Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Development of Long-Circulating and Fusogenic Liposomes Co-encapsulating Paclitaxel and Doxorubicin in Synergistic Ratio for the Treatment of Breast Cancer

Author(s): Marjorie Coimbra Roque, Marina Santiago Franco, José Mário Carneiro Vilela, Margareth Spangler Andrade, André Luís Branco de Barros, Elaine Amaral Leite and Mônica Cristina Oliveira*

Volume 16, Issue 9, 2019

Page: [829 - 838] Pages: 10

DOI: 10.2174/1567201816666191016112717

Price: $65

Abstract

Background: The co-encapsulation of paclitaxel (PTX) and doxorubicin (DXR) in liposomes has the potential to offer pharmacokinetic and pharmacodynamic advantages, providing delivery of both drugs to the tumor at the ratio required for synergism.

Objective: To prepare and characterize long-circulating and fusogenic liposomes co-encapsulating PTX and DXR in the 1:10 molar ratio (LCFL-PTX/DXR).

Methods: LCFL-PTX/DXR was prepared by the lipid film formation method. The release of PTX and DXR from liposomes was performed using a dialysis method. Studies of cytotoxicity, synergism, and cellular uptake were also carried out.

Results: The encapsulation percentage of PTX and DXR was 74.1 ± 1.8 % and 89.6 ± 12.3%, respectively, and the mean diameter of the liposomes was 244.4 ± 28.1 nm. The vesicles remained stable for 30 days after their preparation. The drugs were simultaneously released from vesicles during 36 hours, maintaining the drugs combination in the previously established ratio. Cytotoxicity studies using 4T1 breast cancer cells showed lower inhibitory concentration 50% (IC50) value for LCFL-PTX/DXR treatment (0.27 ± 0.11 µm) compared to the values of free drugs treatment. In addition, the combination index (CI) assessed for treatment with LCFL-PTX/DXR was equal to 0.11 ± 0.04, showing strong synergism between the drugs. Cell uptake studies have confirmed that the molar ratio between PTX and DXR is maintained when the drugs are administered in liposomes.

Conclusion: It was possible to obtain LCFL-PTX/DXR suitable for intravenous administration, capable of releasing the drugs in a fixed synergistic molar ratio in the tumor region.

Keywords: Breast cancer, liposomes, co-encapsulation, paclitaxel, doxorubicin, synergism, cell uptake.

Graphical Abstract

[1]
Barenholz, Y. Doxil®--the first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[2]
Baabur-Cohen, H.; Vossen, L.I.; Krüger, H.R.; Eldar-Boock, A.; Yeini, E.; Landa-Rouben, N.; Tiram, G.; Wedepohl, S.; Markovsky, E.; Leor, J.; Calderón, M.; Satchi-Fainaro, R. In vivo comparative study of distinct polymeric architectures bearing a combination of paclitaxel and doxorubicin at a synergistic ratio. J. Control. Release, 2017, 257, 118-131.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.037] [PMID: 27374630]
[3]
Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Nanocarrier mediated combination drug delivery for chemot-erapy - A review. J. Drug Deliv. Sci. Technol., 2017, 39, 362-371.
[http://dx.doi.org/10.1016/j.jddst.2017.04.019]
[4]
Chen, Y.; Zhang, W.; Huang, Y.; Gao, F.; Sha, X.; Fang, X. Pluronic-based functional polymeric mixed micelles for co-delivery of doxorubicin and paclitaxel to multidrug resistant tumor. Int. J. Pharm., 2015, 488(1-2), 44-58.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.048] [PMID: 25899286]
[5]
Mayer, L.D.; Janoff, A.S. Optimizing combination chemotherapy by controlling drug ratios. Mol. Interv., 2007, 7(4), 216-223.
[http://dx.doi.org/10.1124/mi.7.4.8] [PMID: 17827442]
[6]
Zununi Vahed, S.; Salehi, R.; Davaran, S.; Sharifi, S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Eng. C, 2017, 71, 1327-1341.
[http://dx.doi.org/10.1016/j.msec.2016.11.073] [PMID: 27987688]
[7]
Franco, M.S.; Oliveira, M.C. Liposomes co-encapsulating anti-cancer drugs in synergistic ratios as an approach to promote increased efficacy and greater safety. Anticancer. Agents Med. Chem., 2019, 19(1), 17-28.
[http://dx.doi.org/10.2174/1871520618666180420170124] [PMID: 29692263]
[8]
Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul., 1984, 22, 27-55.
[http://dx.doi.org/10.1016/0065-2571(84)90007-4] [PMID: 6382953]
[9]
Chou, T. The combination index (CI < 1) as the definition of synergism and of synergy claims. Synergy, 2018, 7, 49-50.
[http://dx.doi.org/10.1016/j.synres.2018.04.001]
[10]
Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev., 2006, 58(3), 621-681.
[http://dx.doi.org/10.1124/pr.58.3.10] [PMID: 16968952]
[11]
Liu, Y.; Fang, J.; Kim, Y.J.; Wong, M.K.; Wang, P. Co-delivery of doxorubicin and paclitaxel by cross-linked multilamellar liposome enables synergistic antitumor activity. Mol. Pharm., 2014, 11(5), 1651-1661.
[http://dx.doi.org/10.1021/mp5000373] [PMID: 24673622]
[12]
He, H.; Wang, Y.; Wen, H.; Jia, X. Dendrimer-based multi-layer nanocarrier for potential synergistic paclitaxel–doxorubicin combination drug delivery. RSC Advances, 2014, 7, 3643-3652.
[http://dx.doi.org/10.1039/C3RA43803A]
[13]
Markovsky, E.; Baabur-Cohen, H.; Satchi-Fainaro, R. Anticancer polymeric nanomedicine bearing synergistic drug combination is superior to a mixture of individually-conjugated drugs. J. Control. Release, 2014, 187, 145-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.025] [PMID: 24862318]
[14]
Kanamala, M.; Wilson, W.R.; Yang, M.; Palmer, B.D. Mechanisms and biomaterials in tumors responsive to pH: Drug distribution. Biomaterials, 2016, 85, 152-167.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.061] [PMID: 26871891]
[15]
Mayer, L.D.; Harasym, T.O.; Tardi, P.G.; Harasym, N.L.; Shew, C.R.; Johnstone, S.A.; Ramsay, E.C.; Bally, M.B.; Janoff, A.S. Ratiometric dosing of anticancer drug combinations: controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice. Mol. Cancer Ther., 2006, 5(7), 1854-1863.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0118] [PMID: 16891472]
[16]
Bines, J.; Earl, H.; Buzaid, A.C.; Saad, E.D. Anthracyclines and taxanes in the neo/adjuvant treatment of breast cancer: Does the sequence matter? Ann. Oncol., 2014, 25(6), 1079-1085.
[http://dx.doi.org/10.1093/annonc/mdu007] [PMID: 24625452]
[17]
Yang, M.; Ding, H.; Zhu, Y.; Ge, Y.; Li, L. Co-delivery of paclitaxel and doxorubicin using mixed micelles based on the redox sensitive prodrugs. Colloids Surf. B Biointerfaces, 2019, 175, 126-135.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.086] [PMID: 30529818]
[18]
Chou, T.C.; Martin, N. CompuSyn for Drug Combinations: PC Software and User’s Guide: A Computer Program for Quanti-tation of Synergism and Antagonism in Drug Combinations, and the Determination of IC50 and ED50 and LD50 Values; ComboSyn: Paramus, NJ, 2005.
[19]
de Oliveira Silva, J.; Miranda, S.E.M.; Leite, E.A.; de Paula Sabino, A.; Borges, K.B.G.; Cardoso, V.N.; Cassali, G.D.; Guimarães, A.G.; Oliveira, M.C.; de Barros, A.L.B. Toxicological study of a new doxorubicin-loaded pH-sensitive liposome: A preclinical approach. Toxicol. Appl. Pharmacol., 2018, 352, 162-169.
[http://dx.doi.org/10.1016/j.taap.2018.05.037] [PMID: 29864484]
[20]
Roque, M.C. Avaliação da atividade antitumoral de lipossomas fusogênicos de circulação prolongada co-encapsulando paclitaxel e doxorrubicina para o tratamento do câncer de mama.Master Thesis Universidade Federal de Minas Gerais: Belo Horizonte, February . 2017.
[21]
Monteiro, L.O.F.; Fernandes, R.S.; Oda, C.M.R.; Lopes, S.C.; Townsend, D.M.; Cardoso, V.N.; Oliveira, M.C.; Leite, E.A.; Rubello, D.; de Barros, A.L.B. Paclitaxel-loaded folate-coated long circulating and pH-sensitive liposomes as a potential drug delivery system: A biodistribution study. Biomed. Pharmacother., 2018, 97, 489-495.
[http://dx.doi.org/10.1016/j.biopha.2017.10.135] [PMID: 29091899]
[22]
Oliveira, M.S.; Mussi, S.V.; Gomes, D.A.; Yoshida, M.I.; Frezard, F.; Carregal, V.M.; Ferreira, L.A.M. α-Tocopherol succinate improves encapsulation and anticancer activity of doxorubicin loaded in solid lipid nanoparticles. Colloids Surf. B Biointerfaces, 2016, 140, 246-253.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.019] [PMID: 26764108]
[23]
Lopes, S.C.A.; Novais, M.V.M.; Teixeira, C.S.; Sampaio, K.H.; Pereira, M.T.; Ferreira, L.A.M.; Braga, F.C.; Oliveira, M.C. Prepa-ration, Physicochemical Characterization, and Cell Viability Evaluation of Long-Circulating and pH-Sensitive Liposomes Containing Ursolic Acid. BioMed Res. Int., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/206581]
[24]
Huang, Y.; Chen, X.M.; Zhao, B.X.; Ke, X.Y.; Zhao, B.J.; Zhao, X.; Wang, Y.; Zhang, X.; Zhang, Q. Antiangiogenic activity of sterically stabilized liposomes containing paclitaxel (SSL-PTX): In vitro and in vivo. AAPS PharmSciTech, 2010, 11(2), 752-759.
[http://dx.doi.org/10.1208/s12249-010-9430-z] [PMID: 20443090]
[25]
Nie, S.; Hsiao, W.L.; Pan, W.; Yang, Z. Thermoreversible Pluronic F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: In vitro drug release, cell cytotoxicity, and uptake studies. Int. J. Nanomedicine, 2011, 6, 151-166.
[PMID: 21499415]
[26]
Miao, J.; Du, Y.Z.; Yuan, H.; Zhang, X.G.; Hu, F.Q. Drug resistance reversal activity of anticancer drug loaded solid lipid nanoparticles in multi-drug resistant cancer cells. Colloids Surf. B Biointerfaces, 2013, 110, 74-80.
[http://dx.doi.org/10.1016/j.colsurfb.2013.03.037] [PMID: 23711779]
[27]
Fernandes, R.S.; Silva, J.O.; Monteiro, L.O.F.; Leite, E.A.; Cassali, G.D.; Rubello, D.; Cardoso, V.N.; Ferreira, L.A.M.; Oliveira, M.C.; de Barros, A.L.B. Doxorubicin-loaded nanocarriers: A comparative study of liposome and nanostructured lipid carrier as alternatives for cancer therapy. Biomed. Pharmacother., 2016, 84, 252-257.
[http://dx.doi.org/10.1016/j.biopha.2016.09.032] [PMID: 27664949]
[28]
Koudelka, S.; Turánek, J. Liposomal paclitaxel formulations. J. Control. Release, 2012, 163(3), 322-334.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.006] [PMID: 22989535]
[29]
Ma, Y.; Fan, X.; Li, L. pH-sensitive polymeric micelles formed by doxorubicin conjugated prodrugs for co-delivery of doxorubicin and paclitaxel. Carbohydr. Polym., 2016, 137, 19-29.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.050] [PMID: 26686101]
[30]
Seynhaeve, A.L.B.; Dicheva, B.M.; Hoving, S.; Koning, G.A.; Ten Hagen, T.L.M. Intact Doxil is taken up intracellularly and released doxorubicin sequesters in the lysosome: Evaluated by in vitro/in vivo live cell imaging. J. Control. Release, 2013, 172(1), 330-340.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.034] [PMID: 24012486]
[31]
Joo, K.I.; Xiao, L.; Liu, S.; Liu, Y.; Lee, C.L.; Conti, P.S.; Wong, M.K.; Li, Z.; Wang, P. Crosslinked multilamellar liposomes for controlled delivery of anticancer drugs. Biomaterials, 2013, 34(12), 3098-3109.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.039] [PMID: 23375392]
[32]
Wang, H.; Zhao, Y.; Wu, Y.; Hu, Y.L.; Nan, K.; Nie, G.; Chen, H. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials, 2011, 32(32), 8281-8290.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.032] [PMID: 21807411]
[33]
Li, Q.; Lv, S.; Tang, Z.; Liu, M.; Zhang, D.; Yang, Y.; Chen, X. LI. A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: Preparation, in vitro and in vivo evaluation. Int. J. Pharm., 2014, 471(1-2), 412-420.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.065] [PMID: 24905776]
[34]
Duong, H.H.P.; Yung, L.Y.L. Synergistic co-delivery of doxorubicin and paclitaxel using multi-functional micelles for cancer treatment. Int. J. Pharm., 2013, 454(1), 486-495.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.017] [PMID: 23792465]
[35]
Wang, Y.; Ma, S.; Xie, Z.; Zhang, H. A synergistic combination therapy with paclitaxel and doxorubicin loaded micellar nanoparticles. Colloids Surf. B Biointerfaces, 2014, 116, 41-48.
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.051] [PMID: 24441457]
[36]
Liu, Y.; Fang, J.; Joo, K.I.; Wong, M.K.; Wang, P. Codelivery of chemotherapeutics via crosslinked multilamellar liposomal vesicles to overcome multidrug resistance in tumor. PLoS One, 2014, 9(10)e110611
[http://dx.doi.org/10.1371/journal.pone.0110611] [PMID: 25330237]
[37]
Gianni, L.; Munzone, E.; Capri, G.; Fulfaro, F.; Tarenzi, E.; Villani, F.; Spreafico, C.; Laffranchi, A.; Caraceni, A.; Martini, C. Paclitaxel by 3-hour infusion in combination with bolus doxorubicin in women with untreated metastatic breast cancer: High antitumor efficacy and cardiac effects in a dose-finding and sequence-finding study. J. Clin. Oncol., 1995, 13(11), 2688-2699.
[http://dx.doi.org/10.1200/JCO.1995.13.11.2688] [PMID: 7595726]
[38]
Gianni, L.; Viganò, L.; Locatelli, A.; Capri, G.; Giani, A.; Tarenzi, E.; Bonadonna, G. Human pharmacokinetic characterization and in vitro study of the interaction between doxorubicin and paclitaxel in patients with breast cancer. J. Clin. Oncol., 1997, 15(5), 1906-1915.
[http://dx.doi.org/10.1200/JCO.1997.15.5.1906] [PMID: 9164201]
[39]
Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 2014, 9(2), 223-243.
[http://dx.doi.org/10.1016/j.nantod.2014.04.008] [PMID: 25132862]
[40]
Siafaka, P.I.; Üstündağ, O.N.; Karavas, E.; Bikiaris, D.N. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: Current status and uses. Int. J. Mol. Sci., 2016, 9, 1440.
[http://dx.doi.org/10.3390/ijms17091440]
[41]
Ramadass, S.K.; Anantharaman, N.V.; Subramanian, S.; Sivasubramanian, S.; Madhan, B. Paclitaxel/epigallocatechin gallate coloaded liposome: A synergistic delivery to control the invasiveness of MDA-MB-231 breast cancer cells. Colloids Surf. B Biointerfaces, 2015, 125, 65-72.
[http://dx.doi.org/10.1016/j.colsurfb.2014.11.005] [PMID: 25437065]
[42]
Sby, M. Panalytical. Liposomes and the use of zeta potential measurements to study sterically stabilized liposomes, AZoNano.com, 2005.(Accessed 12 Dec 2018). https://www.azonano.com/article.aspx?ArticleID=1214
[43]
Qhattal, H.S.S.; Hye, T.; Alali, A.; Liu, X. Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan-grafted liposomes. ACS Nano, 2014, 8(6), 5423-5440.
[http://dx.doi.org/10.1021/nn405839n] [PMID: 24806526]
[44]
Gabizon, A.A.; Patil, Y.; La-Beck, N.M. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist. Updat., 2016, 29, 90-106.
[http://dx.doi.org/10.1016/j.drup.2016.10.003] [PMID: 27912846]
[45]
Eloy, J.O.; Petrilli, R.; Topan, J.F.; Antonio, H.M.R.; Barcellos, J.P.A.; Chesca, D.L.; Serafini, L.N.; Tiezzi, D.G.; Lee, R.J.; Marchetti, J.M. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids Surf. B Biointerfaces, 2016, 141, 74-82.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.032] [PMID: 26836480]
[46]
Tardi, P.G.; Gallagher, R.C.; Johnstone, S.; Harasym, N.; Webb, M.; Bally, M.B.; Mayer, L.D. Coencapsulation of irinotecan and floxuridine into low cholesterol-containing liposomes that coordinate drug release in vivo. Biochim. Biophys. Acta, 2007, 1768(3), 678-687.
[http://dx.doi.org/10.1016/j.bbamem.2006.11.014] [PMID: 17208196]
[47]
Franco, M.S.; Roque, M.C.; de Barros, A.L.B.; de Oliveira Silva, J.; Cassali, G.D.; Oliveira, M.C. Investigation of the antitumor activity and toxicity of long-circulating and fusogenic liposomes co-encapsulating paclitaxel and doxorubicin in a murine breast cancer animal model. Biomed. Pharmacother., 2019, 109, 1728-1739.
[http://dx.doi.org/10.1016/j.biopha.2018.11.011] [PMID: 30551427]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy