wu, W.; Yi, Y.; Tang, Y. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution. Colloids Surf. A Physicochem. Eng. Asp., 2011, 392(1), 131-136.
[http://dx.doi.org/10.1016/j.colsurfa.2011.09.045]
[55]
Yoosaf, K.; Ipe, B.I.; Suresh, C.H.; Thomas, K.G. In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J. Phys. Chem. C, 2007, 111(34), 12839-12847.
[http://dx.doi.org/10.1021/jp073923q]
[56]
Raveendran, P.; Fu, J.; Wallen, S.L. A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chem., 2006, 8(1), 34-38.
[http://dx.doi.org/10.1039/B512540E]
[57]
El Khoury, E.; Abiad, M.; Kassaify, Z.G.; Patra, D. Green synthesis of curcumin conjugated nanosilver for the applications in nucleic acid sensing and anti-bacterial activity. Colloids Surf. B Biointerfaces, 2015, 127, 274-280.
[http://dx.doi.org/10.1016/j.colsurfb.2015.01.050] [PMID: 25687098]
[58]
Kundu, S.; Nithiyanantham, U. In situ formation of curcumin stabilized shape-selective Ag nanostructures in aqueous solution and their pronounced SERS activity. RSC Advances, 2013, 3(47), 25278-25290.
[http://dx.doi.org/10.1039/c3ra44471f]
[59]
Hoskote Anand, K.K.; Mandal, B.K. Activity study of biogenic spherical silver nanoparticles towards microbes and oxidants. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 639-645.
[http://dx.doi.org/10.1016/j.saa.2014.07.013] [PMID: 25128676]
[60]
Konwarh, R.; Karak, N.; Sawian, C.E.; Baruah, S.; Mandal, M. Effect of sonication and aging on the templating attribute of starch for “green” silver nanoparticles and their interactions at bio-interface. Carbohydr. Polym., 2011, 83(3), 1245-1252.
[http://dx.doi.org/10.1016/j.carbpol.2010.09.031]
[61]
Barua, S.; Konwarh, R.; Bhattacharya, S.S.; Das, P.; Devi, K.S.P.; Maiti, T.K.; Mandal, M.; Karak, N. Non-hazardous anticancerous and antibacterial colloidal ‘green’ silver nanoparticles. Colloids Surf. B Biointerfaces, 2013, 105, 37-42.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.015] [PMID: 23352940]
[62]
Ghodake, G.; Lim, S-R.; Lee, D.S. Casein hydrolytic peptides mediated green synthesis of antibacterial silver nanoparticles. Colloids Surf. B Biointerfaces, 2013, 108, 147-151.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.044] [PMID: 23537832]
[63]
Suman, T.Y.; Rajasree, S.R.; Jayaseelan, C.; Mary, R.R.; Gayathri, S.; Aranganathan, L.; Remya, R.R. GC-MS analysis of bioactive components and biosynthesis of silver nanoparticles using Hybanthus enneaspermus at room temperature evaluation of their stability and its larvicidal activity. Environ. Sci. Pollut. Res. Int., 2016, 23(3), 2705-2714.
[http://dx.doi.org/10.1007/s11356-015-5468-5] [PMID: 26438369]
[64]
Arshad, M.; Beg, A.; Siddiqui, Z. Infrared spectroscopic investigation of tannins. Die Angewandte Makromolekulare Chemie, 1969, 7(1), 67-78.
[http://dx.doi.org/10.1002/apmc.1969.050070106]
[65]
Suman, T.Y.; Radhika Rajasree, S.R.; Kanchana, A.; Elizabeth, S.B. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf. B Biointerfaces, 2013, 106, 74-78.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.037] [PMID: 23434694]
[66]
Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C, 2016, 58, 36-43.
[http://dx.doi.org/10.1016/j.msec.2015.08.018] [PMID: 26478284]
[67]
Nadagouda, M.N.; Iyanna, N.; Lalley, J.; Han, C.; Dionysiou, D.D.; Varma, R.S. Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustain. Chem. Eng., 2014, 2(7), 1717-1723.
[http://dx.doi.org/10.1021/sc500237k]
[68]
Nadagouda, M.N.; Varma, R.S. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem., 2008, 10(8), 859-862.
[http://dx.doi.org/10.1039/b804703k]
[69]
Teng, B.; Zhang, T.; Gong, Y.; Chen, W. Molecular weights and tanning properties of tannin fractions from the Acacia mangium bark. Afr. J. Agric. Res., 2013, 8(47), 5996-6001.
[70]
Nayak, D.; Ashe, S.; Rauta, P.R.; Kumari, M.; Nayak, B. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater. Sci. Eng. C, 2016, 58, 44-52.
[http://dx.doi.org/10.1016/j.msec.2015.08.022] [PMID: 26478285]
[71]
Yildirim, A.; Mavi, A.; Kara, A.A. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem., 2001, 49(8), 4083-4089.
[http://dx.doi.org/10.1021/jf0103572] [PMID: 11513714]
[72]
Dipankar, C.; Murugan, S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf. B Biointerfaces, 2012, 98, 112-119.
[http://dx.doi.org/10.1016/j.colsurfb.2012.04.006] [PMID: 22705935]
[73]
Nakkala, J.R.; Mata, R.; Gupta, A.K.; Sadras, S.R. Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. Eur. J. Med. Chem., 2014, 85, 784-794.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.024] [PMID: 25147142]
[74]
Wannes, W.A.; Marzouk, B. Characterization of myrtle seed (Myrtus communis var. baetica) as a source of lipids, phenolics, and antioxidant activities. J. Food Drug Anal., 2016, 24(2), 316-323.
[75]
Sakagami, H.; Jiang, Y.; Kusama, K.; Atsumi, T.; Ueha, T.; Toguchi, M.; Iwakura, I.; Satoh, K.; Ito, H.; Hatano, T.; Yoshida, T. Cytotoxic activity of hydrolyzable tannins against human oral tumor cell lines--a possible mechanism. Phytomedicine, 2000, 7(1), 39-47.
[http://dx.doi.org/10.1016/S0944-7113(00)80020-3] [PMID: 10782489]
[76]
Yang, L-L.; Lee, C-Y.; Yen, K-Y. Induction of apoptosis by hydrolyzable tannins from Eugenia jambos L. on human leukemia cells. Cancer Lett., 2000, 157(1), 65-75.
[http://dx.doi.org/10.1016/S0304-3835(00)00477-8] [PMID: 10893444]
[77]
Larrosa, M.; Tomás-Barberán, F.A.; Espín, J.C. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. J. Nutr. Biochem., 2006, 17(9), 611-625.
[http://dx.doi.org/10.1016/j.jnutbio.2005.09.004] [PMID: 16426830]
[78]
Mukha, I.P.; Eremenko, A.M.; Smirnova, N.P.; Mikhienkova, A.I.; Korchak, G.I.; Gorchev, V.F.; Chunikhin, A.I. Antimicrobial activity of stable silver nanoparticles of a certain size. Prikl. Biokhim. Mikrobiol., 2013, 49(2), 215-223.
[PMID: 23795483]
[79]
Kim, K-J.; Sung, W.S.; Suh, B.K.; Moon, S-K.; Choi, J-S.; Kim, J.G.; Lee, D.G. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals, 2009, 22(2), 235-242.
[http://dx.doi.org/10.1007/s10534-008-9159-2] [PMID: 18769871]
[80]
Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 2000, 52(4), 662-668.
[http://dx.doi.org/10.1002/1097-4636(20001215)52:4<662:AID-JBM10>3.0.CO;2-3] [PMID: 11033548]
[81]
Yamanaka, M.; Hara, K.; Kudo, J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol., 2005, 71(11), 7589-7593.
[http://dx.doi.org/10.1128/AEM.71.11.7589-7593.2005] [PMID: 16269810]
[82]
Jena, S.; Singh, R.K.; Panigrahi, B.; Suar, M.; Mandal, D. Photo-bioreduction of Ag+ ions towards the generation of multifunctional silver nanoparticles: Mechanistic perspective and therapeutic potential. J. Photochem. Photobiol. B, 2016, 164, 306-313.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.08.048] [PMID: 27721164]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy