Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Review Article

Recent Patents on Radiotherapy Bed

Author(s): Yongde Zhang *, Xuesong Dai, Jingang Jiang, Zhikang Yang and Peiwang Qin

Volume 12, Issue 4, 2019

Page: [290 - 312] Pages: 23

DOI: 10.2174/2212797612666190917152437

Price: $65

Abstract

Background: In order to increase the accuracy of radiotherapy and to improve the patient's comfort, diverse structures of radiotherapy bed have been designed and improved constantly.

Objective: To provide an overview of recent patents about radiotherapy bed and to introduce their characteristics and development.

Methods: In this study, various representative patents related to the radiotherapy bed were reviewed. Additionally, the structural characteristics and applications of the typical radiotherapy bed were introduced.

Results: The characteristics of different radiotherapy beds were analyzed and concluded. Moreover, the main problems concerning their development were analyzed, and the current and future developments of patents on radiotherapy bed were also discussed.

Conclusion: Radiotherapy bed is an important part of radiotherapy system, which also determines the therapeutic outcomes of radiotherapy. Further improvements are required in the aspects of accuracy, comfort, flexibility and result stability of the radiotherapy bed. More invention should be laid on more patents on radiotherapy beds.

Keywords: Mechanical structure, parallel mechanism, radiotherapy bed, series mechanism, treatment table, tumor couch.

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017; 67(1): 1-25.
[2]
Chen WQ, Zheng RS, Baade PD, Zhang SW, Zeng HM, Freddie Bray, et al. Cancer statistics in China, 2015. CA Cancer J Clin 2015; 66(2): 115-32.
[http://dx.doi.org/10.3322/caac.21338]
[3]
Katz SJ, Lantz PM, Janz NK, Fagerlin A, Schwartz K, Liu L, et al. Patient involvement in surgery treatment decisions for breast cancer. J Clin Oncol 2005; 23(24): 5526-33.
[http://dx.doi.org/10.1200/JCO.2005.06.217]
[4]
Clemente S, Wu B, Sanguineti G, Fusco V, Ricchetti F, Wong J, et al. Smartarc-based volumetric modulated arc therapy for oropharyngeal cancer: A dosimetric comparison with both intensity-modulated radiation therapy and helical tomotherapy. Int J Radiat Oncol Biol Phys 2011; 80(4): 1248-55.
[http://dx.doi.org/10.1016/j.ijrobp.2010.08.007]
[5]
Wei Q, Liu H, He SY, Qiao Z. Radiation effects of low-energy particles on optical performance of al film reflector. Opto-Electron Eng 2006; 33(5): 141-4.
[6]
Valentini V, Calvo F, Reni M, Krempien R, Sedlmayer F, Buchler MW, et al. Intra-Operative Radiotherapy (IORT) in pancreatic cancer: Joint analysis of the ISIORT-Europe experience. Radiother Oncol 2009; 91(1): 54-9.
[http://dx.doi.org/10.1016/j.radonc.2008.07.020]
[7]
Palta M, Willett C, Czito B. The role of intraoperative radiation therapy in patients with pancreatic cancer. Semin Radiat Oncol 2014; 24(2): 126-31.
[http://dx.doi.org/10.1016/j.semradonc.2013.11.004]
[8]
Zygogianni GA, Kyrgias G, Kouvaris J, Antypas C, Skarlatos J, Armpilia C, et al. Intraoperative radiation therapy on pancreatic cancer patients: A review of the literature. Minerva Chir 2010; 66(4): 361-9.
[9]
Basch E, Deal AM, Dueck AC, Scher HI, Kris MG, Hudis C, et al. Overall survival results of a trial assessing patient-reported outcomes for symptom monitoring during routine cancer treatment. JAMA 2017; 318(2): 197-8.
[http://dx.doi.org/10.1001/jama.2017.7156]
[10]
Moore TG, Blaschak JG, Taflove A, Kriegsmann GA. Theory and application of radiation boundary operators. IEEE Trans Antenn Propag 2016; 36(12): 1797-812.
[http://dx.doi.org/10.1109/8.14402]
[11]
Slater JD, Yonemoto LT, Mantik DW, Bush DA, Preston W, Grove RI, et al. Proton radiation for treatment of cancer of the oropharynx: early experience at Loma Linda University Medical Center using a concomitant boost technique. Int J Radiat Oncol Biol Phys 2005; 62(2): 494-500.
[http://dx.doi.org/10.1016/j.ijrobp.2004.09.064]
[12]
Brahme A. Development of radiation therapy optimization. Acta Oncol 2000; 39(5): 579-95.
[http://dx.doi.org/10.1080/028418600750013267]
[13]
Brahme A. A Brief Introduction to the Development of Radiation Therapy Optimization. In: Brahme A, Ed. Biologically Optimized Radiation Therapy. World Scientific Publishing 2014; pp. 1-15.
[http://dx.doi.org/10.1142/9789814277761_0001]
[14]
Kessel KA, Habermehl D, Jäger A, Floca RO, Zhang L, Bendl R, et al. Development and validation of automatic tools for interactive recurrence analysis in radiation therapy: Optimization of treatment algorithms for locally advanced pancreatic cancer. Radiat Oncol 2013; 8(1): 138.
[http://dx.doi.org/10.1186/1748-717X-8-138]
[15]
Saunders M, Dische S, Barrett A, Harvey A, Gibson D, Parmar M. Continuous hyperfractionated accelerated radiotherapy (chart) versus conventional radiotherapy in non-small-cell lung cancer: A randomised multicentre trial. Chart steering committee. Lancet 1999; 52(2): 161-5.
[http://dx.doi.org/10.1016/S0140-6736(97)06305-8]
[16]
Lagerwaard FJ, Haasbeek CJ, Smit EF, Slotman BJ, Senan S. Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2008; 70(3): 685-92.
[http://dx.doi.org/10.1016/j.ijrobp.2007.10.053]
[17]
Zelefsky MJ, Levin EJ, Hunt M, Yamada Y, Shippy AM, Jackson A, et al. Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 2008; 70(4): 1124-9.
[http://dx.doi.org/10.1016/j.ijrobp.2007.11.044]
[18]
Hunt M. High-dose intensity modulated radiation therapy for prostate cancer: Early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 2002; 53(5): 1111-6.
[19]
Verellen D, De RM, Linthout N, Tournel K, Soete G, Storme G. Innovations in image-guided radiotherapy. Nat Rev Cancer 2008; 7(12): 949-60.
[http://dx.doi.org/10.1038/nrc2288]
[20]
Lee K, Lenards N, Holson J. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs. intensity-modulated radiation therapy case study. Med Dosim 2015; 41(1): 15-21.
[http://dx.doi.org/10.1016/j.meddos.2015.06.003]
[21]
Guan YQ, Chen RL. Application of advanced programming and r-parameter of siemens 810D system in CNC machining. Coal Mine Machinery 2006; 27(3): 464-6.
[22]
Chang SD, Main W, Martin DP, Gibbs IC, Heilbrun MP. An analysis of the accuracy of the cyberknife: A robotic frameless stereotactic radiosurgical system. Neurosurgery 2003; 52(1): 140-6.
[23]
Kilby W, Dooley JR, Kuduvalli G, Sayeh S, Maurer CR Jr. The cyberknife robotic radiosurgery system in 2010. Technol Cancer Res Treat 2010; 9(5): 433-52.
[http://dx.doi.org/10.1177/153303461000900502]
[24]
Hsi W, Laws A, Schreuder A. Su-c-103-01: An optical tracking and positioning system for proton therapy. Med Phys 2013; 40(6): 93.
[http://dx.doi.org/10.1118/1.4813968]
[25]
Goddu S, Li H, Klein E, Mutic S, Wood R, Michalski J. Su - ff - j - 65: Intrinsic accuracy of i - beam's coordinate positioning system technology. Med Phys 2005; 32(6 Part 5): 1934.
[http://dx.doi.org/10.1118/1.1997611]
[26]
Langner U, Langen K, Eley J, Zhu M, Yu J, Chung H, et al. Su-f-t-162: Comparison of beam data for two varian probeam pencil beam scanning proton systems. Med Phys 2016; 43(6): 3499.
[http://dx.doi.org/10.1118/1.4956298]
[27]
Duggar W, Rajaguru P, Yang C. Su-e-t-204: Improving multiple isocenter coincidence: Elekta beam modulator with hexapod six degrees couchtop. Med Phys 2014; 41(6 Part 14): 270.
[http://dx.doi.org/10.1118/1.4888534]
[28]
Chung H, Jin H, Suh TS, Palta J, Kim S. Characterization of a commercial add-on couch, hexapod™ 6d robotic treatment couchtop. IFMBE Proc 2006; 14: 1945-7.
[http://dx.doi.org/10.1007/978-3-540-36841-0_485]
[29]
Bewes JM, Suchowerska N, Jackson M, Zhang M, McKenzie DR. The radiobiological effect of intra-fraction dose-rate modulation in Intensity Modulated Radiation Therapy (IMRT). Phys Med Biol 2008; 53(13): 3567-78.
[http://dx.doi.org/10.1088/0031-9155/53/13/012]
[30]
Schmieger H. Biologic effects of solar radiation on man. Effects on the skin. Prog Biometeorol 1974; 1(1A): 378-80.
[31]
Laurence JA, French PW, Lindner RA, McKenzie DR. Biological effects of electromagnetic fields-mechanisms for the effects of pulsed microwave radiation on protein conformation. J Theor Biol 2000; 206(2): 291-8.
[http://dx.doi.org/10.1006/jtbi.2000.2123]
[32]
Grove P. A biological effects of static magnetic fields. J Coll Sci Teach 1996; 2(2): 236-7.
[33]
Zhou NX, Jiang YY, Wen ZM. The biologic effects of hyperthermia and radiation on gastric cancer cells(sgc-7901) in vitro - I. Influence of heating and radiation on cell growth curves, number of colonies and mitosiss. Zhonghua Zhong Liu Za Zhi [Chin J Oncol] 1987; 9(1): 17.
[34]
Mohan R, Podmaniczky KC, Caley R, Lapidus A, Laughlin JS. A computerized record and verify system for radiation treatments. Int J Radiat Oncol Biol Phys 1984; 10(10): 1975-85.
[http://dx.doi.org/10.1016/0360-3016(84)90281-5]
[35]
Follett P. Generic radiation quarantine treatments: The next steps. J Econ Entomol 2009; 102(4): 1399-406.
[http://dx.doi.org/10.1603/029.102.0401]
[36]
Yanoff BD, Du Y, Li W, Claus B, Gordon JS. Ge intelligent personal radiation locator system. Proc SPIE 2009; 7306(1): 1612.
[37]
Ruchala K. Image guidance for precise conformal radiotherapy. Int J Radiat Oncol Biol Phys 2003; 56(1): 89-105.
[http://dx.doi.org/10.1016/S0360-3016(03)00090-7]
[38]
Fassnacht M, Hahner S, Polat B, Koschker AC, Kenn W, Flentje M, et al. Efficacy of adjuvant radiotherapy of the tumor bed on local recurrence of adrenocortical carcinoma. J Clin Endocrinol Metab 2006; 91(11): 4501-4.
[http://dx.doi.org/10.1210/jc.2006-1007]
[39]
Ahmad S, Spencer K, Brahmavar S, Hyder J, Saleeby J, Bornstein L. Su - d - 213cd - 04: Dosimetric evaluation of hexapod as a tool for patient setup verification accuracy. Med Phys 2012; 39(6 Part 3): 3618.
[http://dx.doi.org/10.1118/1.4734689]
[40]
Fan C. New type of multifunctional radiotherapy bed for tumor.CN204193316. (2015).
[41]
Wang F, Liu CM, Wang ZB, He YZ, Geng HT. Radiation therapy bed.CN205460523. (2016).
[42]
Zhou SJ, Zhang H, Li QY, Zhang XB, Wang YX. Treatment bed for Medical Radiology.CN206597229. (2017).
[43]
Zhang PQ. Radiation therapy bed with radiation prevention head CN204219616. (2015).
[44]
Zhou JJ, Yu DQ, Zhang Y, Zhang YJ, Liang J, Shao QJ. Bed for radiotherapy of cervical cancer CN104511095. (2015).
[45]
Guo Q. Research on 6-DOF parallel radiotherapy bed for radiation therapy.MSc Dissertation. Harbin Institute of Technology, Harbin, China July 2015.
[46]
Li NS, Feng FZ. Radiation therapy system US20170239486. (2017).
[47]
Kim SH, Jeong KM, Bae YG, Na HS. Smart bed for radiation therapy US20170128743. (2017).
[48]
Xiong J, Liu YX, Xia ZY, Xie YQ. Radiation therapy bed with multiple degrees of freedom WO2017092105. (2017).
[49]
Sun YN, Zhao MQ. An accurate pendulum treatment bed CN204709657. (2015).
[50]
Lan PQ, Li LF, Bi HL, Pang SJ. Radiotherapy bed CN108031016. (2018).
[51]
Duo SQ. Design of the three-dimensional gamma knifetherapy device.MSc Dissertation. Huazhong University of Science and Technology, Wuhan, China July 2016.
[52]
You CZ, Song SG, Geng YS, et al. Proton radiotherapy bed for breast cancer CN106456430. (2017).
[53]
Tian CG. Radiotherapy bed CN206434723. (2017).
[54]
Yao Y. Patient location equipment and radiological equipment CN105411619. (2016).
[55]
Zhang GH. Innovative extracorporeal radiotherapy instrument CN106730417. (2017).
[56]
Liu J, Zhang J, Shao YL, Liu XL, Maltz JS, Stahl JN. Radiation therapy system US20170189720. (2017).
[57]
Toby DH, Niek S, Brian B. Patient positioner system US20090070936. (2009).
[58]
Mike QZ, Xin S, Cedric Y, Xiumin D, Bo Z. Device for patient loading and positioning US8819877. (2014).
[59]
Bergfjord PH. Patient support system for radiation therapy US9610205. 2017.
[60]
Filiberti RW. Treament couch for small isocentric rotations US9440094. (2016).
[61]
Stephan E, Stephan F. Patient positioning system for radiotherapy US8789223. (2014).
[62]
Eiji T. Real-time three-dimensional radiation therapy apparatus and method US9149656. (2015).
[63]
Zhang Y, Zhou JY. Automatic radiotherapy bed CN205055214. (2016).
[64]
Zhao XF. A multi-angle exercise treatment bed CN104812445. (2015).
[65]
Liu GP. A special radiotherapy equipment for doctors CN107595577. (2018).
[66]
Wang XD. A new radiotherapy bed CN204134058. (2015).
[67]
Kevin B, Tarun KP, Yan Y. Treatment table for radiation US20140107390. (2014).
[68]
Buzurovic I, Yu Y, Wernerwasik M, Biswas T, Anne PR, Dicker AP, et al. Implementation and experimental results of 4d tumor tracking using robotic couch. Med Phys 2012; 39(11): 6957.
[http://dx.doi.org/10.1118/1.4758064]
[69]
Long XD, Zhao QJ, Zhao XM. Three dimensional bed and radiation therapy device CN204447005. (2015).
[70]
Yao J, Wu DK, Zhang B, et al. Linear swinging arm robot treatment bed. CN204522032. 2015.
[71]
Hideki N, Toru K. Bed system for radiation therapy US006094760. (1998).
[72]
Han LY, Zhang DK, Wang P, Li T, Lang JY. Accurate placement treatment bed for medical accelerators CN204307225. (2015).
[73]
Xiong RP, Huang WQ, Yu YJ, Sun F, Dang L, Tang JY. Treatment bed based on six degrees of freedom industrial manipulator CN105920739. (2018).
[74]
Tang L, Zhou WM, Hui ZM, Jiang ZQ. SCARA structure for radiation therapy for robot treatment bed CN107854779. (2018).
[75]
Li T, Wang YX, Li JY, Li HY. Mechanical arm treatment bed CN207401025. (2018).
[76]
Zhou SJ, Zhang H, Li QY, Zhang XB, Wang YX. Treatment bed for medical radiology CN206597229. (2017).
[77]
Satoru M. Radiotherapy system and treatment support apparatus US20190001155. (2019).
[78]
Younes A, Raymond W, John A, et al. Selfshielded, integrated-control radiosurgery system US20190069856. (2019).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy