Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Actigraphy for Assessing Light Effects on Sleep and Circadian Activity Rhythm in Alzheimer's Dementia: A Narrative Review

Author(s): Markus Canazei*, Julian Turiaux, Stefan E. Huber, Josef Marksteiner, Ilona Papousek and Elisabeth M. Weiss

Volume 16, Issue 12, 2019

Page: [1084 - 1107] Pages: 24

DOI: 10.2174/1567205016666191010124011

Price: $65

Abstract

Background: Alzheimer's Disease (AD) is often accompanied by severe sleep problems and circadian rhythm disturbances which may to some extent be attributed to a dysfunction in the biological clock. The 24-h light/dark cycle is the strongest Zeitgeber for the biological clock. People with AD, however, often live in environments with inappropriate photic Zeitgebers. Timed bright light exposure may help to consolidate sleep- and circadian rest/activity rhythm problems in AD, and may be a low-risk alternative to pharmacological treatment.

Objective & Methods: In the present review, experts from several research disciplines summarized the results of twenty-seven light intervention studies which used wrist actigraphy to measure sleep and circadian activity in AD patients.

Results: Taken together, the findings remain inconclusive with regard to beneficial light effects. However, the considered studies varied substantially with respect to the utilized light intervention, study design, and usage of actigraphy. The paper provides a comprehensive critical discussion of these issues.

Conclusion: Fusing knowledge across complementary research disciplines has the potential to critically advance our understanding of the biological input of light on health and may contribute to architectural lighting designs in hospitals, as well as our homes and work environments.

Keywords: Light, dementia, actigraphy, sleep, circadian rhythm, physical activity.

[1]
Carpenter GA, Grossberg S. A neural theory of circadian rhythms: Aschoff’s rule in diurnal and nocturnal mammals. Am J Physiol 247(6 Pt 2): R1067-82. (1984).
[http://dx.doi.org/10.1152/ajpregu.1984.247.6.R1067] [PMID: 6542316]
[2]
Challet E. Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148(12): 5648-55. (2007).
[http://dx.doi.org/10.1210/en.2007-0804] [PMID: 17901231]
[3]
Chang AM, Santhi N, St Hilaire M, Gronfier C, Bradstreet DS, Duffy JF, et al. Human responses to bright light of different durations. J Physiol 590(13): 3103-12. (2012).
[http://dx.doi.org/10.1113/jphysiol.2011.226555] [PMID: 22526883]
[4]
Roenneberg T, Kantermann T, Juda M, Vetter C, Allebrandt KV. Light and the human circadian clock. Handb Exp Pharmacol 217(217): 311-31. (2013).
[http://dx.doi.org/10.1007/978-3-642-25950-0_13] [PMID: 23604485]
[5]
Schmidt TM, Chen SK, Hattar S. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34(11): 572-80. (2011).
[http://dx.doi.org/10.1016/j.tins.2011.07.001] [PMID: 21816493]
[6]
Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiol Rev 90(3): 1063-102. (2010).
[http://dx.doi.org/10.1152/physrev.00009.2009] [PMID: 20664079]
[7]
Walmsley L, Hanna L, Mouland J, Martial F, West A, Smedley AR, et al. Colour as a signal for entraining the mammalian circadian clock. PLoS Biol 13(4)e1002127 (2015).
[http://dx.doi.org/10.1371/journal.pbio.1002127] [PMID: 25884537]
[8]
Chang AM, Scheer FAJL, Czeisler CA, Aeschbach D. Direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans depend on prior light history. Sleep (Basel) 36(8): 1239-46. (2013).
[http://dx.doi.org/10.5665/sleep.2894] [PMID: 23904684]
[9]
Hébert M, Martin SK, Lee C, Eastman CI. The effects of prior light history on the suppression of melatonin by light in humans. J Pineal Res 33(4): 198-203. (2002).
[http://dx.doi.org/10.1034/j.1600-079X.2002.01885.x] [PMID: 12390501]
[10]
Rüger M, St Hilaire MA, Brainard GC, Khalsa SB, Kronauer RE, Czeisler CA, et al. Human phase response curve to a single 6.5 h pulse of short-wavelength light. J Physiol 591(1): 353-63. (2013).
[http://dx.doi.org/10.1113/jphysiol.2012.239046] [PMID: 23090946]
[11]
St Hilaire MA, Gooley JJ, Khalsa SBS, Kronauer RE, Czeisler CA, Lockley SW. Human phase response curve to a 1 h pulse of bright white light. J Physiol 590(13): 3035-45. (2012).
[http://dx.doi.org/10.1113/jphysiol.2012.227892] [PMID: 22547633]
[12]
Brainard GC, Hanifin JP, Warfield B, Stone MK, James ME, Ayers M, et al. Short-wavelength enrichment of polychromatic light enhances human melatonin suppression potency. J Pineal Res 58(3): 352-61. (2015).
[http://dx.doi.org/10.1111/jpi.12221] [PMID: 25726691]
[13]
Scheer FA, Buijs RM. Light affects morning salivary cortisol in humans. J Clin Endocrinol Metab 84(9): 3395-8. (1999).
[http://dx.doi.org/10.1210/jcem.84.9.6102] [PMID: 10487717]
[14]
Vandewalle G, Maquet P, Dijk DJ. Light as a modulator of cognitive brain function. Trends Cogn Sci(Regul Ed) 13(10): 429-38. (2009).
[http://dx.doi.org/10.1016/j.tics.2009.07.004] [PMID: 19748817]
[15]
Souman JL, Tinga AM, Te Pas SF, van Ee R, Vlaskamp BNS. Acute alerting effects of light: a systematic literature review. Behav Brain Res 337: 228-39. (2018).
[http://dx.doi.org/10.1016/j.bbr.2017.09.016] [PMID: 28912014]
[16]
Fonken LK, Nelson RJ. The effects of light at night on circadian clocks and metabolism. Endocr Rev 35(4): 648-70. (2014).
[http://dx.doi.org/10.1210/er.2013-1051] [PMID: 24673196]
[17]
Stothard ER, McHill AW, Depner CM, Birks BR, Moehlman TM, Ritchie HK, et al. Circadian entrainment to the natural light-dark cycle across seasons and the weekend. Curr Biol 27(4): 508-13. (2017).
[http://dx.doi.org/10.1016/j.cub.2016.12.041] [PMID: 28162893]
[18]
Woelders T, Beersma DGM, Gordijn MCM, Hut RA, Wams EJ. Daily light exposure patterns reveal phase and period of the human circadian clock. J Biol Rhythms 32(3): 274-86. (2017).
[http://dx.doi.org/10.1177/0748730417696787] [PMID: 28452285]
[19]
Koo KYG, Schweizer TA, Fischer CE, Munoz DG. Abnormal sleep behaviours across the spectrum of Alzheimer’s disease severity: influence of APOE genotypes and lewy bodies. Curr Alzheimer Res 16(3): 243-50. (2019).
[http://dx.doi.org/10.2174/1567205016666190103161034] [PMID: 30605058]
[20]
Pappolla MA, Matsubara E, Vidal R, Pacheco-Quinto J, Poeggeler B, Zagorski M, et al. Melatonin treatment enhances Aβ lymphatic clearance in a transgenic mouse model of amyloidosis. Curr Alzheimer Res 15(7): 637-42. (2018).
[http://dx.doi.org/10.2174/1567205015666180411092551] [PMID: 29637859]
[21]
Van Someren EJW, Kessler A, Mirmiran M, Swaab DF. Indirect bright light improves circadian rest-activity rhythm disturbances in demented patients. Biol Psychiatry 41(9): 955-63. (1997).
[http://dx.doi.org/10.1016/S0006-3223(97)89928-3] [PMID: 9110101]
[22]
Nylén P, Favero F, Glimne S, Teär Fahnehjelm K, Eklund J. Vision, light and aging: a literature overview on older-age workers. Work 47(3): 399-412. (2014).
[http://dx.doi.org/10.3233/WOR-141832] [PMID: 24463318]
[23]
Ancoli-Israel S, Klauber MR, Jones DW, et al. Variations in circadian rhythms of activity, sleep, and light exposure related to dementia in nursing-home patients. Sleep 20(1): 18-23. (1997).
[PMID: 9130329]
[24]
Campbell SS, Kripke DF, Gillin JC, Hrubovcak JC. Exposure to light in healthy elderly subjects and Alzheimer’s patients. Physiol Behav 42(2): 141-4. (1988).
[http://dx.doi.org/10.1016/0031-9384(88)90289-2] [PMID: 3368532]
[25]
Nioi A, Roe J, Gow A, McNair D, Aspinall P. Seasonal differences in light exposure and the associations with health and well-being in older adults: an exploratory study. HERD 10(5): 64-79. (2017).
[http://dx.doi.org/10.1177/1937586717697650] [PMID: 29056090]
[26]
Duggan S, Blackman T, Martyr A, van Schaik P. The impact of early dementia on outdoor life. Dementia 7(2): 191-204. (2008).
[http://dx.doi.org/10.1177/1471301208091158]
[27]
Bates-Jensen BM, Alessi CA, Cadogan M, Levy-Storms L, Jorge J, Yoshii J, et al. The Minimum Data Set bedfast quality indicator: differences among nursing homes. Nurs Res 53(4): 260-72. (2004).
[http://dx.doi.org/10.1097/00006199-200407000-00009] [PMID: 15266165]
[28]
Schnelle JF, Cruise PA, Alessi CA, Ludlow K, al-Samarrai NR, Ouslander JG. Sleep hygiene in physically dependent nursing home residents: behavioral and environmental intervention implications. Sleep 21(5): 515-23. (1998).
[http://dx.doi.org/10.1093/sleep/21.5.515] [PMID: 9703592]
[29]
Argyle E, Dening T, Bartlett P. Space, the final frontier: outdoor access for people living with dementia. Aging Ment Health 21(10): 1005-6. (2017).
[http://dx.doi.org/10.1080/13607863.2016.1222351] [PMID: 27758110]
[30]
Shochat T, Martin J, Marler M, Ancoli-Israel S. Illumination levels in nursing home patients: effects on sleep and activity rhythms. J Sleep Res 9(4): 373-9. (2000).
[http://dx.doi.org/10.1046/j.1365-2869.2000.00221.x] [PMID: 11386204]
[31]
Alessi CA, Martin JL, Webber AP, Cynthia Kim E, Harker JO, Josephson KR. Randomized, controlled trial of a nonpharmacological intervention to improve abnormal sleep/wake patterns in nursing home residents. J Am Geriatr Soc 53(5): 803-10. (2005).
[http://dx.doi.org/10.1111/j.1532-5415.2005.53251.x] [PMID: 15877555]
[32]
Cavuoto MG, Kinsella GJ, Ong B, Pike KE, Nicholas CL. Naturalistic measurement of sleep in older adults with amnestic mild cognitive impairment: anxiety symptoms do not explain sleep disturbance. Curr Alzheimer Res 16(3): 233-42. (2019).
[http://dx.doi.org/10.2174/1567205016666190301104645] [PMID: 30827241]
[33]
Slats D, Claassen JA, Verbeek MM, Overeem S. Reciprocal interactions between sleep, circadian rhythms and Alzheimer’s disease: focus on the role of hypocretin and melatonin. Ageing Res Rev 12(1): 188-200. (2013).
[http://dx.doi.org/10.1016/j.arr.2012.04.003] [PMID: 22575905]
[34]
Kent BA, Mistlberger RE. Sleep and hippocampal neurogenesis: implications for Alzheimer’s disease. Front Neuroendocrinol 45: 35-52. (2017).
[http://dx.doi.org/10.1016/j.yfrne.2017.02.004] [PMID: 28249715]
[35]
Bliwise DL. Sleep in normal aging and dementia. Sleep 16(1): 40-81. (1993).
[http://dx.doi.org/10.1093/sleep/16.1.40] [PMID: 8456235]
[36]
Gehrman P, Marler M, Martin JL, Shochat T, Corey-Bloom J, Ancoli-Israel S. The relationship between dementia severity and rest/activity circadian rhythms. Neuropsychiatr Dis Treat 1(2): 155-63. (2005).
[http://dx.doi.org/10.2147/nedt.1.2.155.61043] [PMID: 18568061]
[37]
Van Someren EJW, Van Someren EJ. Circadian and sleep disturbances in the elderly. Exp Gerontol 35(9-10): 1229-37. (2000).
[http://dx.doi.org/10.1016/S0531-5565(00)00191-1] [PMID: 11113604]
[38]
Witting W, Kwa IH, Eikelenboom P, Mirmiran M, Swaab DF. Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biol Psychiatry 27(6): 563-72. (1990).
[http://dx.doi.org/10.1016/0006-3223(90)90523-5] [PMID: 2322616]
[39]
Wang JL, Lim AS, Chiang WY, Hsieh WH, Lo MT, Schneider JA, et al. Suprachiasmatic neuron numbers and rest-activity circadian rhythms in older humans. Ann Neurol 78(2): 317-22. (2015).
[http://dx.doi.org/10.1002/ana.24432] [PMID: 25921596]
[40]
Sack RL, Auckley D, Auger RR, Carskadon MA, Wright KP Jr, Vitiello MV, et al. American Academy of Sleep Medicine. Circadian rhythm sleep disorders: part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. An American Academy of Sleep Medicine review. Sleep 30(11): 1484-501. (2007).
[http://dx.doi.org/10.1093/sleep/30.11.1484] [PMID: 18041481]
[41]
Roth HL. Dementia and sleep. Neurol Clin 30(4): 1213-48. (2012).
[http://dx.doi.org/10.1016/j.ncl.2012.08.013] [PMID: 23099135]
[42]
Chen JM, Huang CQ, Ai M, Kuang L. Circadian rhythm of TSH levels in subjects with Alzheimer’s disease (AD). Aging Clin Exp Res 25(2): 153-7. (2013).
[http://dx.doi.org/10.1007/s40520-013-0025-x] [PMID: 23739900]
[43]
Camargos EF, Louzada FM, Nóbrega OT. Wrist actigraphy for measuring sleep in intervention studies with Alzheimer’s disease patients: application, usefulness, and challenges. Sleep Med Rev 17(6): 475-88. (2013).
[http://dx.doi.org/10.1016/j.smrv.2013.01.006] [PMID: 23669093]
[44]
Kinnunen KM, Vikhanova A, Livingston G. The management of sleep disorders in dementia: an update. Curr Opin Psychiatry 30(6): 491-7. (2017).
[http://dx.doi.org/10.1097/YCO.0000000000000370] [PMID: 28858007]
[45]
McCleery J, Cohen DA, Sharpley AL. Pharmacotherapies for sleep disturbances in dementia. Cochrane Database Syst Rev 11CD009178 (2016).
[http://dx.doi.org/10.1002/14651858.CD009178.pub3] [PMID: 27851868]
[46]
Forbes D, Blake CM, Thiessen EJ, Peacock S, Hawranik P. Light therapy for improving cognition, activities of daily living, sleep, challenging behaviour, and psychiatric disturbances in dementia. Cochrane Database Syst Rev 2(2)CD003946 (2014).
[http://dx.doi.org/10.1002/14651858.CD003946.pub4] [PMID: 24574061]
[47]
Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet 390(10113): 2673-734. (2017).
[http://dx.doi.org/10.1016/S0140-6736(17)31363-6] [PMID: 28735855]
[48]
Gibson GE, Hirsch JA, Fonzetti P, Jordan BD, Cirio RT, Elder J. Vitamin B1 (thiamine) and dementia. Ann N Y Acad Sci 1367(1): 21-30. (2016).
[http://dx.doi.org/10.1111/nyas.13031] [PMID: 26971083]
[49]
Kunz D. Editorial: circadian rhythms are everywhere: except in neurodegenerative disorders. Curr Alzheimer Res 14(10): 1018-21. (2017).
[http://dx.doi.org/10.2174/156720501410170908094658] [PMID: 28689494]
[50]
Figueiro MG. Light, sleep and circadian rhythms in older adults with Alzheimer’s disease and related dementias. Neurodegener Dis Manag 7(2): 119-45. (2017).
[http://dx.doi.org/10.2217/nmt-2016-0060] [PMID: 28534696]
[51]
McCurry SM, Vitiello MV, Gibbons LE, Logsdon RG, Teri L. Factors associated with caregiver reports of sleep disturbances in persons with dementia. Am J Geriatr Psychiatry 14(2): 112-20. (2006).
[http://dx.doi.org/10.1097/01.JGP.0000192499.25940.da] [PMID: 16473975]
[52]
Ownby RL, Saeed M, Wohlgemuth W, Capasso R, Acevedo A, Peruyera G, et al. Caregiver reports of sleep problems in non-Hispanic white, Hispanic, and African American patients with Alzheimer dementia. J Clin Sleep Med 6(3): 281-9. (2010).
[PMID: 20572423]
[53]
Keijzer H, Smits MG, Duffy JF, Curfs LMG. Why the dim light melatonin onset (DLMO) should be measured before treatment of patients with circadian rhythm sleep disorders. Sleep Med Rev 18(4): 333-9. (2014).
[http://dx.doi.org/10.1016/j.smrv.2013.12.001] [PMID: 24388969]
[54]
Mishima K, Tozawa T, Satoh K, Matsumoto Y, Hishikawa Y, Okawa M. Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer’s type with disturbed sleep-waking. Biol Psychiatry 45(4): 417-21. (1999).
[http://dx.doi.org/10.1016/S0006-3223(97)00510-6] [PMID: 10071710]
[55]
Naismith SL, Hickie IB, Terpening Z, Rajaratnam SM, Hodges JR, Bolitho S, et al. Circadian misalignment and sleep disruption in mild cognitive impairment. J Alzheimers Dis 38(4): 857-66. (2014).
[http://dx.doi.org/10.3233/JAD-131217] [PMID: 24100124]
[56]
Sadeh A. The role and validity of actigraphy in sleep medicine: an update. Sleep Med Rev 15(4): 259-67. (2011).
[http://dx.doi.org/10.1016/j.smrv.2010.10.001] [PMID: 21237680]
[57]
Kim S, Song HH, Yoo SJ. The effect of bright light on sleep and behavior in dementia: an analytic review. Geriatr Nurs 24(4): 239-43. (2003).
[http://dx.doi.org/10.1016/S0197-4572(03)00210-6] [PMID: 14560298]
[58]
Ancoli-Israel S, Gehrman P, Martin JL, Shochat T, Marler M, Corey-Bloom J, et al. Increased light exposure consolidates sleep and strengthens circadian rhythms in severe Alzheimer’s disease patients. Behav Sleep Med 1(1): 22-36. (2003).
[http://dx.doi.org/10.1207/S15402010BSM0101_4] [PMID: 15600135]
[59]
van Maanen A, Meijer AM, van der Heijden KB, Oort FJ. The effects of light therapy on sleep problems: a systematic review and meta-analysis. Sleep Med Rev 29: 52-62. (2016).
[http://dx.doi.org/10.1016/j.smrv.2015.08.009] [PMID: 26606319]
[60]
Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak CP. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 26(3): 342-92. (2003).
[http://dx.doi.org/10.1093/sleep/26.3.342] [PMID: 12749557]
[61]
Praschak-Rieder N, Willeit M. Treatment of seasonal affective disorders. Dialogues Clin Neurosci 5(4): 389-98. (2003).
[PMID: 22033639]
[62]
Figueiro MG, Hunter CM, Higgins P, Hornick T, Jones GE, Plitnick B, et al. Tailored lighting intervention for persons with dementia and caregivers living at home. Sleep Health 1(4): 322-30. (2015).
[http://dx.doi.org/10.1016/j.sleh.2015.09.003] [PMID: 27066526]
[63]
Münch M, Schmieder M, Bieler K, Goldbach R, Fuhrmann T, Zumstein N, et al. Bright light delights: effects of daily light exposure on emotions, restactivity cycles, sleep and melatonin secretion in severely demented patients. Curr Alzheimer Res 14(10): 1063-75. (2017).
[http://dx.doi.org/10.2174/1567205014666170523092858] [PMID: 28545364]
[64]
Riemersma-van der Lek RF, Swaab DF, Twisk J, Hol EM, Hoogendijk WJ, Van Someren EJW. Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA 299(22): 2642-55. (2008).
[http://dx.doi.org/10.1001/jama.299.22.2642] [PMID: 18544724]
[65]
Sloane PD, Figueiro M, Garg S, Cohen LW, Reed D, Williams CS, et al. Effect of home-based light treatment on persons with dementia and their caregivers. Light Res Technol 47(2): 161-76. (2015).
[http://dx.doi.org/10.1177/1477153513517255] [PMID: 26273229]
[66]
Wahnschaffe A, Nowozin C, Haedel S, Rath A, Appelhof S, Münch M, et al. Implementation of dynamic lighting in a nursing home: impact on agitation but not on rest-activity patterns. Curr Alzheimer Res 14(10): 1076-83. (2017).
[http://dx.doi.org/10.2174/1567205014666170608092411] [PMID: 28595522]
[67]
Roebuck A, Monasterio V, Gederi E, Osipov M, Behar J, Malhotra A, et al. A review of signals used in sleep analysis. Physiol Meas 35(1): R1-R57. (2014).
[http://dx.doi.org/10.1088/0967-3334/35/1/R1] [PMID: 24346125]
[68]
Almeida Mendes de M, da Silva ICM, Ramires VV, Reichert FF, Martins RC, Tomasi E. Calibration of raw accelerometer data to measure physical activity: a systematic review. Gait Posture 61: 98-110. (2018).
[http://dx.doi.org/10.1016/j.gaitpost.2017.12.028]
[69]
Rowlands AV, Stiles VH. Accelerometer counts and raw acceleration output in relation to mechanical loading. J Biomech 45(3): 448-54. (2012).
[http://dx.doi.org/10.1016/j.jbiomech.2011.12.006] [PMID: 22218284]
[70]
John D, Freedson P. ActiGraph and Actical physical activity monitors: a peek under the hood. Med Sci Sports Exerc 44(1): S86-9. (2012).
[http://dx.doi.org/10.1249/MSS.0b013e3182399f5e] [PMID: 22157779]
[71]
Berger AM, Wielgus KK, Young-McCaughan S, Fischer P, Farr L, Lee KA. Methodological challenges when using actigraphy in research. J Pain Symptom Manage 36(2): 191-9. (2008).
[http://dx.doi.org/10.1016/j.jpainsymman.2007.10.008] [PMID: 18400460]
[72]
Marino M, Li Y, Rueschman MN, Winkelman JW, Ellenbogen JM, Solet JM. Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep (Basel) 36(11): 1747-55. (2013).
[http://dx.doi.org/10.5665/sleep.3142] [PMID: 24179309]
[73]
Cole RJ, Kripke DF, Gruen W, Mullaney DJ, Gillin JC. Automatic sleep/wake identification from wrist activity. Sleep 15(5): 461-9. (1992).
[http://dx.doi.org/10.1093/sleep/15.5.461] [PMID: 1455130]
[74]
de Zambotti M, Claudatos S, Inkelis S, Colrain IM, Baker FC. Zambotti de M. Evaluation of a consumer fitness-tracking device to assess sleep in adults. Chronobiol Int 32(7): 1024-8. (2015).
[http://dx.doi.org/10.3109/07420528.2015.1054395] [PMID: 26158542]
[75]
Zinkhan M, Berger K, Hense S, Nagel M, Obst A, Koch B, et al. Agreement of different methods for assessing sleep characteristics: a comparison of two actigraphs, wrist and hip placement, and self-report with polysomnography. Sleep Med 15(9): 1107-14. (2014).
[http://dx.doi.org/10.1016/j.sleep.2014.04.015] [PMID: 25018025]
[76]
Taibi DM, Landis CA, Vitiello MV. Concordance of polysomnographic and actigraphic measurement of sleep and wake in older women with insomnia. J Clin Sleep Med 9(3): 217-25. (2013).
[http://dx.doi.org/10.5664/jcsm.2482] [PMID: 23493815]
[77]
Paquet J, Kawinska A, Carrier J. Wake detection capacity of actigraphy during sleep. Sleep 30(10): 1362-9. (2007).
[http://dx.doi.org/10.1093/sleep/30.10.1362] [PMID: 17969470]
[78]
Smith MT, McCrae CS, Cheung J, Martin JL, Harrod CG, Heald JL, et al. Use of Actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: an american academy of sleep medicine clinical practice guideline. J Clin Sleep Med 14(7): 1231-7. (2018).
[http://dx.doi.org/10.5664/jcsm.7230] [PMID: 29991437]
[79]
Cornelissen G. Cosinor-based rhythmometry. Theor Biol Med Model 11: 16. (2014).
[http://dx.doi.org/10.1186/1742-4682-11-16] [PMID: 24725531]
[80]
Halberg F, Tong YL, Johnson EA. Circadian system phase - an aspect of temporal morphology, procedures and illustrative examples. In: Mayersbach H, Ed. Symposium on Rhythmic Research. 20-48.
[http://dx.doi.org/10.1007/978-3-642-88394-1_2]
[81]
Lentz MJ. Time-series analysis--cosinor analysis: a special case. West J Nurs Res 12(3): 408-12. (1990).
[http://dx.doi.org/10.1177/019394599001200313] [PMID: 2363294]
[82]
Ancoli-Israel S, Martin JL, Kripke DF, Marler M, Klauber MR. Effect of light treatment on sleep and circadian rhythms in demented nursing home patients. J Am Geriatr Soc 50(2): 282-9. (2002).
[http://dx.doi.org/10.1046/j.1532-5415.2002.50060.x] [PMID: 12028210]
[83]
Ancoli-Israel S, Martin JL, Gehrman P, Shochat T, Corey-Bloom J, Marler M, et al. Effect of light on agitation in institutionalized patients with severe Alzheimer disease. Am J Geriatr Psychiatry 11(2): 194-203. (2003).
[http://dx.doi.org/10.1097/00019442-200303000-00010] [PMID: 12611749]
[84]
Sloane PD, Williams CS, Mitchell CM, Preisser JS, Wood W, Barrick AL, et al. High-intensity environmental light in dementia: effect on sleep and activity. J Am Geriatr Soc 55(10): 1524-33. (2007).
[http://dx.doi.org/10.1111/j.1532-5415.2007.01358.x] [PMID: 17714459]
[85]
van Someren EJW, Hagebeuk EE, Lijzenga C, Scheltens P, de Rooij SE, Jonker C, et al. Circadian rest-activity rhythm disturbances in Alzheimer’s disease. Biol Psychiatry 40(4): 259-70. (1996).
[http://dx.doi.org/10.1016/0006-3223(95)00370-3] [PMID: 8871772]
[86]
Gonçalves BS, Adamowicz T, Louzada FM, Moreno CR, Araujo JF. A fresh look at the use of nonparametric analysis in actimetry. Sleep Med Rev 20: 84-91. (2015).
[http://dx.doi.org/10.1016/j.smrv.2014.06.002] [PMID: 25065908]
[87]
Figueiro MG, Plitnick BA, Lok A, Jones GE, Higgins P, Hornick TR, et al. Tailored lighting intervention improves measures of sleep, depression, and agitation in persons with Alzheimer’s disease and related dementia living in long-term care facilities. Clin Interv Aging 9: 1527-37. (2014).
[http://dx.doi.org/10.2147/CIA.S68557] [PMID: 25246779]
[88]
McCurry SM, Gibbons LE, Logsdon RG, Vitiello MV, Teri L. Nighttime insomnia treatment and education for Alzheimer’s disease: a randomized, controlled trial. J Am Geriatr Soc 53(5): 793-802. (2005).
[http://dx.doi.org/10.1111/j.1532-5415.2005.53252.x] [PMID: 15877554]
[89]
Yamadera H, Ito T, Suzuki H, Asayama K, Ito R, Endo S. Effects of bright light on cognitive disturbances in Alzheimer-type dementia. Psychiatry Clin Neurosci 54: 352-3. (2000).
[http://dx.doi.org/10.1046/j.1440-1819.2000.00711.x] [PMID: 11186110]
[90]
Fetveit A, Skjerve A, Bjorvatn B. Bright light treatment improves sleep in institutionalised elderly--an open trial. Int J Geriatr Psychiatry 18(6): 520-6. (2003).
[http://dx.doi.org/10.1002/gps.852] [PMID: 12789673]
[91]
Fetveit A, Bjorvatn B. The effects of bright-light therapy on actigraphical measured sleep last for several weeks post-treatment. A study in a nursing home population. J Sleep Res 13(2): 153-8. (2004).
[http://dx.doi.org/10.1111/j.1365-2869.2004.00396.x] [PMID: 15175095]
[92]
McCurry SM, Pike KC, Vitiello MV, Logsdon RG, Larson EB, Teri L. Increasing walking and bright light exposure to improve sleep in community-dwelling persons with Alzheimer’s disease: results of a randomized, controlled trial. J Am Geriatr Soc 59(8): 1393-402. (2011).
[http://dx.doi.org/10.1111/j.1532-5415.2011.03519.x] [PMID: 21797835]
[93]
Mishima K, Hishikawa Y, Okawa M. Randomized, dim light controlled, crossover test of morning bright light therapy for rest-activity rhythm disorders in patients with vascular dementia and dementia of Alzheimer’s type. Chronobiol Int 15(6): 647-54. (1998).
[http://dx.doi.org/10.3109/07420529808993200] [PMID: 9844752]
[94]
Satlin A, Volicer L, Ross V, Herz L, Campbell S. Bright light treatment of behavioral and sleep disturbances in patients with Alzheimer’s disease. Am J Psychiatry 149(8): 1028-32. (1992).
[http://dx.doi.org/10.1176/ajp.149.8.1028] [PMID: 1353313]
[95]
Dowling GA, Burr RL, Van Someren EJW, et al. Melatonin and bright-light treatment for rest-activity disruption in institutionalized patients with Alzheimer’s disease. J Am Geriatr Soc 56(2): 239-46. (2008).
[http://dx.doi.org/10.1111/j.1532-5415.2007.01543.x] [PMID: 18070004]
[96]
Dowling GA, Hubbard EM, Mastick J, Luxenberg JS, Burr RL, Van Someren EJW. Effect of morning bright light treatment for rest-activity disruption in institutionalized patients with severe Alzheimer’s disease. Int Psychogeriatr 17(2): 221-36. (2005).
[http://dx.doi.org/10.1017/S1041610205001584] [PMID: 16050432]
[97]
Fontana Gasio P, Kräuchi K, Cajochen C. Someren Ev, Amrhein I, Pache M, et al. Dawn-dusk simulation light therapy of disturbed circadian rest-activity cycles in demented elderly. Exp Gerontol 38(1-2): 207-16. (2003).
[http://dx.doi.org/10.1016/S0531-5565(02)00164-X] [PMID: 12543279]
[98]
Skjerve A, Holsten F, Aarsland D, Bjorvatn B, Nygaard HA, Johansen IM. Improvement in behavioral symptoms and advance of activity acrophase after short-term bright light treatment in severe dementia. Psychiatry Clin Neurosci 58(4): 343-7. (2004).
[http://dx.doi.org/10.1111/j.1440-1819.2004.01265.x] [PMID: 15298644]
[99]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3): 189-98. (1975).
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[100]
Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry 140: 566-72. (1982).
[http://dx.doi.org/10.1192/bjp.140.6.566] [PMID: 7104545]
[101]
Ito T, Yamadera H, Ito R, Suzuki H, Asayama K, Endo S. Effects of vitamin B12 on bright light on cognitive and sleep-wake rhythm in Alzheimer-type dementia. Psychiatry Clin Neurosci 55(3): 281-2. (2001).
[http://dx.doi.org/10.1046/j.1440-1819.2001.00860.x] [PMID: 11422876]
[102]
Van Someren EJW, Pticek MD, Speelman JD, Schuurman PR, Esselink R, Swaab DF. New actigraph for long-term tremor recording. Mov Disord 21(8): 1136-43. (2006).
[http://dx.doi.org/10.1002/mds.20900] [PMID: 16639727]
[103]
Tonelli M, Wiebe N, Straus S, Fortin M, Guthrie B, James MT, et al. Alberta Kidney Disease Network. Multimorbidity, dementia and health care in older people: a population-based cohort study. CMAJ Open 5(3): E623-31. (2017).
[http://dx.doi.org/10.9778/cmajo.20170052] [PMID: 28811281]
[104]
Ard MC, Edland SD. Power calculations for clinical trials in Alzheimer’s disease. J Alzheimers Dis 26(3): 369-77. (2011).
[http://dx.doi.org/10.3233/JAD-2011-0062] [PMID: 21971476]
[105]
Huang Z, Muniz-Terrera G, Tom BDM. Power analysis to detect treatment effects in longitudinal clinical trials for Alzheimer’s disease. Alzheimers Dement 3(3): 360-6. (2017).
[http://dx.doi.org/10.1016/j.trci.2017.04.007] [PMID: 28890916]
[106]
Faul F, Erdfelder E, Lang AG, Buchner AG. *Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2): 175-91. (2007).
[http://dx.doi.org/10.3758/BF03193146] [PMID: 17695343]
[107]
Ancoli-Israel S, Martin JL, Blackwell T, Buenaver L, Liu L, Meltzer LJ, et al. The SBSM guide to actigraphy monitoring: clinical and research applications. Behav Sleep Med 13(1): S4-3. (2015).
[http://dx.doi.org/10.1080/15402002.2015.1046356] [PMID: 26273913]
[108]
Driller MW, O’Donnell S, Tavares F. What wrist should you wear your actigraphy device on? Analysis of dominant vs. non-dominant wrist actigraphy for measuring sleep in healthy adults. Sleep Sci 10(3): 132-5. (2017).
[http://dx.doi.org/10.5935/1984-0063.20170023] [PMID: 29410743]
[109]
Dowling GA, Mastick J, Hubbard EM, Luxenberg JS, Burr RL. Effect of timed bright light treatment for rest-activity disruption in institutionalized patients with Alzheimer’s disease. Int J Geriatr Psychiatry 20(8): 738-43. (2005).
[http://dx.doi.org/10.1002/gps.1352] [PMID: 16035127]
[110]
van Someren EJW. Improving actigraphic sleep estimates in insomnia and dementia: how many nights? J Sleep Res 16(3): 269-75. (2007).
[http://dx.doi.org/10.1111/j.1365-2869.2007.00592.x] [PMID: 17716276]
[111]
Edwardson CL, Gorely T. Epoch length and its effect on physical activity intensity. Med Sci Sports Exerc 42(5): 928-34. (2010).
[http://dx.doi.org/10.1249/MSS.0b013e3181c301f5] [PMID: 19996997]
[112]
Martin JL, Hakim AD. Wrist actigraphy. Chest 139(6): 1514-27. (2011).
[http://dx.doi.org/10.1378/chest.10-1872] [PMID: 21652563]
[113]
Figueiro MG, Plitnick B, Rea MS. Research note: a self-luminous light table for persons with Alzheimer’s disease. Light Res Technol 48(2): 253-9. (2016).
[http://dx.doi.org/10.1177/1477153515603881] [PMID: 27171939]
[114]
Colenda CC, Cohen W, McCall WV, Rosenquist PB. Phototherapy for patients with Alzheimer disease with disturbed sleep patterns: results of a community-based pilot study. Alzheimer Dis Assoc Disord 11(3): 175-8. (1997).
[http://dx.doi.org/10.1097/00002093-199709000-00011] [PMID: 9305504]
[115]
Sliney DH. Eye protective techniques for bright light. Ophthalmology 90(8): 937-44. (1983).
[http://dx.doi.org/10.1016/S0161-6420(83)80021-9] [PMID: 6634078]
[116]
Lam RW, Tam EM. A Clinician’s Guide to Using Light Therapy New York: Cambridge University Press. (2009).
[117]
Jensen L, Padilla R. Effectiveness of environment-based interventions that address behavior, perception, and falls in people with Alzheimer’s disease and related major neurocognitive disorders: a Systematic Review Am J Occup Ther 71(5): p1-, p10 (2017).
[http://dx.doi.org/10.5014/ajot.2017.027409] [PMID: 28809653]
[118]
Zhao QF, Tan L, Wang HF, Jiang T, Tan MS, Tan L, et al. The prevalence of neuropsychiatric symptoms in Alzheimer’s disease: Systematic review and meta-analysis. J Affect Disord 190: 264-71. (2016).
[http://dx.doi.org/10.1016/j.jad.2015.09.069] [PMID: 26540080]
[119]
Aarts MPJ, Rosemann ALP. Towards a uniform specification of light therapy devices for the treatment of affective disorders and use for non-image forming effects: Radiant flux. J Affect Disord 235: 142-9. (2018).
[http://dx.doi.org/10.1016/j.jad.2018.04.020] [PMID: 29656258]
[120]
Figueiro MG, Hamner R, Higgins P, Hornick T, Rea MS. Field measurements of light exposures and circadian disruption in two populations of older adults. J Alzheimers Dis 31(4): 711-5. (2012).
[http://dx.doi.org/10.3233/JAD-2012-120484] [PMID: 22699845]
[121]
Figueiro MG, Hamner R, Bierman A, Rea MS. Comparisons of three practical field devices used to measure personal light exposures and activity levels. Light Res Technol 45(4): 421-34. (2013).
[http://dx.doi.org/10.1177/1477153512450453] [PMID: 24443644]
[122]
McCarney R, Warner J, Iliffe S, van Haselen R, Griffin M, Fisher P. The Hawthorne Effect: a randomised, controlled trial. BMC Med Res Methodol 7(1): 30. (2007).
[http://dx.doi.org/10.1186/1471-2288-7-30] [PMID: 17608932]
[123]
Burns A, Allen H, Tomenson B, Duignan D, Byrne J. Bright light therapy for agitation in dementia: a randomized controlled trial. Int Psychogeriatr 21(4): 711-21. (2009).
[http://dx.doi.org/10.1017/S1041610209008886] [PMID: 19323872]
[124]
Duffy JF, Czeisler CA. Effect of light on human circadian physiology. Sleep Med Clin 4(2): 165-77. (2009).
[http://dx.doi.org/10.1016/j.jsmc.2009.01.004] [PMID: 20161220]
[125]
Sinoo MM, van Hoof J, de Kort HSM. Light conditions for older adults in the nursing home: assessment of environmental illuminances and colour temperature. Build Environ 46(10): 1917-27. (2011).
[http://dx.doi.org/10.1016/j.buildenv.2011.03.013]
[126]
De Lepeleire J, Bouwen A, De Coninck L, Buntinx F. Lepeleire de J. Insufficient lighting in nursing homes. J Am Med Dir Assoc 8(5): 314-7. (2007).
[http://dx.doi.org/10.1016/j.jamda.2007.01.003] [PMID: 17570310]
[127]
van der Ploeg ES, O’Connor DW. Methodological challenges in studies of bright light therapy to treat sleep disorders in nursing home residents with dementia. Psychiatry Clin Neurosci 68(11): 777-84. (2014).
[http://dx.doi.org/10.1111/pcn.12192] [PMID: 24735203]
[128]
Rubiño JA, Gamundí A, Akaarir M, et al. Effects of differences in the availability of light upon the circadian rhythms of institutionalized elderly. Chronobiol Int 34(9): 1197-210. (2017).
[http://dx.doi.org/10.1080/07420528.2017.1356840] [PMID: 28910551]
[129]
Hanford N, Figueiro M. Light therapy and Alzheimer’s disease and related dementia: past, present, and future. J Alzheimers Dis 33(4): 913-22. (2013).
[http://dx.doi.org/10.3233/JAD-2012-121645] [PMID: 23099814]
[130]
Aarts MP, Aries MB, Diakoumis A, van Hoof J. Shedding a light on phototherapy studies with people having dementia: a critical review of the methodology from a light perspective. Am J Alzheimers Dis Other Demen 31(7): 551-63. (2016).
[http://dx.doi.org/10.1177/1533317515628046] [PMID: 26980717]
[131]
Hubalek S, Brink M, Schierz C. Office workers’ daily exposure to light and its influence on sleep quality and mood. Light Res Technol 42(1): 33-50. (2010).
[http://dx.doi.org/10.1177/1477153509355632]
[132]
Hsiao RS, Kao CH, Chen TX, Chen JL. A passive RFID-based location system for personnel and asset monitoring. Technol Health Care 26(1): 11-6. (2018).
[http://dx.doi.org/10.3233/THC-171402] [PMID: 29060949]
[133]
Hsu CC, Chen JH. A novel sensor-assisted RFID-based indoor tracking system for the elderly living alone. Sensors (Basel) 11(11): 10094-113. (2011).
[http://dx.doi.org/10.3390/s111110094] [PMID: 22346631]
[134]
Anderson JL, Glod CA, Dai J, Cao Y, Lockley SW. Lux vs. wavelength in light treatment of Seasonal Affective Disorder. Acta Psychiatr Scand 120(3): 203-12. (2009).
[http://dx.doi.org/10.1111/j.1600-0447.2009.01345.x] [PMID: 19207131]
[135]
Enezi Ja, Revell V, Brown T, Wynne J, Schlangen L, Lucas RA. “melanopic” spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights. J Biol Rhythms 26(4): 314-23. (2011).
[http://dx.doi.org/10.1177/0748730411409719] [PMID: 21775290]
[136]
Güler AD, Altimus CM, Ecker JL, Hattar S. Multiple photoreceptors contribute to nonimage-forming visual functions predominantly through melanopsin-containing retinal ganglion cells. Cold Spring Harb Symp Quant Biol 72: 509-15. (2007).
[http://dx.doi.org/10.1101/sqb.2007.72.074] [PMID: 18522518]
[137]
Lucas RJ, Peirson SN, Berson DM, Brown TM, Cooper HM, Czeisler CA, et al. Measuring and using light in the melanopsin age. Trends Neurosci 37(1): 1-9. (2014).
[http://dx.doi.org/10.1016/j.tins.2013.10.004] [PMID: 24287308]
[138]
Westrin A, Lam RW. Seasonal affective disorder: a clinical update. Ann Clin Psychiatry 19(4): 239-46. (2007).
[http://dx.doi.org/10.1080/10401230701653476] [PMID: 18058281]
[139]
Wirz-Justice A. How to measure circadian rhythms in humans. Mediographia 29(1): 84-90. (2007).
[140]
McGrath D. FractalsNonlinear Analysis for Human Movement Variability Boca Raton: CRC Press. (2016).
[141]
Refinetti R, Lissen GC, Halberg F. Procedures for numerical analysis of circadian rhythms. Biol Rhythm Res 38(4): 275-325. (2007).
[http://dx.doi.org/10.1080/09291010600903692] [PMID: 23710111]
[142]
Weiss A, Sharifi S, Plotnik M, van Vugt JPP, Giladi N, Hausdorff JM. Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer. Neurorehabil Neural Repair 25(9): 810-8. (2011).
[http://dx.doi.org/10.1177/1545968311424869] [PMID: 21989633]
[143]
Reichert M, Lutz A, Deuschle M, Gilles M, Hill H, Limberger MF, et al. Improving motor activity assessment in depression: which sensor placement, analytic strategy and diurnal time frame are most powerful in distinguishing patients from controls and monitoring treatment effects. PLoS One 10(4)e0124231 (2015).
[http://dx.doi.org/10.1371/journal.pone.0124231] [PMID: 25885258]
[144]
Weiss A, Brozgol M, Dorfman M, Herman T, Shema S, Giladi N, et al. Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabil Neural Repair 27(8): 742-52. (2013).
[http://dx.doi.org/10.1177/1545968313491004] [PMID: 23774124]
[145]
Hu K, Ivanov PCh, Chen Z, Hilton MF, Stanley HE, Shea SA. Non-random fluctuations and multi-scale dynamics regulation of human activity. Physica A 337(1-2): 307-18. (2004).
[http://dx.doi.org/10.1016/j.physa.2004.01.042] [PMID: 15759365]
[146]
Hu K, Van Someren EJW, Shea SA, Scheer FAJL. Reduction of scale invariance of activity fluctuations with aging and Alzheimer’s disease: involvement of the circadian pacemaker. Proc Natl Acad Sci USA 106(8): 2490-4. (2009).
[http://dx.doi.org/10.1073/pnas.0806087106] [PMID: 19202078]
[147]
Hu K, Harper DG, Shea SA, Stopa EG, Scheer FAJL. Noninvasive fractal biomarker of clock neurotransmitter disturbance in humans with dementia. Sci Rep 3: 2229. (2013).
[http://dx.doi.org/10.1038/srep02229] [PMID: 23863985]
[148]
Li P, Yu L, Lim ASP, Scheer FAJL, Shea SA, Schneider JA, et al. Fractal regulation and incident Alzheimer’s disease in elderly individuals. Alzheimers Dement 14(9): 1114-25. (2018).
[http://dx.doi.org/10.1016/j.jalz.2018.03.010] [PMID: 29733807]
[149]
Hu K, Riemersma-van der Lek RF, Patxot M, Li P, Shea SA, Scheer FA, et al. Progression of dementia assessed by temporal correlations of physical activity: results from a 3.5-year, longitudinal randomized controlled trial. Sci Rep 6: 27742. (2016).
[http://dx.doi.org/10.1038/srep27742] [PMID: 27292543]
[150]
Althoff T, Sosič R, Hicks JL, King AC, Delp SL, Leskovec J. Large-scale physical activity data reveal worldwide activity inequality. Nature 547(7663): 336-9. (2017).
[http://dx.doi.org/10.1038/nature23018] [PMID: 28693034]
[151]
Tedesco S, Barton J, O’Flynn B. A review of activity trackers for senior citizens: research perspectives, commercial landscape and the role of the insurance industry. Sensors (Basel) 17(6)E1277 (2017).
[http://dx.doi.org/10.3390/s17061277] [PMID: 28587188]
[152]
Ibarra-Esquer JE, González-Navarro FF, Flores-Rios BL, Burtseva L, Astorga-Vargas MA. Tracking the evolution of the Internet of things concept across different application domains. Sensors (Basel) 17(6) E1379 (2017).
[http://dx.doi.org/10.3390/s17061379] [PMID: 28613238]
[153]
Shelgikar AV, Anderson PF, Stephens MR. Sleep tracking, wearable technology, and opportunities for research and clinical care. Chest 150(3): 732-43. (2016).
[http://dx.doi.org/10.1016/j.chest.2016.04.016] [PMID: 27132701]
[154]
Kredlow MA, Capozzoli MC, Hearon BA, Calkins AW, Otto MW. The effects of physical activity on sleep: a meta-analytic review. J Behav Med 38(3): 427-49. (2015).
[http://dx.doi.org/10.1007/s10865-015-9617-6] [PMID: 25596964]
[155]
Reid KJ, Zee PC. Circadian disorders of the sleep-wake cycle. In (Eds: Kryger MH, Roth T and Dement WC). Principles and practice of sleep medicine: Fourth Edition Elsevier Inc 2005; pp. 691- 449
[http://dx.doi.org/10.1016/B0-72-160797-7/50065-3]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy