Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Cholinesterase Inhibitors for Alzheimer's Disease: Multitargeting Strategy Based on Anti-Alzheimer's Drugs Repositioning

Author(s): Md. Tanvir Kabir, Md. Sahab Uddin*, Mst. Marium Begum, Shanmugam Thangapandiyan, Md. Sohanur Rahman, Lotfi Aleya, Bijo Mathew, Muniruddin Ahmed, George E. Barreto and Ghulam Md. Ashraf

Volume 25, Issue 33, 2019

Page: [3519 - 3535] Pages: 17

DOI: 10.2174/1381612825666191008103141

Price: $65

Abstract

In the brain, acetylcholine (ACh) is regarded as one of the major neurotransmitters. During the advancement of Alzheimer's disease (AD) cholinergic deficits occur and this can lead to extensive cognitive dysfunction and decline. Acetylcholinesterase (AChE) remains a highly feasible target for the symptomatic improvement of AD. Acetylcholinesterase (AChE) remains a highly viable target for the symptomatic improvement in AD because cholinergic deficit is a consistent and early finding in AD. The treatment approach of inhibiting peripheral AChE for myasthenia gravis had effectively proven that AChE inhibition was a reachable therapeutic target. Subsequently tacrine, donepezil, rivastigmine, and galantamine were developed and approved for the symptomatic treatment of AD. Since then, multiple cholinesterase inhibitors (ChEIs) have been continued to be developed. These include newer ChEIs, naturally derived ChEIs, hybrids, and synthetic analogues. In this paper, we summarize the different types of ChEIs which are under development and their respective mechanisms of actions.

Keywords: Acetylcholine, acetylcholinesterase inhibitors, tacrine, donepezil, galantamine, rivastigmine, Alzheimer’s disease.

[1]
Uddin MS, Stachowiak A, Mamun AA, et al. Autophagy and Alzheimer’s disease: from molecular mechanisms to therapeutic implications. Front Aging Neurosci 2018; 10: 1-18.
[http://dx.doi.org/10.3389/fnagi.2018.00004] [PMID: 29441009]
[2]
Alzheimer’s Disease Facts and Figures Includes a Special Report on Alzheimer’s Detection in the Primary Care Setting: Connecting Patients and Physicians 2019.
[3]
Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 2013; 80(19): 1778-83.
[http://dx.doi.org/10.1212/WNL.0b013e31828726f5] [PMID: 23390181]
[4]
Uddin MS, Al Mamun A, Asaduzzaman M, et al. Spectrum of disease and prescription pattern for outpatients with neurological disorders: an empirical pilot study in Bangladesh. Ann Neurosci 2018; 25(1): 25-37.
[http://dx.doi.org/10.1159/000481812] [PMID: 29887680]
[5]
Uddin M, Mamun A, Sarwar M, et al. Medicine that causes memory loss: risk of neurocognitive disorders. Int Neuropsychiatr Dis J 2016; 8: 1-18.
[http://dx.doi.org/10.9734/INDJ/2016/26317]
[6]
Uddin MS, Kabir MT, Al Mamun A, Abdel-Daim MM, Barreto GE, Ashraf GM. APOE and Alzheimer’s disease: evidence mounts that targeting APOE4 may combat Alzheimer’s pathogenesis. Mol Neurobiol 2019; 56(4): 2450-65.
[http://dx.doi.org/10.1007/s12035-018-1237-z] [PMID: 30032423]
[7]
Uddin MS, Mamun AA, Takeda S, Sarwar MS, Begum MM. Analyzing the chance of developing dementia among geriatric people: a cross-sectional pilot study in Bangladesh. Psychogeriatrics 2019; 19(2): 87-94.
[http://dx.doi.org/10.1111/psyg.12368] [PMID: 30221441]
[8]
Ito N. Clinical aspects of dementia. Hokkaido Igaku Zasshi 1996; 71(3): 315-20.
[PMID: 8752526]
[9]
American Psychiatric Association American Psychiatric Association. Task Force on DSM-IV. (2000) Diagnostic and statistical manual of mental disorders: DSM-IV-TR. American Psychiatric Association. 2000.
[10]
Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 1991; 12(10): 383-8.
[http://dx.doi.org/10.1016/0165-6147(91)90609-V] [PMID: 1763432]
[11]
Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron 1991; 6(4): 487-98.
[http://dx.doi.org/10.1016/0896-6273(91)90052-2] [PMID: 1673054]
[12]
Uddin MS, Kabir MT. Oxidative stress in Alzheimer’s disease: molecular hallmarks of underlying vulnerability. In: Ashraf G, Alexiou A, Eds. Biological, Diagnostic and Therapeutic Advances in Alzheimer’s Disease. Springer: Singapore 2019.
[13]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[14]
Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front Neurosci 2018; 12: 25.
[http://dx.doi.org/10.3389/fnins.2018.00025] [PMID: 29440986]
[15]
Uddin MS, Asaduzzaman M, Mamun AA, et al. Neuroprotective activity of Asparagus racemosus Linn. against ethanol- induced cognitive impairment and oxidative stress in rats brain: auspicious for controlling the risk of Alzheimer’s Disease. J Alzheimer’s Dis Park 2016; 6: 1-10.
[http://dx.doi.org/10.4172/2161-0460.1000245]
[16]
Uddin MS, Haque A, Al Mamun A, et al. Searching the linkage between high fat diet and Alzheimer′s disease: a debatable proof stand for ketogenic diet to alleviate symptoms of Alzheimer′s patient with APOE ε4 allele. J Neurol Neurophysiol 2016; 07: 1-9.
[http://dx.doi.org/10.4172/2155-9562.1000397]
[17]
Rahman A, Haque A, Uddin M, et al. In vitro screening for antioxidant and anticholinesterase effects of Uvaria littoralis Blume.: a nootropic phytotherapeutic remedy. J Intellect Disabil - Diagnosis Treat 2017; 5: 50-60.
[18]
Uddin MS. Mamun AAl, Kabir MT, et al. Neurochemistry of neurochemicals: messengers of brain functions. J Intellect Disabil - Diagnosis Treat 2018; 5: 137-51.
[19]
Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimers Dis 2012; 2012728983
[http://dx.doi.org/10.1155/2012/728983] [PMID: 22216416]
[20]
Uddin MS, Amran MS. Handbook of Research on Critical Examinations of Neurodegenerative Disorders. Pennsylvania: IGI Global 2018.
[21]
Henry W, Querfurth MD, Ph D, Frank M, LaFerla P. Mechanisms of Alzheimer’s disease. N Engl J Med 2010; 362(362): 329-44.
[http://dx.doi.org/10.1016/B978-1-4160-6231-8.10054-6]
[22]
Ashraf GM, Uddin MS. Advances in Dementia Research. UK: IntechOpen 2019.
[http://dx.doi.org/10.5772/intechopen.78252]
[23]
Hossain MF, Uddin MS, Uddin GMS, et al. Melatonin in Alzheimer’s disease: a latent endogenous regulator of neurogenesis to mitigate Alzheimer’s neuropathology. Mol Neurobiol 2019; 1-22.
[http://dx.doi.org/10.1007/s12035-019-01660-3]
[24]
Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 2011; 10(9): 819-28.
[http://dx.doi.org/10.1016/S1474-4422(11)70072-2] [PMID: 21775213]
[25]
Kabir MT, Abu Sufian M, Uddin MS, et al. NMDA receptor antagonists: repositioning of memantine as multitargeting agent for Alzheimer’s therapy. Curr Pharm Des 2019; 25: 1-13.
[http://dx.doi.org/10.2174/1381612825666191011102444]
[26]
Uddin MS, Upaganlawar AB. Oxidative stress and antioxidant defense: biomedical value in health and diseases. Nova Science Publishers: USA 2019.
[27]
Iadecola C, Yaffe K, Biller J, et al. Impact of hypertension on cognitive function: a scientific statement from the American Heart Association. Hypertens (Dallas, Tex 1979) 2016; 68: e67-94.
[http://dx.doi.org/10.1161/HYP.0000000000000053 ]
[28]
Korolev IO. Alzheimer ’s disease: a clinical and basic science review. Med Student Res J 2014; 04: 24-33.
[29]
Hof PR, Mobbs CV. Functional neurobiology of aging. Academic Press 2001.
[30]
Uno H, Alsum PB, Dong S, et al. Cerebral amyloid angiopathy and plaques, and visceral amyloidosis in aged macaques. Neurobiol Aging 1996; 17(2): 275-81.
[http://dx.doi.org/10.1016/0197-4580(95)02063-2] [PMID: 8744409]
[31]
Mackenzie IRA. Senile plaques do not progressively accumulate with normal aging. Acta Neuropathol 1994; 87(5): 520-5.
[http://dx.doi.org/10.1007/BF00294179] [PMID: 8059605]
[32]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1): a006189-9.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[33]
Vickers JC, Mitew S, Woodhouse A, et al. Defining the earliest pathological changes of Alzheimer’s disease. Curr Alzheimer Res 2016; 13(3): 281-7.
[http://dx.doi.org/10.2174/1567205013666151218150322] [PMID: 26679855]
[34]
Armstrong RA. The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer’s disease. Folia Neuropathol 2009; 47(4): 289-99.
[PMID: 20054780]
[35]
Al Mamun A, Uddin MS, Wahid F, Ashraful MI, Mosiqur RM. Neurodefensive effect of Olea europaea L. in alloxan-induced cognitive dysfunction and brain tissue oxidative stress in mice: incredible natural nootropic. J Neurol Neurosci 2016; 7: 1-9.
[http://dx.doi.org/10.21767/2171-6625.1000126]
[36]
Uddin MS, Al Mamun A, Kabir MT, et al. Nootropic and anti-Alzheimer’s actions of medicinal plants: molecular insight into therapeutic potential to alleviate Alzheimer’s neuropathology. Mol Neurobiol 2019; 56(7): 4925-44.
[http://dx.doi.org/10.1007/s12035-018-1420-2] [PMID: 30414087]
[37]
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82(4): 239-59.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[38]
Fukutani Y, Kobayashi K, Nakamura I, Watanabe K, Isaki K, Cairns NJ. Neurons, intracellular and extracellular neurofibrillary tangles in subdivisions of the hippocampal cortex in normal ageing and Alzheimer’s disease. Neurosci Lett 1995; 200(1): 57-60.
[http://dx.doi.org/10.1016/0304-3940(95)12083-G] [PMID: 8584267]
[39]
Gómez-Isla T, Hollister R, West H, et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 1997; 41(1): 17-24.
[http://dx.doi.org/10.1002/ana.410410106] [PMID: 9005861]
[40]
Uddin MS, Mamun AA, Labu ZK, Hidalgo-Lanussa O, Barreto GE, Ashraf GM. Autophagic dysfunction in Alzheimer’s disease: cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis. J Cell Physiol 2019; 234(6): 8094-112.
[http://dx.doi.org/10.1002/jcp.27588] [PMID: 30362531]
[41]
Munoz DG, Feldman H. Causes of Alzheimer’s disease. CMAJ 2000; 162(1): 65-72.
[PMID: 11216203]
[42]
Suárez-Pereira I, Carrión ÁM. Updating stored memory requires adult hippocampal neurogenesis. Sci Rep 2015; 5: 13993.
[http://dx.doi.org/10.1038/srep13993] [PMID: 26358557]
[43]
Perry EE, Perry RH. The cholinergic system in Alzheimer’s disease. Trends Neurosci 1982; 5: 261-2.
[http://dx.doi.org/10.1016/0166-2236(82)90165-5]
[44]
Bowen DM, Davison AN. Biochemical changes in the cholinergic system of the ageing brain and in senile dementia. Psychol Med 1980; 10(2): 315-9.
[http://dx.doi.org/10.1017/S003329170004407X] [PMID: 6104344]
[45]
Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. BMJ 1978; 2(6150): 1457-9.
[http://dx.doi.org/10.1136/bmj.2.6150.1457] [PMID: 719462]
[46]
Ulrich J, Meier-Ruge W, Probst A, Meier E, Ipsen S. Senile plaques: staining for acetylcholinesterase and A4 protein: a comparative study in the hippocampus and entorhinal cortex. Acta Neuropathol 1990; 80(6): 624-8.
[http://dx.doi.org/10.1007/BF00307630] [PMID: 1703383]
[47]
Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 1981; 10(2): 122-6.
[http://dx.doi.org/10.1002/ana.410100203] [PMID: 7283399]
[48]
Ladner CJ, Lee JM. Pharmacological drug treatment of Alzheimer disease: the cholinergic hypothesis revisited. J Neuropathol Exp Neurol 1998; 57(8): 719-31.
[http://dx.doi.org/10.1097/00005072-199808000-00001] [PMID: 9720487]
[49]
Mohs RC, Doody RS, Morris JC, et al. A 1-year, placebo-controlled preservation of function survival study of donepezil in AD patients. Neurology 2001; 57(3): 481-8.
[http://dx.doi.org/10.1212/WNL.57.3.481] [PMID: 11502917]
[50]
Raskind MA, Peskind ER, Truyen L, Kershaw P, Damaraju CV. The cognitive benefits of galantamine are sustained for at least 36 months: a long-term extension trial. Arch Neurol 2004; 61(2): 252-6.
[http://dx.doi.org/10.1001/archneur.61.2.252] [PMID: 14967774]
[51]
Giacobini E. Long-term stabilizing effect of cholinesterase inhibitors in the therapy of Alzheimer’ disease. Vienna: Springer 2002; pp. 181-7.
[http://dx.doi.org/10.1007/978-3-7091-6139-5_17]
[52]
Rees TM, Brimijoin S. The role of acetylcholinesterase in the pathogenesis of Alzheimer’s disease. Drugs Today (Barc) 2003; 39(1): 75-83.
[http://dx.doi.org/10.1358/dot.2003.39.1.740206] [PMID: 12669110]
[53]
Knapp MJ, Knopman DS, Solomon PR, Pendlebury WW, Davis CS, Gracon SI. A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. JAMA 1994; 271(13): 985-91.
[http://dx.doi.org/10.1001/jama.1994.03510370037029] [PMID: 8139083]
[54]
Winblad B, Engedal K, Soininen H, et al. A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology 2001; 57(3): 489-95.
[http://dx.doi.org/10.1212/WNL.57.3.489] [PMID: 11502918]
[55]
Raskind MA, Peskind ER, Wessel T, Yuan W. Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. Neurology 2000; 54(12): 2261-8.
[http://dx.doi.org/10.1212/WNL.54.12.2261] [PMID: 10881250]
[56]
Birks J, Grimley Evans J, Iakovidou V, et al. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev 2009; 2CD001191
[http://dx.doi.org/10.1002/14651858.CD001191.pub2]
[57]
Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 2013; 11(3): 315-35.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[58]
Krall WJ, Sramek JJ, Cutler NR. Cholinesterase inhibitors: a therapeutic strategy for Alzheimer disease. Ann Pharmacother 1999; 33(4): 441-50.
[http://dx.doi.org/10.1345/aph.18211] [PMID: 10332536]
[59]
Boada-Rovira M, Brodaty H, Cras P, et al. Efficacy and safety of donepezil in patients with Alzheimer’s disease: results of a global, multinational, clinical experience study. Drugs Aging 2004; 21(1): 43-53.
[http://dx.doi.org/10.2165/00002512-200421010-00004] [PMID: 14715043]
[60]
Manteuffel J. Use of antiemetics in children with acute gastroenteritis: are they safe and effective? J Emerg Trauma Shock 2009; 2(1): 3-5.
[http://dx.doi.org/10.4103/0974-2700.44674] [PMID: 19561947]
[61]
Wilkinson DG, Passmore AP, Bullock R, et al. A multinational, randomised, 12-week, comparative study of donepezil and rivastigmine in patients with mild to moderate Alzheimer’s disease. Int J Clin Pract 2002; 56(6): 441-6.
[PMID: 12166542]
[62]
McGleenon BM, Dynan KB, Passmore AP. Acetylcholinesterase inhibitors in Alzheimer’s disease. Br J Clin Pharmacol 1999; 48(4): 471-80.
[http://dx.doi.org/10.1046/j.1365-2125.1999.00026.x] [PMID: 10583015]
[63]
Uddin MS, Kabir MT, Tewari D, Mathew B, Aleya L. Emerging signal regulating potential of small molecule biflavonoids to combat neuropathological insults of Alzheimer’s disease. Sci Total Environ 2019; 134836: 1-11.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134836]
[64]
Kooi E-J, Prins M, Bajic N, et al. Cholinergic imbalance in the multiple sclerosis hippocampus. Acta Neuropathol 2011; 122(3): 313-22.
[http://dx.doi.org/10.1007/s00401-011-0849-4] [PMID: 21691765]
[65]
Inestrosa NC, Alvarez A, Pérez CA, et al. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 1996; 16(4): 881-91.
[http://dx.doi.org/10.1016/S0896-6273(00)80108-7] [PMID: 8608006]
[66]
Harper JD, Lieber CM, Lansbury PT Jr. Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-beta protein. Chem Biol 1997; 4(12): 951-9.
[http://dx.doi.org/10.1016/S1074-5521(97)90303-3] [PMID: 9427660]
[67]
Inestrosa NC, Sagal JP, Colombres M. Acetylcholinesterase interaction with Alzheimer amyloid beta. Subcell Biochem 2005; 38: 299-317.
[http://dx.doi.org/10.1007/0-387-23226-5_15] [PMID: 15709485]
[68]
Inestrosa NC, Alvarez A, Dinamarca MC, Pérez-Acle T, Colombres M. Acetylcholinesterase-amyloid-beta-peptide interaction: effect of congo red and the role of the Wnt pathway. Curr Alzheimer Res 2005; 2(3): 301-6.
[http://dx.doi.org/10.2174/1567205054367928] [PMID: 15974895]
[69]
Carvajal FJ, Inestrosa NC. Interactions of AChE with Aβ Aggregates in Alzheimer’s brain: therapeutic relevance of IDN 5706. Front Mol Neurosci 2011; 4: 19.
[http://dx.doi.org/10.3389/fnmol.2011.00019] [PMID: 21949501]
[70]
Mesulam MM, Geula C. Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann Neurol 1994; 36(5): 722-7.
[http://dx.doi.org/10.1002/ana.410360506] [PMID: 7979218]
[71]
Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 1999; 66(2): 137-47.
[http://dx.doi.org/10.1136/jnnp.66.2.137]
[72]
Perry EK, Atack JR, Perry RH, et al. Intralaminar neurochemical distributions in human midtemporal cortex: comparison between Alzheimer’s disease and the normal. J Neurochem 1984; 42(5): 1402-10.
[http://dx.doi.org/10.1111/j.1471-4159.1984.tb02801.x] [PMID: 6142924]
[73]
Giacobini E. Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem Res 2003; 28(3-4): 515-22.
[http://dx.doi.org/10.1023/A:1022869222652] [PMID: 12675140]
[74]
Darreh-Shori T, Almkvist O, Guan ZZ, et al. Sustained cholinesterase inhibition in AD patients receiving rivastigmine for 12 months. Neurology 2002; 59(4): 563-72.
[http://dx.doi.org/10.1212/WNL.59.4.563] [PMID: 12196650]
[75]
Greig NH, Lahiri DK, Sambamurti K. Butyrylcholinesterase: an important new target in Alzheimer’s disease therapy. Int Psychogeriatr 2002; 14(Suppl. 1): 77-91.
[http://dx.doi.org/10.1017/S1041610203008676] [PMID: 12636181]
[76]
Rösler M. The efficacy of cholinesterase inhibitors in treating the behavioural symptoms of dementia. Int J Clin Pract Suppl 2002; (127): 20-36.
[PMID: 12139365]
[77]
Giacobini E, Spiegel R, Enz A, Veroff AE, Cutler NR. Inhibition of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer’s disease by rivastigmine: correlation with cognitive benefit. J Neural Transm (Vienna) 2002; 109(7-8): 1053-65.
[http://dx.doi.org/10.1007/s007020200089] [PMID: 12111443]
[78]
Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 2002; 41(10): 719-39.
[http://dx.doi.org/10.2165/00003088-200241100-00003] [PMID: 12162759]
[79]
Liston DR, Nielsen JA, Villalobos A, et al. Pharmacology of selective acetylcholinesterase inhibitors: implications for use in Alzheimer’s disease. Eur J Pharmacol 2004; 486(1): 9-17.
[http://dx.doi.org/10.1016/j.ejphar.2003.11.080] [PMID: 14751402]
[80]
Maelicke A. Allosteric modulation of nicotinic receptors as a treatment strategy for Alzheimer’s disease. Dement Geriatr Cogn Disord 2000; 11(Suppl. 1): 11-8.
[http://dx.doi.org/10.1159/000051227] [PMID: 10971047]
[81]
White HK, Levin ED. Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer’s disease. Psychopharmacology (Berl) 1999; 143(2): 158-65.
[http://dx.doi.org/10.1007/s002130050931] [PMID: 10326778]
[82]
Poirier J. Evidence that the clinical effects of cholinesterase inhibitors are related to potency and targeting of action. Int J Clin Pract Suppl 2002; (127): 6-19.
[PMID: 12139368]
[83]
Freeman SE, Dawson RM. Tacrine: a pharmacological review. Prog Neurobiol 1991; 36(4): 257-77.
[http://dx.doi.org/10.1016/0301-0082(91)90002-I] [PMID: 1714613]
[84]
Gracon SI, Knapp MJ, Berghoff WG, et al. Safety of tacrine: clinical trials, treatment IND, and postmarketing experience. Alzheimer Dis Assoc Disord 1998; 12(2): 93-101.
[http://dx.doi.org/10.1097/00002093-199806000-00007] [PMID: 9651138]
[85]
Conway EL. A review of the randomized controlled trials of tacrine in the treatment of Alzheimer’s disease: methodologic considerations. Clin Neuropharmacol 1998; 21(1): 8-17.
[PMID: 9579280]
[86]
Johansson M, Hellström-Lindahl E, Nordberg A. Steady-state pharmacokinetics of tacrine in long-term treatment of Alzheimer patients. Dementia 1996; 7(2): 111-7.
[http://dx.doi.org/10.1159/000106863] [PMID: 8866685]
[87]
Hartvig P, Askmark H, Aquilonius SM, Wiklund L, Lindström B. Clinical pharmacokinetics of intravenous and oral 9-amino-1,2,3,4-tetrahydroacridine, tacrine. Eur J Clin Pharmacol 1990; 38(3): 259-63.
[http://dx.doi.org/10.1007/BF00315027] [PMID: 2340845]
[88]
Guentert TW, Tucker G, Korn A, Pfefen JP, Haefelfinger P, Schoerlin MP. Pharmacokinetics of moclobemide after single and multiple oral dosing with 150 milligrams 3 times daily for 15 days. Acta Psychiatr Scand Suppl 1990; 360: 91-3.
[http://dx.doi.org/10.1111/j.1600-0447.1990.tb05345.x] [PMID: 2248087]
[89]
Madden S, Spaldin V, Park BK. Clinical pharmacokinetics of tacrine. Clin Pharmacokinet 1995; 28(6): 449-57.
[http://dx.doi.org/10.2165/00003088-199528060-00003] [PMID: 7656503]
[90]
Nordberg A, Svensson A-L. Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacology. Drug Saf 1998; 19(6): 465-80.
[http://dx.doi.org/10.2165/00002018-199819060-00004] [PMID: 9880090]
[91]
Zevin S, Benowitz NL. Drug interactions with tobacco smoking. Clin Pharmacokin 1999; 36(6): 425-38.
[92]
Samuels SC, Davis KL. A risk-benefit assessment of tacrine in the treatment of Alzheimer’s disease. Drug Saf 1997; 16(1): 66-77.
[http://dx.doi.org/10.2165/00002018-199716010-00005] [PMID: 9010644]
[93]
Wagstaff AJ, McTavish D. Erratum to: Tacrine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in Alzheimer’s disease. Drugs Aging 1994; 5: 95-5.
[http://dx.doi.org/10.1007/bf03259636]
[94]
Watkins PB, Zimmerman HJ, Knapp MJ, Gracon SI, Lewis KW. Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA 1994; 271(13): 992-8.
[http://dx.doi.org/10.1001/jama.1994.03510370044030] [PMID: 8139084]
[95]
Francis GS, Grumser Y, Alteri E, et al. Hepatic reactions during treatment of multiple sclerosis with interferon-beta-1a: incidence and clinical significance. Drug Saf 2003; 26(11): 815-27.
[http://dx.doi.org/10.2165/00002018-200326110-00006] [PMID: 12908850]
[96]
Ikemoto I, Ohishi Y, Yamazaki H, Wada T, Aizawa Y. Changes in liver function induced by flutamide in patients with prostate cancer (studies in patients treated with total androgen blockage). Nippon Hinyokika Gakkai Zasshi 2000; 91(6): 556-61.
[http://dx.doi.org/10.5980/jpnjurol1989.91.556] [PMID: 10897581]
[97]
Dickerman RD, Pertusi RM, Zachariah NY, Dufour DR, McConathy WJ. Anabolic steroid-induced hepatotoxicity: is it overstated? Clin J Sport Med 1999; 9(1): 34-9.
[http://dx.doi.org/10.1097/00042752-199901000-00007] [PMID: 10336050]
[98]
Rogers SL, Farlow MR, Doody RS, Mohs R, Friedhoff LT. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Neurology 1998; 50(1): 136-45.
[http://dx.doi.org/10.1212/WNL.50.1.136] [PMID: 9443470]
[99]
Burns A, Rossor M, Hecker J, et al. The effects of donepezil in Alzheimer’s disease - results from a multinational trial. Dement Geriatr Cogn Disord 1999; 10(3): 237-44.
[http://dx.doi.org/10.1159/000017126] [PMID: 10325453]
[100]
Nochi S, Asakawa N, Sato T. Kinetic study on the inhibition of Acetylcholinesterase by 1-Benzyl-4-((5,6-dimethoxy-1-indanon)-2-yl)methylpiperidine Hydrochloride (E2020). Biol Pharm Bull 1995; 18: 1145-7.
[http://dx.doi.org/10.1248/bpb.18.1145] [PMID: 8535413]
[101]
Marquis JK. Pharmacological significance of acetylcholinesterase inhibition by tetrahydroaminoacridine. Biochem Pharmacol 1990; 40(5): 1071-6.
[http://dx.doi.org/10.1016/0006-2952(90)90495-7] [PMID: 2390104]
[102]
Imbimbo BP. Pharmacodynamic-tolerability relationships of cholinesterase inhibitors for Alzheimer’s disease. CNS Drugs 2001; 15(5): 375-90.
[http://dx.doi.org/10.2165/00023210-200115050-00004] [PMID: 11475943]
[103]
Bryson HM, Benfield P. Donepezil. Drugs Aging 1997; 10(3): 234-9.
[http://dx.doi.org/10.2165/00002512-199710030-00007] [PMID: 9108896]
[104]
Rogers SL, Friedhoff LT. Long-term efficacy and safety of donepezil in the treatment of Alzheimer’s disease: an interim analysis of the results of a US multicentre open label extension study. Eur Neuropsychopharmacol 1998; 8(1): 67-75.
[http://dx.doi.org/10.1016/S0924-977X(97)00079-5] [PMID: 9452942]
[105]
Barner EL, Gray SL. Donepezil use in Alzheimer disease. Ann Pharmacother 1998; 32(1): 70-7.
[http://dx.doi.org/10.1345/aph.17150] [PMID: 9475825]
[106]
Gauthier S, Molinuevo JL. Benefits of combined cholinesterase inhibitor and memantine treatment in moderate-severe Alzheimer’s disease. Alzheimers Dement 2013; 9(3): 326-31.
[http://dx.doi.org/10.1016/j.jalz.2011.11.005] [PMID: 23110864]
[107]
Boot BP, McDade EM, McGinnis SM, Boeve BF. Treatment of dementia with lewy bodies. Curr Treat Options Neurol 2013; 15(6): 738-64.
[http://dx.doi.org/10.1007/s11940-013-0261-6] [PMID: 24222315]
[108]
Clodomiro A, Gareri P, Puccio G, et al. Somatic comorbidities and Alzheimer’s disease treatment. Neurol Sci 2013; 34(9): 1581-9.
[http://dx.doi.org/10.1007/s10072-013-1290-3] [PMID: 23370896]
[109]
Rainer M. Galanthamine in Alzheimer’s disease: a new alternative to tacrine? CNS Drugs 1997; 7(2): 89-97.
[http://dx.doi.org/10.2165/00023210-199707020-00001] [PMID: 23338128]
[110]
Sramek JJ, Frackiewicz EJ, Cutler NR. Review of the acetylcholinesterase inhibitor galanthamine. Expert Opin Investig Drugs 2000; 9(10): 2393-402.
[http://dx.doi.org/10.1517/13543784.9.10.2393] [PMID: 11060814]
[111]
Kim SR, Hwang SY, Jang YP, et al. Protopine from corydalis ternata has anticholinesterase and antiamnesic activities. Planta Med 1999; 65(3): 218-21.
[http://dx.doi.org/10.1055/s-1999-13983] [PMID: 10232064]
[112]
Kewitz H. Pharmacokinetics and metabolism of galanthamine. Drugs Today (Barc) 1997; 33: 265.
[http://dx.doi.org/10.1358/dot.1997.33.4.425052]
[113]
Rainer M. Clinical studies with galanthamine. Drugs Today (Barc) 1997; 33: 273.
[http://dx.doi.org/10.1358/dot.1997.33.4.425053]
[114]
Enz A, Floersheim P. Cholinesterase inhibitors: An overview of their mechanisms of action. In: Alzheimer Disease Birkhäuser. Boston, Boston, MA. 1997; pp. 211-5.
[115]
Cutler NR, Polinsky RJ, Sramek JJ, et al. Dose-dependent CSF acetylcholinesterase inhibition by SDZ ENA 713 in Alzheimer’s disease. Acta Neurol Scand 1998; 97(4): 244-50.
[http://dx.doi.org/10.1111/j.1600-0404.1998.tb00645.x] [PMID: 9576639]
[116]
Enz A, Amstutz R, Boddeke H, et al. Brain selective inhibition of acetylcholinesterase: a novel approach to therapy for Alzheimer’s disease. Prog Brain Res 1993; 98: 431-8.
[117]
Spencer CM, Noble S. Rivastigmine. A review of its use in Alzheimer’s disease. Drugs Aging 1998; 13(5): 391-411.
[http://dx.doi.org/10.2165/00002512-199813050-00005] [PMID: 9829166]
[118]
Khoury R, Rajamanickam J, Grossberg GT. An update on the safety of current therapies for Alzheimer’s disease: focus on rivastigmine. Ther Adv Drug Saf 2018; 9(3): 171-8.
[http://dx.doi.org/10.1177/2042098617750555] [PMID: 29492246]
[119]
Sadowsky CH, Micca JL, Grossberg GT, Velting DM. Rivastigmine from capsules to patch: therapeutic advances in the management of Alzheimer’s disease and Parkinson’s disease dementia. Prim Care Companion CNS Disord 2014; 16(5)
[http://dx.doi.org/10.4088/PCC.14r01654] [PMID: 25667813]
[120]
Birks JS, Grimley Evans J. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev 2015; 9CD001191
[http://dx.doi.org/10.1002/14651858.CD001191.pub3]
[121]
Schmitt B, Bernhardt T, Moeller H-J, Heuser I, Frölich L. Combination therapy in Alzheimer’s disease: a review of current evidence. CNS Drugs 2004; 18(13): 827-44.
[http://dx.doi.org/10.2165/00023210-200418130-00001] [PMID: 15521788]
[122]
Small G, Dubois B. A review of compliance to treatment in Alzheimer’s disease: potential benefits of a transdermal patch. Curr Med Res Opin 2007; 23(11): 2705-13.
[http://dx.doi.org/10.1185/030079907X233403] [PMID: 17892635]
[123]
Borah B, Sacco P, Zarotsky V. Predictors of adherence among Alzheimer’s disease patients receiving oral therapy. Curr Med Res Opin 2010; 26(8): 1957-65.
[http://dx.doi.org/10.1185/03007995.2010.493788] [PMID: 20569067]
[124]
Lum ZK, Suministrado MSP, Venketasubramanian N, Ikram MK, Chen C. Medication compliance in Singaporean patients with Alzheimer’s disease. Singapore Med J 2019; 60(3): 154-60.
[http://dx.doi.org/10.11622/smedj.2018076] [PMID: 29931376]
[125]
Ownby RL, Hertzog C, Crocco E, Duara R. Factors related to medication adherence in memory disorder clinic patients. Aging Ment Health 2006; 10(4): 378-85.
[http://dx.doi.org/10.1080/13607860500410011] [PMID: 16798630]
[126]
Folch J, Busquets O, Ettcheto M, et al. Memantine for the treatment of dementia: a review on its current and future applications. J Alzheimers Dis 2018; 62(3): 1223-40.
[http://dx.doi.org/10.3233/JAD-170672] [PMID: 29254093]
[127]
Matsunaga S, Kishi T, Iwata N. Combination therapy with cholinesterase inhibitors and memantine for Alzheimer’s disease: a systematic review and meta-analysis. Int J Neuropsychopharmacol 2014; 18(5)pyu115
[http://dx.doi.org/10.1093/ijnp/pyu115] [PMID: 25548104]
[128]
Parsons CG, Danysz W, Dekundy A, Pulte I. Memantine and cholinesterase inhibitors: complementary mechanisms in the treatment of Alzheimer’s disease. Neurotox Res 2013; 24(3): 358-69.
[http://dx.doi.org/10.1007/s12640-013-9398-z] [PMID: 23657927]
[129]
Sonkusare SK, Kaul CL, Ramarao P. Dementia of Alzheimer’s disease and other neurodegenerative disorders-memantine, a new hope. Pharmacol Res 2005; 51(1): 1-17.
[http://dx.doi.org/10.1016/j.phrs.2004.05.005] [PMID: 15519530]
[130]
Daiello LA, Ott BR, Festa EK, Friedman M, Miller LA, Heindel WC. Effects of cholinesterase inhibitors on visual attention in drivers with Alzheimer disease. J Clin Psychopharmacol 2010; 30(3): 245-51.
[http://dx.doi.org/10.1097/JCP.0b013e3181da5406] [PMID: 20473058]
[131]
Mayor S. NICE recommends drugs for moderate Alzheimer’s disease. BMJ 2006; 332(7535): 195.
[http://dx.doi.org/10.1136/bmj.332.7535.195] [PMID: 16439382]
[132]
Cummings JL. Changes in neuropsychiatric symptoms as outcome measures in clinical trials with cholinergic therapies for Alzheimer disease. Alzheimer Dis Assoc Disord 1997; 11(Suppl. 4): S1-9.
[PMID: 9339266]
[133]
Geldmacher DS. Long-Term cholinesterase inhibitor therapy for Alzheimer’s disease: practical considerations for the primary care physician. Prim Care Companion J Clin Psychiatry 2003; 5(6): 251-9.
[http://dx.doi.org/10.4088/PCC.v05n0602] [PMID: 15213795]
[134]
Rockwood K, Howlett SE, Hoffman D, Schindler R, Mitnitski A. Clinical meaningfulness of Alzheimer’s disease assessment scale-cognitive subscale change in relation to goal attainment in patients on cholinesterase inhibitors. Alzheimers Dement 2017; 13(10): 1098-106.
[http://dx.doi.org/10.1016/j.jalz.2017.02.005] [PMID: 28341540]
[135]
Grossberg GT. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: getting on and staying on. Curr Ther Res Clin Exp 2003; 64(4): 216-35.
[http://dx.doi.org/10.1016/S0011-393X(03)00059-6] [PMID: 24944370]
[136]
Sano M, Raman R, Emond J, et al. Adding delayed recall to the Alzheimer disease assessment scale is useful in studies of mild cognitive impairment but not Alzheimer disease. Alzheimer Dis Assoc Disord 2011; 25(2): 122-7.
[http://dx.doi.org/10.1097/WAD.0b013e3181f883b7] [PMID: 20921876]
[137]
Scarpini E, Schelterns P, Feldman H. Treatment of Alzheimer’s disease; current status and new perspectives. Lancet Neurol 2003; 2: 539-47.
[138]
Kavirajan H, Schneider LS. Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol 2007; 6(9): 782-92.
[http://dx.doi.org/10.1016/S1474-4422(07)70195-3] [PMID: 17689146]
[139]
Grossberg GT, Desai AK. Management of Alzheimer’s disease. J Gerontol A Biol Sci Med Sci 2003; 58(4): 331-53.
[http://dx.doi.org/10.1093/gerona/58.4.M331] [PMID: 12663697]
[140]
Kobayashi H, Ohnishi T, Nakagawa R, Yoshizawa K. The comparative efficacy and safety of cholinesterase inhibitors in patients with mild-to-moderate Alzheimer’s disease: a Bayesian network meta-analysis. Int J Geriatr Psychiatry 2016; 31(8): 892-904.
[http://dx.doi.org/10.1002/gps.4405] [PMID: 26680338]
[141]
Hogan DB. Progress update: pharmacological treatment of Alzheimer’s disease. Neuropsychiatr Dis Treat 2007; 3(5): 569-78.
[PMID: 19300586]
[142]
López-Pousa S, Olmo JG, Franch JV, et al. Comparative analysis of mortality in patients with Alzheimer’s disease treated with donepezil or galantamine. Age Ageing 2006; 35(4): 365-71.
[143]
Birks J, Harvey R, Beppu H. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev 2018; (6): CD001190
[http://dx.doi.org/10.1002/14651858.CD001190]
[144]
Olin J, Schneider L. Galantamine for Alzheimer’s disease. Cochrane Database Syst Rev 2002; (3): CD001747
[http://dx.doi.org/10.1002/14651858.CD001747]
[145]
Feldman H, Gauthier S, Hecker J, Vellas B, Subbiah P, Whalen E. A 24-week, randomized, double-blind study of donepezil in moderate to severe Alzheimer’s disease. Neurology 2001; 57(4): 613-20.
[http://dx.doi.org/10.1212/WNL.57.4.613] [PMID: 11524468]
[146]
Ellis JM. Cholinesterase inhibitors in the treatment of dementia. J Am Osteopath Assoc 2005; 105(3): 145-58.
[http://dx.doi.org/10.7556/JAOA.2005.105.3.145] [PMID: 15863734]
[147]
Blanco-Silvente L, Castells X, Saez M, et al. Discontinuation, efficacy, and safety of cholinesterase inhibitors for Alzheimer’s disease: a meta-analysis and meta-regression of 43 randomized clinical trials enrolling 16 106 patients. Int J Neuropsychopharmacol 2017; 20(7): 519-28.
[http://dx.doi.org/10.1093/ijnp/pyx012] [PMID: 28201726]
[148]
Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Interv Aging 2008; 3(2): 211-25.
[PMID: 18686744]
[149]
Nordberg A, Svensson A-L. Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacology. Drug Saf 1998; 19(6): 465-80.
[http://dx.doi.org/10.2165/00002018-199819060-00004] [PMID: 9880090]
[150]
Alva G, Cummings JL. Relative tolerability of Alzheimer’s disease treatments. Psychiatry (Edgmont Pa) 2008; 5(11): 27-36.
[PMID: 19724715]
[151]
Mossello E, Tonon E, Caleri V, et al. Effectiveness and safety of cholinesterase inhibitors in elderly subjects with Alzheimer’s disease: a” real world” study. Arch Gerontol Geriatr Suppl 2004; 2004(9): 297-307.
[152]
Nordberg A, Svensson A-L. Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacology. Drug Saf 1998; 19(6): 465-80.
[http://dx.doi.org/10.2165/00002018-199819060-00004] [PMID: 9880090]
[153]
Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today 2013; 18(9-10): 495-501.
[http://dx.doi.org/10.1016/j.drudis.2013.01.008] [PMID: 23340113]
[154]
Santos MA, Chand K, Chaves S. Recent progress in repositioning Alzheimer’s disease drugs based on a multitarget strategy. Future Med Chem 2016; 8(17): 2113-42.
[http://dx.doi.org/10.4155/fmc-2016-0103] [PMID: 27774814]
[155]
Chen Y, Sun J, Peng S, Liao H, Zhang Y, Lehmann J. Tacrine-flurbiprofen hybrids as multifunctional drug candidates for the treatment of Alzheimer’s disease. Arch Pharm (Weinheim) 2013; 346(12): 865-71.
[http://dx.doi.org/10.1002/ardp.201300074] [PMID: 24203864]
[156]
Joo Y, Kim H-S, Woo R-S, et al. Mefenamic acid shows neuroprotective effects and improves cognitive impairment in in vitro and in vivo Alzheimer’s disease models. Mol Pharmacol 2006; 69(1): 76-84.
[http://dx.doi.org/10.1124/mol.105.015206] [PMID: 16223958]
[157]
Bornstein JJ, Eckroat TJ, Houghton JL, et al. Tacrine-mefenamic acid hybrids for inhibition of acetylcholinesterase. MedChemComm 2011; 2: 406.
[http://dx.doi.org/10.1039/c0md00256a]
[158]
Lu C, Zhou Q, Yan J, Du Z, Huang L, Li X. A novel series of tacrine-selegiline hybrids with cholinesterase and monoamine oxidase inhibition activities for the treatment of Alzheimer’s disease. Eur J Med Chem 2013; 62: 745-53.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.039] [PMID: 23454517]
[159]
Hui A, Chen Y, Zhu S, et al. Design and synthesis of tacrine-phenothiazine hybrids as multitarget drugs for Alzheimer’s disease. Med Chem Res 2014; 23: 3546-57.
[http://dx.doi.org/10.1007/s00044-014-0931-2]
[160]
O’Leary JC III, Li Q, Marinec P, et al. Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol Neurodegener 2010; 5: 45.
[http://dx.doi.org/10.1186/1750-1326-5-45] [PMID: 21040568]
[161]
Meng F-C, Mao F, Shan W-J, Qin F, Huang L, Li XS. Design, synthesis, and evaluation of indanone derivatives as acetylcholinesterase inhibitors and metal-chelating agents. Bioorg Med Chem Lett 2012; 22(13): 4462-6.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.029] [PMID: 22633691]
[162]
Zhu Y, Xiao K, Ma L, et al. Design, synthesis and biological evaluation of novel dual inhibitors of acetylcholinesterase and β-secretase. Bioorg Med Chem 2009; 17(4): 1600-13.
[http://dx.doi.org/10.1016/j.bmc.2008.12.067] [PMID: 19162488]
[163]
Bolea I, Juárez-Jiménez J, de Los Ríos C, et al. Synthesis, biological evaluation, and molecular modeling of donepezil and N-[(5-(benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine hybrids as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease. J Med Chem 2011; 54(24): 8251-70.
[http://dx.doi.org/10.1021/jm200853t] [PMID: 22023459]
[164]
Bolea I, Gella A, Unzeta M. Propargylamine-derived multitarget-directed ligands: fighting Alzheimer’s disease with monoamine oxidase inhibitors. J Neural Transm (Vienna) 2013; 120(6): 893-902.
[http://dx.doi.org/10.1007/s00702-012-0948-y] [PMID: 23238976]
[165]
Mary A, Renko DZ, Guillou C, Thal C. Potent acetylcholinesterase inhibitors: design, synthesis, and structure-activity relationships of bis-interacting ligands in the galanthamine series. Bioorg Med Chem 1998; 6(10): 1835-50.
[http://dx.doi.org/10.1016/S0968-0896(98)00133-3] [PMID: 9839013]
[166]
Jia P, Sheng R, Zhang J, et al. Design, synthesis and evaluation of galanthamine derivatives as acetylcholinesterase inhibitors. Eur J Med Chem 2009; 44(2): 772-84.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.018] [PMID: 18550228]
[167]
Vezenkov L, Sevalle J, Danalev D, et al. Galantamine-based hybrid molecules with acetylcholinesterase, butyrylcholinesterase and γ-secretase inhibition activities. Curr Alzheimer Res 2012; 9(5): 600-5.
[http://dx.doi.org/10.2174/156720512800618044] [PMID: 22211487]
[168]
Mustazza C, Borioni A, Del Giudice MR, et al. Synthesis and cholinesterase activity of phenylcarbamates related to Rivastigmine, a therapeutic agent for Alzheimer’s disease. Eur J Med Chem 2002; 37(2): 91-109.
[http://dx.doi.org/10.1016/S0223-5234(01)01324-1] [PMID: 11858843]
[169]
Sterling J, Herzig Y, Goren T, et al. Novel dual inhibitors of AChE and MAO derived from hydroxy aminoindan and phenethylamine as potential treatment for Alzheimer’s disease. J Med Chem 2002; 45(24): 5260-79.
[170]
Toda N, Tago K, Marumoto S, et al. A conformational restriction approach to the development of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer’s disease. Bioorg Med Chem 2003; 11(20): 4389-415.
[http://dx.doi.org/10.1016/S0968-0896(03)00452-8] [PMID: 13129577]
[171]
Greig NH, Sambamurti K, Yu QS, Brossi A, Bruinsma GB, Lahiri DK. An overview of phenserine tartrate, a novel acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Curr Alzheimer Res 2005; 2(3): 281-90.
[http://dx.doi.org/10.2174/1567205054367829] [PMID: 15974893]
[172]
Bolognesi ML, Bartolini M, Cavalli A, et al. Design, synthesis, and biological evaluation of conformationally restricted rivastigmine analogues. J Med Chem 2004; 47(24): 5945-52.
[http://dx.doi.org/10.1021/jm049782n] [PMID: 15537349]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy