Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Curcumin Activates the Nrf2 Pathway and Induces Cellular Protection Against Oxidative Injury

Author(s): Milad Ashrafizadeh, Zahra Ahmadi, Reza Mohammadinejad, Tahereh Farkhondeh and Saeed Samarghandian*

Volume 20, Issue 2, 2020

Page: [116 - 133] Pages: 18

DOI: 10.2174/1566524019666191016150757

Price: $65

Abstract

Curcumin is a naturally occurring polyphenol that is isolated from the rhizome of Curcuma longa (turmeric). This medicinal compound has different biological activities, including antioxidant, antibacterial, antineoplastic, and anti-inflammatory. It also has therapeutic effects on neurodegenerative disorders, renal disorders, and diabetes mellitus. Curcumin is safe and well-tolerated at high concentrations without inducing toxicity. It seems that curcumin is capable of targeting the Nrf2 signaling pathway in protecting the cells against oxidative damage. Besides, this strategy is advantageous in cancer therapy. Accumulating data demonstrates that curcumin applies four distinct ways to stimulate the Nrf2 signaling pathway, including inhibition of Keap1, affecting the upstream mediators of Nrf2, influencing the expression of Nrf2 and target genes, and finally, improving the nuclear translocation of Nrf2. In the present review, the effects of curcumin on the Nrf2 signaling pathway to exert its therapeutic and biological activities has been discussed.

Keywords: Curcumin, cancer, nuclear factor erythroid 2-related factor 2, therapeutic effects, oxidative stress.

[1]
Cuadrado A, Rojo AI, Wells G, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 2019; 18(4): 295-317.
[2]
Ahmadi Z, Ashrafizadeh M. Melatonin as a potential modulator of Nrf2. Fundam Clin Pharmacol 2019. [Epub ahead of print
[http://dx.doi.org/10.1111/fcp.12498] [PMID: 31283051]
[3]
Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997; 236(2): 313-22.
[http://dx.doi.org/10.1006/bbrc.1997.6943] [PMID: 9240432]
[4]
Chan K, Lu R, Chang JC, Kan YW. NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc Natl Acad Sci USA 1996; 93(24): 13943-8.
[http://dx.doi.org/10.1073/pnas.93.24.13943] [PMID: 8943040]
[5]
Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 2014; 39(4): 199-218.
[http://dx.doi.org/10.1016/j.tibs.2014.02.002] [PMID: 24647116]
[6]
Zhou S, Jin J, Bai T, Sachleben LR Jr, Cai L, Zheng Y. Potential drugs which activate nuclear factor E2-related factor 2 signaling to prevent diabetic cardiovascular complications: A focus on fumaric acid esters. Life Sci 2015; 134: 56-62.
[http://dx.doi.org/10.1016/j.lfs.2015.05.015] [PMID: 26044512]
[7]
Itoh K, Wakabayashi N, Katoh Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 1999; 13(1): 76-86.
[http://dx.doi.org/10.1101/gad.13.1.76] [PMID: 9887101]
[8]
Howden R. Nrf2 and cardiovascular defense. Oxidative medicine and cellular longevity 2013; 2013 :104308
[9]
Jain AK, Jaiswal AK. GSK-3β acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem 2007; 282(22): 16502-10.
[http://dx.doi.org/10.1074/jbc.M611336200] [PMID: 17403689]
[10]
Rizvi F, Shukla S, Kakkar P. Essential role of PH domain and leucine-rich repeat protein phosphatase 2 in Nrf2 suppression via modulation of Akt/GSK3β/Fyn kinase axis during oxidative hepatocellular toxicity. Cell Death Dis 2014; 5(3) e1153
[http://dx.doi.org/10.1038/cddis.2014.118] [PMID: 24675471]
[11]
Mishra M, Zhong Q, Kowluru RA. Epigenetic modifications of Keap1 regulate its interaction with the protective factor Nrf2 in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci 2014; 55(11): 7256-65.
[http://dx.doi.org/10.1167/iovs.14-15193] [PMID: 25301875]
[12]
Wang L, Zhang C, Guo Y, et al. Blocking of JB6 cell transformation by tanshinone IIA: epigenetic reactivation of Nrf2 antioxidative stress pathway. AAPS J 2014; 16(6): 1214-25.
[http://dx.doi.org/10.1208/s12248-014-9666-8] [PMID: 25274607]
[13]
Zhang C, Su ZY, Khor TO, Shu L, Kong AN. Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochem Pharmacol 2013; 85(9): 1398-404.
[http://dx.doi.org/10.1016/j.bcp.2013.02.010] [PMID: 23416117]
[14]
Moradi-Marjaneh R, Hassanian SM, Rahmani F, Aghaee-Bakhtiari SH, Avan A, Khazaei M. Phytosomal curcumin elicits anti-tumor properties through suppression of angiogenesis, cell proliferation and induction of oxidative stress in colorectal cancer. Curr Pharm Des 2018; 24(39): 4626-38.
[http://dx.doi.org/10.2174/1381612825666190110145151] [PMID: 30636578]
[15]
Arzani H, Mahdi A, Jafar M, et al. Preparation of curcumin-loaded PLGA nanoparticles and investigation of its cytotoxicity effects on human glioblastoma U87MG cells. Biointerface Res Appl Chem 2019; 9(5): 4225-31.
[16]
Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer research 2003; 23(1/A): 363-98.
[17]
Nery-Flores SD, Mendoza-Magaña ML. Ramírez-Herrera, et al . Curcumin exerted neuroprotection against ozone-induced oxidative damage and decreased nf-κb activation in rat hippocampus and serum levels of inflammatory cytokines. Oxid Med Cell Longev 2018; 2018: 9620684
[18]
Izui S, Sekine S, Maeda K, et al. Antibacterial activity of curcumin against periodontopathic bacteria. J Periodontol 2016; 87(1): 83-90.
[http://dx.doi.org/10.1902/jop.2015.150260] [PMID: 26447754]
[19]
Huang Y, Hu L, Huang S, et al. Curcumin-loaded galactosylated BSA nanoparticles as targeted drug delivery carriers inhibit hepatocellular carcinoma cell proliferation and migration. Int J Nanomedicine 2018; 13: 8309-23.
[http://dx.doi.org/10.2147/IJN.S184379] [PMID: 30584302]
[20]
Shakeri A, Cicero AFG, Panahi Y, Mohajeri M, Sahebkar A. Curcumin: A naturally occurring autophagy modulator. J Cell Physiol 2019; 234(5): 5643-54.
[http://dx.doi.org/10.1002/jcp.27404] [PMID: 30239005]
[21]
Fratantonio D, Molonia MS, Bashllari R, et al. Curcumin potentiates the antitumor activity of Paclitaxel in rat glioma C6 cells. Phytomedicine 2019; 55: 23-30.
[http://dx.doi.org/10.1016/j.phymed.2018.08.009] [PMID: 30668434]
[22]
Shakeri A, Ward N, Panahi Y, Sahebkar A. Anti-Angiogenic activity of curcumin in cancer therapy: a narrative review. Curr Vasc Pharmacol 2019; 17(3): 262-9.
[http://dx.doi.org/10.2174/1570161116666180209113014] [PMID: 29424316]
[23]
Manzoni AG, Passos DF, da Silva JL, et al. Rutin and curcumin reduce inflammation, triglyceride levels and ADA activity in serum and immune cells in a model of hyperlipidemia. Blood Cells Mol Dis 2018; 76: 13-21.
[PMID: 30679022]
[24]
Shakeri A, Panahi Y, Johnston TP, Sahebkar A. Biological properties of metal complexes of curcumin. Biofactors 2019; 45(3): 304-17.
[http://dx.doi.org/10.1002/biof.1504] [PMID: 31018024]
[25]
Boozari M, Butler AE, Sahebkar A. Impact of curcumin on toll-like receptors. J Cell Physiol 2019; 234(8): 12471-82.
[http://dx.doi.org/10.1002/jcp.28103] [PMID: 30623441]
[26]
Tang D, Zhang S, Shi X, et al. Combination of astragali polysaccharide and curcumin improves the morphological structure of tumor vessels and induces tumor vascular normalization to inhibit the growth of hepatocellular carcinoma. Integr Cancer Ther 2019; 18: 1534735418824408
[http://dx.doi.org/10.1177/1534735418824408] [PMID: 30762443]
[27]
Kouhpeikar H, Butler AE, Bamian F, Barreto GE, Majeed M, Sahebkar A. Curcumin as a therapeutic agent in leukemia. J Cell Physiol 2019; 234(8): 12404-14.
[http://dx.doi.org/10.1002/jcp.28072] [PMID: 30609023]
[28]
Flores-Pérez JA, de la Rosa Oliva F, Argenes Y, Meneses-Garcia A. Nutrition, cancer and personalized medicine. Adv Exp Med Biol 2019; 1168: 157-68.
[29]
Zhu LN, Mei X, Zhang ZG, et al. Curcumin intervention for cognitive function in different types of people: A systematic review and meta-analysis. Phytother Res 2019; 33(3): 524-33.
[PMID: 30575152]
[30]
Shakeri A, Zirak MR, Wallace Hayes A, Reiter R, Karimi G. Curcumin and its analogues protect from endoplasmic reticulum stress: Mechanisms and pathways. Pharmacol Res 2019; 146: 104335
[http://dx.doi.org/10.1016/j.phrs.2019.104335] [PMID: 31265891]
[31]
Zhao JL, Zhang T, Shao X, et al. Curcumin ameliorates peritoneal fibrosis via inhibition of transforming growth factoractivated kinase 1 (TAK1) pathway in a rat model of peritoneal dialysis. BMC Complement Altern Med 2019; 19(1): 280.
[32]
Sun X, Liu Y, Li C, et al. Recent advances of curcumin in the prevention and treatment of renal fibrosis. BioMed Res Int 2017; 2017: 2418671
[http://dx.doi.org/10.1155/2017/2418671]
[33]
Ortega-Domínguez B, Aparicio-Trejo OE, García-Arroyo FE, et al. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic. Food Chem Toxicol 2017; 107(Pt A ): 373-85.
[http://dx.doi.org/10.1016/j.fct.2017.07.018] [PMID: 28698153]
[34]
El-Naggar ME, Al-Joufi F, Anwar M, Attia MF, El-Bana MA. Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf B Biointerfaces 2019; 177: 389-98.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.024] [PMID: 30785036]
[35]
Abdelsamia EM, Khaleel SA, Balah A, Abdel Baky NA. Curcumin augments the cardioprotective effect of metformin in an experimental model of type I diabetes mellitus; Impact of Nrf2/HO-1 and JAK/STAT pathways. Biomed Pharmacother 2019; 109: 2136-44.
[http://dx.doi.org/10.1016/j.biopha.2018.11.064] [PMID: 30551471]
[36]
Gutierres VO, Assis RP, Arcaro CA, et al. Curcumin improves the effect of a reduced insulin dose on glycemic control and oxidative stress in streptozotocin-diabetic rats. Phytother Res 2019; 33(4): 976-88.
[http://dx.doi.org/10.1002/ptr.6291] [PMID: 30656757]
[37]
Liu B, Miao J, Peng M, Liu T, Miao M. Effect of 3:7 ratio of Astragalus total saponins and Curcumin on the diabetic nephropathy rats model. Saudi J Biol Sci 2019; 26(1): 188-94.
[http://dx.doi.org/10.1016/j.sjbs.2018.11.003] [PMID: 30622426]
[38]
Ashrafizadeh M, Yaribeygi H, Atkin SL, Sahebkar A. Effects of newly introduced antidiabetic drugs on autophagy. Diabetes Metab Syndr 2019; 13(4): 2445-9.
[http://dx.doi.org/10.1016/j.dsx.2019.06.028] [PMID: 31405658]
[39]
Hatamipour M, Sahebkar A, Alavizadeh SH, Dorri M, Jaafari MR. Novel nanomicelle formulation to enhance bioavailability and stability of curcuminoids. Iran J Basic Med Sci 2019; 22(3): 282-9.
[PMID: 31156789]
[40]
Qin S, Huang L, Gong J, et al. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. Nutr J 2017; 16(1): 68.
[http://dx.doi.org/10.1186/s12937-017-0293-y] [PMID: 29020971]
[41]
Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendía LE, Sahebkar A. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: a randomized controlled trial. Drug Res (Stuttg) 2017; 67(4): 244-51.
[http://dx.doi.org/10.1055/s-0043-100019] [PMID: 28158893]
[42]
Alama T, Katayama H, Hirai S, et al. Enhanced oral delivery of alendronate by sucrose fatty acids esters in rats and their absorption-enhancing mechanisms. Int J Pharm 2016; 515(1-2): 476-89.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.046] [PMID: 27793710]
[43]
Khanizadeh F, Rahmani A, Asadollahi K, Ahmadi MRH. Combination therapy of curcumin and alendronate modulates bone turnover markers and enhances bone mineral density in postmenopausal women with osteoporosis. Arch Endocrinol Metab 2018; 62(4): 438-45.
[http://dx.doi.org/10.20945/2359-3997000000060] [PMID: 30304108]
[44]
Maulina T, Diana H, Cahyanto A, Amaliya A. The efficacy of curcumin in managing acute inflammation pain on the post-surgical removal of impacted third molars patients: A randomised controlled trial. J Oral Rehabil 2018; 45(9): 677-83.
[http://dx.doi.org/10.1111/joor.12679] [PMID: 29908031]
[45]
Saran G, Umapathy D, Misra N, et al. A comparative study to evaluate the efficacy of lycopene and curcumin in oral submucous fibrosis patients: A randomized clinical trial. Indian J Dent Res 2018; 29(3): 303-12.
[http://dx.doi.org/10.4103/ijdr.IJDR_551_16] [PMID: 29900913]
[46]
Ahmadi Z, Mohammadinejad R, Ashrafizadeh M. Drug delivery systems for resveratrol, a non-flavonoid polyphenol: Emerging evidence in last decades. J Drug Deliv Sci Technol 2019; 51: 591-604.
[http://dx.doi.org/10.1016/j.jddst.2019.03.017]
[47]
Ahmadi Z, Roomiani S, Bemani N, et al. The targeting of autophagy and endoplasmic reticulum stress mechanisms by Honokiol therapy. Rev Clin Med 2019; 6(2): 66-73.
[48]
Ashrafizadeh M, Ahmadi Z. Effect of astaxanthin treatment on the sperm quality of the mice treated with nicotine. Rev Clin Med 2019; 6(1): 1-5.
[49]
Ashrafizadeh M, Ahmadi Z. Effects of statins on gut microbiota (Microbiome). Rev Clin Med 2019; 6(2): 55-9.
[50]
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, et al. Monoterpenes modulating autophagy: A review study. Basic Clin Pharmacol Toxicol 2019. [Epub ahead of print
[http://dx.doi.org/10.1111/bcpt.13282]
[51]
Mohammadinejad R, Ahmadi Z, Tavakol S, Ashrafizadeh M. Berberine as a potential autophagy modulator. J Cell Physiol 2019. [Epub ahead of print
[http://dx.doi.org/10.1002/jcp.28325] [PMID: 30770555]
[52]
Sobhani B, Roomiani S, Ahmadi Z, et al. Histopathological analysis of testis: effects of astaxanthin treatment against nicotine toxicity. Iranian J Toxicol 2019; 13(1): 41-4.
[53]
Zarif Najafi P, Ashrafizadeh M, Farkhondeh T, et al. The protective effect of Zataria Multiflora on the embryotoxicity induced by bisphenol A in the brain of chicken embryos. Biointerf Res Appl Chem 2019; 9(5): 4239-42.
[54]
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[55]
Ahmadi Z, Ashrafizadeh M. Downregulation of osteocalcin gene in chickens treated with Lead Acetate II. Int Biol Biomed J 2018; 4(4): 177-82.
[56]
Ahmadi Z, Ashrafizadeh M. Down regulation of osteocalcin gene in chickens treated with cadmium. IJT 2019; 13(1): 1-4.
[57]
Ashrafizadeh M, Rafiei H, Ahmadi Z. Histological changes in the liver and biochemical parameters of chickens treated with lead acetate II. IJT 2018; 12(6): 1-5.
[58]
Rafiei H, Ahmadi Z, Ashrafizadeh M. Effects of orally administered lead acetate II on rat femur histology, mineralization properties and expression of osteocalcin gene. Int Biol Biomed J 2018; 4(3): 149-55.
[59]
Rafiei H, Ashrafizadeh M. Expression of collagen type II and osteocalcin genes in mesenchymal stem cells from rats treated with lead acetate II. IJT 2018; 12(5): 35-40.
[60]
Samarghandian S, Farkhondeh T, Azimi-Nezhad M. Protective effects of chrysin against drugs and toxic agents. Dose Response 2017; 15(2) 1559325817711782
[http://dx.doi.org/10.1177/1559325817711782]
[61]
Xu FF, Miao CF, Chi C, Wu G, Chen GR. Intervention of curcumin and its analogue J7 on oxidative stress injury in testis of type 2 diabetic rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2019; 35(2): 145-9.
[PMID: 31250606]
[62]
Wafi AM, Hong J, Rudebush TL, et al. Curcumin improves exercise performance of mice with coronary artery ligation induced hfref: nrf2 and antioxidant mechanisms in skeletal muscle. J Appl Physiol 2018; 126(2): 477-86.
[PMID: 30462567]
[63]
Das L, Vinayak M. Curcumin modulates glycolytic metabolism and inflammatory cytokines via Nrf 2 in Dalton’s lymphoma ascites cells in vivo. Anticancer Agents Med Chem 2018; 18(12): 1779-91.
[64]
Wang H, Muhammad I, Li W, et al. Sensitivity of Arbor Acres broilers and chemoprevention of aflatoxin B1-induced liver injury by curcumin, a natural potent inducer of phase-II enzymes and Nrf2. Environ Toxicol Pharmacol 2018; 59: 94-104.
[65]
Fattori V, et al. Curcumin inhibits superoxide anion-induced pain-like behavior and leukocyte recruitment by increasing Nrf2 expression and reducing NF-κB activation 2015; 64(12 ): 993-1003.
[http://dx.doi.org/10.1007/s00011-015-0885-y]
[66]
Boyanapalli SS, et al. Nrf2 knockout attenuates the antiinflammatory effects of phenethyl isothiocyanate and curcumin. 2014; 27(12): 2036-43.
[67]
Sahin K, Orhan C, Tuzcu Z, et al. Curcumin ameloriates heat stress via inhibition of oxidative stress and modulation of Nrf2/HO-1 pathway in quail. Food Chem Toxicol 2012; 50(11): 4035-41.
[68]
Samarghandian S1, Borji A, Afshari R. The effect of lead acetate on oxidative stress and antioxidant status in rat bronchoalveolar lavage fluid and lung tissue. Toxicol Mech Methods 2013; 23(6): 432-6.
[http://dx.doi.org/10.3109/15376516.2013.777136]
[69]
Dai W, Wang H, Fang J, et al. Curcumin provides neuroprotection in model of traumatic brain injury via the Nrf2-ARE signaling pathway. Brain Res 2018; 140: 65-71.
[http://dx.doi.org/10.1016/j.brainresbull.2018.03.020]
[70]
Yang H, Xu W, Zhou Z, et al. Curcumin attenuates urinary excretion of albumin in type II diabetic patients with enhancing nuclear factor erythroid-derived 2-like 2 (Nrf2) system and repressing inflammatory signaling efficacies. Exp Clin Endocrinol Diabetes 2015; 123(6): 360-7.
[http://dx.doi.org/10.1055/s-0035-1545345] [PMID: 25875220]
[71]
Li W, Wu M, Tang L, et al. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity. Toxicol Appl Pharmacol 2015; 282(2): 175-83.
[http://dx.doi.org/10.1016/j.taap.2014.12.001] [PMID: 25497288]
[72]
Zeng C, Zhong P, Zhao Y, et al. Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. J Mol Cell Cardiol 2015; 79: 1-12.
[http://dx.doi.org/10.1016/j.yjmcc.2014.10.002] [PMID: 25444713]
[73]
Luo D-D, Chen JF, Liu JJ, et al. Tetrahydrocurcumin and octahydrocurcumin, the primary and final hydrogenated metabolites of curcumin, possess superior hepatic-protective effect against acetaminophen-induced liver injury: Role of CYP2E1 and Keap1-Nrf2 pathway. Food Chem Toxicol 2019; 123: 349-62.
[http://dx.doi.org/10.1016/j.fct.2018.11.012] [PMID: 30423402]
[74]
Muhammad I, Wang X, Li S, et al. Curcumin confers hepatoprotection against AFB 1-induced toxicity via activating autophagy and ameliorating inflammation involving Nrf2/HO-1 signaling pathway. Mol 2018; 45(6): 1775-85.
[75]
Yan C, Zhang Y, Zhang X, et al. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed Pharmacother 2018; 105: 274-81.
[http://dx.doi.org/10.1016/j.biopha.2018.05.135]
[76]
Waly MI, Al Moundhri MS, Ali BHJRF. Effect of curcumin on cisplatin-and oxaliplatin-induced oxidative stress in human embryonic kidney (HEK) 293 cells. Ren Fail 2011; 33(5): 518-23.
[77]
Peng X, Dai C, Liu Q, Li J, Qiu J. Curcumin attenuates on carbon tetrachloride-induced acute liver injury in mice via modulation of the Nrf2/HO-1 and TGF-β1/Smad3 pathway. Molecules 2018; 23(1): 215.
[http://dx.doi.org/10.3390/molecules23010215] [PMID: 29351226]
[78]
Lu C, Xu W, Zheng S, et al. Nrf2 activation is required for curcumin to induce lipocyte phenotype in hepatic stellate cells. Biomed Pharmacother 2017; 95: 1-10.
[79]
Waly MI, Al Moundhri MS, Ali BH. Effect of curcumin on cisplatin- and oxaliplatin-induced oxidative stress in human embryonic kidney (HEK) 293 cells. Ren Fail 2011; 33(5): 518-23.
[http://dx.doi.org/10.3109/0886022X.2011.577546] [PMID: 21574897]
[80]
Dai C, Lei L, Li B, Lin Y, Xiao X, Tang S. Involvement of the activation of Nrf2/HO-1, p38 MAPK signaling pathways and endoplasmic reticulum stress in furazolidone induced cytotoxicity and S phase arrest in human hepatocyte L02 cells: modulation of curcumin. Toxicol Mech Methods 2017; 27(3): 165-72.
[http://dx.doi.org/10.1080/15376516.2016.1273424] [PMID: 27996348]
[81]
Liu W, Xu Z, Li H, et al. Protective effects of curcumin against mercury-induced hepatic injuries in rats, involvement of oxidative stress antagonism, and Nrf2-ARE pathway activation. Hum Exp Toxicol 2017; 36(9): 949-66.
[http://dx.doi.org/10.1177/0960327116677355] [PMID: 27837179]
[82]
Lu C, Xu W, Zhang F, Shao J, Zheng S. Nrf2 knockdown disrupts the protective effect of curcumin on alcohol-induced hepatocyte necroptosis. Mol Pharm 2016; 13(12): 4043-53.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00562] [PMID: 27764939]
[83]
Dai C, Li B, Zhou Y, et al. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells. Food Chem Toxicol 2016; 95: 52-63.
[http://dx.doi.org/10.1016/j.fct.2016.06.025] [PMID: 27375190]
[84]
Liu Z, Dou W, Zheng Y, et al. Curcumin upregulates Nrf2 nuclear translocation and protects rat hepatic stellate cells against oxidative stress. Mol Med Rep 2016; 13(2): 1717-24.
[http://dx.doi.org/10.3892/mmr.2015.4690]
[85]
Lu C, Zhang F, Xu W, et al. Curcumin attenuates ethanol-induced hepatic steatosis through modulating Nrf2/FXR signaling in hepatocytes. IUBMB Life 2015; 67(8): 645-58.
[http://dx.doi.org/10.1002/iub.1409] [PMID: 26305715]
[86]
Li B, Wang L, Lu Q, et al. Liver injury attenuation by curcumin in a rat NASH model: an Nrf2 activation-mediated effect? Ir J Med Sci 2016; 185(1): 93-100.
[http://dx.doi.org/10.1007/s11845-014-1226-9]
[87]
Barati N, Momtazi-Borojeni AA, Majeed M, Sahebkar A. Potential therapeutic effects of curcumin in gastric cancer. J Cell Physiol 2019; 234(3): 2317-28.
[http://dx.doi.org/10.1002/jcp.27229] [PMID: 30191991]
[88]
Gao S, Duan X, Wang X, et al. Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion. Food Chem Toxicol 2013; 59: 739-47.
[http://dx.doi.org/10.1016/j.fct.2013.07.032] [PMID: 23871787]
[89]
Zhao SG, Li Q, Liu ZX, et al. Curcumin attenuates insulin resistance in hepatocytes by inducing Nrf2 nuclear translocation. Hepatogastroenterology 2011; 58(112): 2106-11.
[http://dx.doi.org/10.5754/hge11219]
[90]
Shao YP, Zhou Q, Li YP, et al. Curcumin ameliorates cisplatin‐induced cystopathy via activating NRF2 pathway. Neurourology and urodynamics. Neurourol Urodyn 2018; 37(8): 2470-9.
[http://dx.doi.org/10.1002/nau.23731]
[91]
Li F, Song Z, Bo LC, et al. Protective effect of Nrf2 activation by curcumin against lead-induced toxicity and apoptosis in SH-SY5Y cells. Zhonghua lao dong wei sheng zhi ye bing za zhi= Zhonghua laodong weisheng zhiyebing zazhi= Chinese journal of industrial hygiene and occupational diseases 2016; 34(6): 401-5.
[92]
Liao L, Shi J, Jiang C, et al. Activation of anti-oxidant of curcumin pyrazole derivatives through preservation of mitochondria function and Nrf2 signaling pathway. Neurochem Int 2019; 125: 82-90.
[http://dx.doi.org/10.1016/j.neuint.2019.01.026]
[93]
Huang T, Zhao J, Guo D, Pang H, Zhao Y, Song J. Curcumin mitigates axonal injury and neuronal cell apoptosis through the PERK/Nrf2 signaling pathway following diffuse axonal injury. Neuroreport 2018; 29(8): 661-77.
[http://dx.doi.org/10.1097/WNR.0000000000001015] [PMID: 29570500]
[94]
Sarkar B, Dhiman M, Mittal S, Mantha AK. Curcumin revitalizes Amyloid beta (25-35)-induced and organophosphate pesticides pestered neurotoxicity in SH-SY5Y and IMR-32 cells via activation of APE1 and Nrf2. Metab Brain Dis 2017; 32(6): 2045-61.
[http://dx.doi.org/10.1007/s11011-017-0093-2] [PMID: 28861684]
[95]
Li W, Suwanwela NC, Patumraj S. Curcumin by down-regulating NF-kB and elevating Nrf2, reduces brain edema and neurological dysfunction after cerebral I/R. Microvasc Res 2016; 106: 117-27.
[http://dx.doi.org/10.1016/j.mvr.2015.12.008] [PMID: 26686249]
[96]
Cui Q, Li X, Zhu H. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway. Mol Med Rep 2016; 13(2): 1381-8.
[http://dx.doi.org/10.3892/mmr.2015.4657] [PMID: 26648392]
[97]
Xie Y, Zhao QY, Li HY, Zhou X, Liu Y, Zhang H. Curcumin ameliorates cognitive deficits heavy ion irradiation-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Pharmacol Biochem Behav 2014; 126: 181-6.
[http://dx.doi.org/10.1016/j.pbb.2014.08.005] [PMID: 25159739]
[98]
Wu J, Li Q, Wang X, et al. Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One 2013; 8(3) e59843
[99]
Yang C, Zhang X, Fan H, et al. Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 2009; 1282: 133-41.
[100]
Ben Yehuda Greenwald M, Frušić-Zlotkin M, Soroka Y, et al. Curcumin protects skin against UVB-induced cytotoxicity via the Keap1-Nrf2 pathway: the use of a microemulsion delivery system. Oxid Med Cell Longev 2017; 2017. : 2017:5205471.
[101]
Sahin K, Pala R, Tuzcu M, et al. Curcumin prevents muscle damage by regulating NF-κB and Nrf2 pathways and improves performance: an in vivo model. J Inflamm Res 2016; 9: 147-54.
[http://dx.doi.org/10.2147/JIR.S110873] [PMID: 27621662]
[102]
He HJ, Wang GY, Gao Y, et al. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. WJD 2012; 3(5): 94.
[http://dx.doi.org/10.4239/wjd.v3.i5.94]
[103]
Tapia E, García-Arroyo F, Silverio O, et al. Mycophenolate mofetil and curcumin provide comparable therapeutic benefit in experimental chronic kidney disease: role of Nrf2-Keap1 and renal dopamine pathways. Free Radic Res 2016; 50(7): 781-92.
[http://dx.doi.org/10.1080/10715762.2016.1174776] [PMID: 27050624]
[104]
Zhang X, Liang D, Guo L, et al. Curcumin protects renal tubular epithelial cells from high glucose-induced epithelial-to-mesenchymal transition through Nrf2-mediated upregulation of heme oxygenase-1. Mol Med Rep 2015; 12(1): 1347-55.
[http://dx.doi.org/10.3892/mmr.2015.3556] [PMID: 25823828]
[105]
Soetikno V, Sari FR, Lakshmanan AP, et al. Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway. Mol Nutr Food Res 2013; 57(9): 1649-59.
[http://dx.doi.org/10.1002/mnfr.201200540] [PMID: 23174956]
[106]
Tapia E, Soto V, Ortiz-Vega KM, et al. Curcumin induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats. Oxid Med Cell Longev 2012; 2012. 2012: 269039.
[107]
Lin X, Bai D, Wei Z, et al. Curcumin attenuates oxidative stress in RAW264. 7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One 2019; 14(5) e0216711
[108]
Salmaninejad A, Valilou SF, Shabgah AG, et al. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol 2019; 234(10): 16824-37.
[http://dx.doi.org/10.1002/jcp.28358] [PMID: 30784085]
[109]
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Najafi M, Sahebkar A. Melatonin and cancer: From the promotion of genomic stability to use in cancer treatment. J Cell Physiol 2019; 234(5): 5613-27.
[http://dx.doi.org/10.1002/jcp.27391] [PMID: 30238978]
[110]
Zendehdel E, Abdollahi E, Momtazi-Borojeni AA, Korani M, Alavizadeh SH, Sahebkar A. The molecular mechanisms of curcumin’s inhibitory effects on cancer stem cells. J Cell Biochem 2019; 120(4): 4739-47.
[http://dx.doi.org/10.1002/jcb.27757] [PMID: 30269360]
[111]
Zhang C, He LJ, Ye HZ, et al. Nrf2 is a key factor in the reversal effect of curcumin on multidrug resistance in the HCT8/5Fu human colorectal cancer cell line. Mol Med Rep 2018; 18(6): 5409-16.
[http://dx.doi.org/10.3892/mmr.2018.9589] [PMID: 30365132]
[112]
Shen J, Chen YJ, Jia YW, et al. Reverse effect of curcumin on CDDP-induced drug-resistance via Keap1/p62-Nrf2 signaling in A549/CDDP cell. Asian Pac J Trop Med 2017; 10(12): 1190-6.
[http://dx.doi.org/10.1016/j.apjtm.2017.10.028] [PMID: 29268977]
[113]
Li W, Pung D, Su ZY, et al. Epigenetics reactivation of Nrf2 in prostate TRAMP C1 cells by curcumin analogue FN1. Chem Res Toxicol 2016; 29(4): 694-703.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00016] [PMID: 26991801]
[114]
Shen T, Jiang T, Long M, et al. A curcumin derivative that inhibits vinyl carbamate-induced lung carcinogenesis via activation of the Nrf2 protective response. Antioxid Redox Signal 2015; 23(8): 651-64.
[http://dx.doi.org/10.1089/ars.2014.6074]
[115]
Das L, Vinayak M. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer. PLoS One 2015; 10(4)e0124000
[http://dx.doi.org/10.1371/journal.pone.0124000] [PMID: 25860911]
[116]
Chen B, Zhang Y, Wang Y, Rao J, Jiang X, Xu Z. Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediated down-regulation of Fen1 expression. J Steroid Biochem Mol Biol 2014; 143: 11-8.
[http://dx.doi.org/10.1016/j.jsbmb.2014.01.009] [PMID: 24486718]
[117]
Khor TO, Huang Y, Wu TY, Shu L, Lee J, Kong AN. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem Pharmacol 2011; 82(9): 1073-8.
[http://dx.doi.org/10.1016/j.bcp.2011.07.065] [PMID: 21787756]
[118]
Bucolo C, Drago F, Maisto R, et al. Curcumin prevents high glucose damage in retinal pigment epithelial cells through ERK1/2-mediated activation of the Nrf2/HO-1 pathway. J Cell Physiol 2019; 234(10): 17295-304.
[http://dx.doi.org/10.1002/jcp.28347] [PMID: 30770549]
[119]
Boyanapalli SS, Paredes-Gonzalez X, Fuentes F, et al. Nrf2 knockout attenuates the anti-inflammatory effects of phenethyl isothiocyanate and curcumin. Chem Res Toxicol 2014; 27(12): 2036-43.
[http://dx.doi.org/10.1021/tx500234h] [PMID: 25387343]
[120]
Dai W, Wang H, Fang J, et al. Curcumin provides neuroprotection in model of traumatic brain injury via the Nrf2-ARE signaling pathway. Brain Res Bull 2018; 140: 65-71.
[http://dx.doi.org/10.1016/j.brainresbull.2018.03.020] [PMID: 29626606]
[121]
Fattori V, Pinho-Ribeiro FA, Borghi SM, et al. Curcumin inhibits superoxide anion-induced pain-like behavior and leukocyte recruitment by increasing Nrf2 expression and reducing NF-κB activation. Inflamm Res 2015; 64(12): 993-1003.
[http://dx.doi.org/10.1007/s00011-015-0885-y] [PMID: 26456836]
[122]
He H-J, Wang GY, Gao Y, Ling WH, Yu ZW, Jin TR. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J Diabetes 2012; 3(5): 94-104.
[http://dx.doi.org/10.4239/wjd.v3.i5.94] [PMID: 22645638]
[123]
Li F, Song Z, Bo LC, et al. Protective effect of Nrf2 activation by curcumin against lead-induced toxicity and apoptosis in SH-SY5Y cells. Zhonghua lao dong wei sheng zhi ye bing za zhi= Zhonghua laodong weisheng zhiyebing zazhi= Chinese journal of industrial hygiene and occupational diseases 2016; 34(6): 401-5.
[124]
Fan CD, Li Y, Fu XT, et al. Reversal of Beta-Amyloid-Induced Neurotoxicity in PC12 Cells by Curcumin, the Important Role of ROS-Mediated Signaling and ERK Pathway. Cell Mol Neurobiol 2017; 37(2): 211-22.
[125]
Liu Z, Dou W, Zheng Y, et al. Curcumin upregulates Nrf2 nuclear translocation and protects rat hepatic stellate cells against oxidative stress. Mol Med Rep 2016; 13(2): 1717-24.
[http://dx.doi.org/10.3892/mmr.2015.4690] [PMID: 26676408]
[126]
Lu C, Xu W, Zheng S. Nrf2 activation is required for curcumin to induce lipocyte phenotype in hepatic stellate cells. Biomed Pharmacother 2017; 95: 1-10.
[http://dx.doi.org/10.1016/j.biopha.2017.08.037] [PMID: 28826090]
[127]
Mathew T, Sarada SKS. Intonation of Nrf2 and Hif1-α pathway by curcumin prophylaxis: A potential strategy to augment survival signaling under hypoxia. Respir Physiol Neurobiol 2018; 258: 12-24.
[http://dx.doi.org/10.1016/j.resp.2018.09.008] [PMID: 30268739]
[128]
Muhammad I, Wang X, Li S, Li R, Zhang X. Curcumin confers hepatoprotection against AFB1-induced toxicity via activating autophagy and ameliorating inflammation involving Nrf2/HO-1 signaling pathway. Mol Biol Rep 2018; 45(6): 1775-85.
[http://dx.doi.org/10.1007/s11033-018-4323-4] [PMID: 30143976]
[129]
Sahin K, Orhan C, Tuzcu Z, Tuzcu M, Sahin N. Curcumin ameloriates heat stress via inhibition of oxidative stress and modulation of Nrf2/HO-1 pathway in quail. Food Chem Toxicol 2012; 50(11): 4035-41.
[http://dx.doi.org/10.1016/j.fct.2012.08.029] [PMID: 22939939]
[130]
Shao YP, Zhou Q, Li YP, et al. Curcumin ameliorates cisplatin-induced cystopathy via activating NRF2 pathway. Neurourol Urodyn 2018; 37(8): 2470-9.
[http://dx.doi.org/10.1002/nau.23731] [PMID: 29917258]
[131]
Tapia E, Soto V, Ortiz-Vega KM, et al. Curcumin induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats. Oxid Med Cell Longev 2012; 2012: 269039
[132]
Tu Z-S, Wang Q, Sun DD, Dai F, Zhou B. Design, synthesis, and evaluation of curcumin derivatives as Nrf2 activators and cytoprotectors against oxidative death. Eur J Med Chem 2017; 134: 72-85.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.008] [PMID: 28399452]
[133]
Wu J, Li Q, Wang X, et al. Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One 2013; 8(3) e59843
[http://dx.doi.org/10.1371/journal.pone.0059843] [PMID: 23555802]
[134]
Wu J, Ibtisham F, Niu YF, et al. Curcumin inhibits heat-induced oxidative stress by activating the MAPK-Nrf2/ARE signaling pathway in chicken fibroblasts cells. J Therm Biol 2019; 79: 112-9.
[http://dx.doi.org/10.1016/j.jtherbio.2018.12.004] [PMID: 30612671]
[135]
Xie Y-L, Chu JG, Jian XM, et al. Curcumin attenuates lipopolysaccharide/d-galactosamine-induced acute liver injury by activating Nrf2 nuclear translocation and inhibiting NF-kB activation. Biomed Pharmacother 2017; 91: 70-7.
[http://dx.doi.org/10.1016/j.biopha.2017.04.070] [PMID: 28448872]
[136]
Yan C, Zhang Y, Zhang X, Aa J, Wang G, Xie Y. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed Pharmacother 2018; 105: 274-81.
[http://dx.doi.org/10.1016/j.biopha.2018.05.135] [PMID: 29860219]
[137]
Yang C, Zhang X, Fan H, Liu Y. Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 2009; 1282: 133-41.
[http://dx.doi.org/10.1016/j.brainres.2009.05.009] [PMID: 19445907]
[138]
Zhao S-G, Li Q, Liu ZX, et al. Curcumin attenuates insulin resistance in hepatocytes by inducing Nrf2 nuclear translocation. Hepatogastroenterology 2011; 58(112): 2106-11.
[http://dx.doi.org/10.5754/hge11219] [PMID: 22024084]
[139]
Santana-Martínez RA, Silva-Islas CA, Fernández-Orihuela YY, et al. The therapeutic effect of curcumin in quinolinic acid-induced neurotoxicity in rats is associated with BDNF, ERK1/2, NRF2, and antioxidant enzymes. Antioxidants 2019; 8(9)E388
[http://dx.doi.org/10.3390/antiox8090388] [PMID: 31514267]
[140]
Mizumoto A, Ohashi S, Kamada M, et al. Combination treatment with highly bioavailable curcumin and NQO1 inhibitor exhibits potent antitumor effects on esophageal squamous cell carcinoma. J Gastroenterol 2019; 54(8): 687-98.
[http://dx.doi.org/10.1007/s00535-019-01549-x] [PMID: 30737573]
[141]
Yang B, Yin C, Zhou Y, et al. Curcumin protects against methylmercury-induced cytotoxicity in primary rat astrocytes by activating the Nrf2/ARE pathway independently of PKCδ. Toxicology 2019; 425: 152248
[http://dx.doi.org/10.1016/j.tox.2019.152248] [PMID: 31330227]
[142]
Macías-Pérez JR, Aldaba-Muruato LR, Martínez-Hernández SL, Muñoz-Ortega MH, Pulido-Ortega J, Ventura-Juárez J. Curcumin provides hepatoprotection against amoebic liver abscess induced by Entamoeba histolytica in Hamster: involvement of Nrf2/HO-1 and NF-κB/IL-1β signaling pathways. J Immunol Res 2019; 2019: 7431652
[http://dx.doi.org/10.1155/2019/7431652] [PMID: 31275999]
[143]
Lin X, Bai D, Wei Z, et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One 2019; 14(5)e0216711
[http://dx.doi.org/10.1371/journal.pone.0216711] [PMID: 31112588]
[144]
Ikram M, Saeed K, Khan A, et al. Natural dietary supple-mentation of curcumin protects mice brains against ethanol-induced oxidative stress-mediated neurodegeneration and memory impairment via Nrf2/TLR4/RAGE signaling. Nutrients 2019; 11(5)E1082
[http://dx.doi.org/10.3390/nu11051082] [PMID: 31096703]
[145]
Mishra P, Paital B, Jena S, et al. Possible activation of NRF2 by Vitamin E/Curcumin against altered thyroid hormone induced oxidative stress via NFĸB/AKT/mTOR/KEAP1 signalling in rat heart. Sci Rep 2019; 9(1): 7408.
[http://dx.doi.org/10.1038/s41598-019-43320-5] [PMID: 31092832]
[146]
Ren L, Zhan P, Wang Q, et al. Curcumin upregulates the Nrf2 system by repressing inflammatory signaling-mediated Keap1 expression in insulin-resistant conditions. Biochem Biophys Res Commun 2019; 514(3): 691-8.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.010] [PMID: 31078267]
[147]
Hu G, Cao H, Zhou HT, et al. Regulatory effect of curcumin on renal apoptosis and its mechanism in overtraining rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2018; 34(6): 513-8.
[PMID: 31032585]
[148]
Méndez-García LA, Martínez-Castillo M, Villegas-Sepúlveda N, Orozco L, Córdova EJ. Curcumin induces p53-independent inactivation of Nrf2 during oxidative stress-induced apoptosis. Hum Exp Toxicol 2019; 38(8): 951-61.
[http://dx.doi.org/10.1177/0960327119845035] [PMID: 31018701]
[149]
Xu J, Zhou L, Weng Q, Xiao L, Li Q. Curcumin analogues attenuate Aβ25-35-induced oxidative stress in PC12 cells via Keap1/Nrf2/HO-1 signaling pathways. Chem Biol Interact 2019; 305: 171-9.
[http://dx.doi.org/10.1016/j.cbi.2019.01.010] [PMID: 30946834]
[150]
Cherif H, Bisson DG, Jarzem P, Weber M, Ouellet JA, Haglund L. Curcumin and o-Vanillin exhibit evidence of senolytic activity in human IVD cells in vitro. J Clin Med 2019; 8(4)E433
[http://dx.doi.org/10.3390/jcm8040433] [PMID: 30934902]
[151]
Li S, Muhammad I, Yu H, Sun X, Zhang X. Detection of Aflatoxin adducts as potential markers and the role of curcumin in alleviating AFB1-induced liver damage in chickens. Ecotoxicol Environ Saf 2019; 176: 137-45.
[http://dx.doi.org/10.1016/j.ecoenv.2019.03.089] [PMID: 30925330]
[152]
Ruan D, Zhu YW, Fouad AM, et al. Dietary curcumin enhances intestinal antioxidant capacity in ducklings via altering gene expression of antioxidant and key detoxification enzymes. Poult Sci 2019; 98(9): 3705-14.
[http://dx.doi.org/10.3382/ps/pez058] [PMID: 30869142]
[153]
Receno CN, Liang C, Korol DL, et al. Effects of prolonged dietary curcumin exposure on skeletal muscle biochemical and functional responses of aged male rats. Int J Mol Sci 2019; 20(5)E1178
[http://dx.doi.org/10.3390/ijms20051178] [PMID: 30866573]
[154]
Cheng D, Li W, Wang L, et al. Pharmacokinetics, pharmacodynamics, and pkpd modeling of curcumin in regulating antioxidant and epigenetic gene expression in healthy human volunteers. Mol Pharm 2019; 16(5): 1881-9.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01246] [PMID: 30860383]
[155]
Shao S, Duan W, Xu Q, et al. Curcumin suppresses hepatic stellate cell-induced hepatocarcinoma angiogenesis and invasion through downregulating CTGF. Oxid Med Cell Longev 2019; 2019: 8148510
[http://dx.doi.org/10.1155/2019/8148510] [PMID: 30800209]
[156]
Liao L, Shi J, Jiang C, et al. Activation of anti-oxidant of curcumin pyrazole derivatives through preservation of mitochondria function and Nrf2 signaling pathway. Neurochem Int 2019; 125: 82-90.
[http://dx.doi.org/10.1016/j.neuint.2019.01.026] [PMID: 30771374]
[157]
Harder B, Jiang T, Wu T, et al. Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem Soc Trans 2015; 43(4): 680-6.
[158]
Li C, Miao X, Wang S, et al. Novel curcumin C66 that protects diabetes-induced aortic damage was associated with suppressing jnk2 and upregulating nrf2 expression and function. Oxid Med Cell Longev 2018; 2018: 5783239
[http://dx.doi.org/10.1155/2018/5783239] [PMID: 30622669]
[159]
Samarghandian S, Azimi-Nezhad M, Farkhondeh T. Crocin attenuate Tumor Necrosis Factor-alpha (TNF-α) and interleukin-6 (IL-6) in streptozotocin-induced diabetic rat aorta. Cytokine 2016; 88: 20-8.
[http://dx.doi.org/10.1016/j.cyto.2016.08.002] [PMID: 27529541]
[160]
Samarghandian S, Azimi-Nezhad M, Borji A, et al. Inhibitory and cytotoxic activities of chrysin on human breast adenocarcinoma cells by induction of apoptosis. Pharmacogn Mag 2016; 12(Suppl. 4): S436-40.
[http://dx.doi.org/10.4103/0973-1296.191453] [PMID: 27761071]
[161]
Samarghandian S, Azimi-Nezhad M, Farkhondeh T. Catechin treatment ameliorates diabetes and Its complications in streptozotocin-Induced diabetic rats. Dose Response 2017; 15(1)1559325817691158
[http://dx.doi.org/10.1177/1559325817691158]
[162]
Mehmood Abbasi A. H. Shah M. Assessment of phenolic contents, essential/toxic metals and antioxidant capacity of fruits of Viburnum foetens decne. Biointerf Res Appl Chem 2018; 8(3): 3178-86.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy