Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Humoral Immunity Against HDL Particle: A New Perspective in Cardiovascular Diseases?

Author(s): Nathalie Satta*, Miguel A. Frias, Nicolas Vuilleumier and Sabrina Pagano

Volume 25, Issue 29, 2019

Page: [3128 - 3146] Pages: 19

DOI: 10.2174/1381612825666190830164917

Price: $65

Abstract

Background: Autoimmune diseases are closely associated with cardiovascular diseases (CVD). Over the last decades, the comprehension of atherosclerosis, the principal initiator of CVD, evolved from a lipidcentered disease to a predominant inflammatory and immune response-driven disease displaying features of autoimmunity against a broad range of auto-antigens, including lipoproteins. Among them, high density lipoproteins (HDL) are important actors of cholesterol transport and bear several anti-atherogenic properties, raising a growing interest as therapeutic targets to decrease atherosclerosis and CVD burden, with nevertheless rather disappointing results so far. Reflecting HDL composition complexity, autoimmune responses and autoantibodies against various HDL components have been reported.

Results: In this review, we addressed the important complexity of humoral autoimmunity towards HDL and particularly how this autoimmune response could help improving our understanding of HDL biological implication in atherosclerosis and CVD. We also discussed several issues related to specific HDL autoantibody subclasses characteristics, including etiology, prognosis and pathological mechanisms according to Rose criteria.

Conclusion: Finally, we addressed the possible clinical value of using these antibodies not only as potential biomarkers of atherogenesis and CVD, but also as a factor potentially mitigating the benefit of HDL-raising therapies.

Keywords: HDL, atherosclerosis, autoantibodies, cardiovascular diseases, biomarker, auto-antigens.

[1]
Lerner A, Jeremias P, Matthias T. The world incidence and prevalence of autoimmune diseases is increasing. IJCD 2015; 3(4): 151-5.
[http://dx.doi.org/10.12691/ijcd-3-4-8]
[2]
Deane KD, Demoruelle MK, Kelmenson LB, Kuhn KA, Norris JM, Holers VM. Genetic and environmental risk factors for rheumatoid arthritis. Best Pract Res Clin Rheumatol 2017; 31(1): 3-18.
[http://dx.doi.org/10.1016/j.berh.2017.08.003] [PMID: 29221595]
[3]
Kaplan MJ. Cardiovascular complications of rheumatoid arthritis: Assessment, prevention, and treatment. Rheum Dis Clin North Am 2010; 36(2): 405-26.
[http://dx.doi.org/10.1016/j.rdc.2010.02.002] [PMID: 20510241]
[4]
Skaggs BJ, Hahn BH, McMahon M. Accelerated atherosclerosis in patients with SLE-mechanisms and management. Nat Rev Rheumatol 2012; 8(4): 214-23.
[http://dx.doi.org/10.1038/nrrheum.2012.14] [PMID: 22331061]
[5]
Zeller CB, Appenzeller S. Cardiovascular disease in systemic lupus erythematosus: The role of traditional and lupus related risk factors. Curr Cardiol Rev 2008; 4(2): 116-22.
[http://dx.doi.org/10.2174/157340308784245775] [PMID: 19936286]
[6]
Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol 2011; 12(3): 204-12.
[http://dx.doi.org/10.1038/ni.2001] [PMID: 21321594]
[7]
Ketelhuth DF, Hansson GK. Modulation of autoimmunity and atherosclerosis - common targets and promising translational approaches against disease. Circ J 2015; 79(5): 924-33.
[http://dx.doi.org/10.1253/circj.CJ-15-0167] [PMID: 25766275]
[8]
Ketelhuth DF, Hansson GK. Adaptive response of T and B Cells in atherosclerosis. Circ Res 2016; 118(4): 668-78.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306427] [PMID: 26892965]
[9]
Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: From pathophysiology to practice. J Am Coll Cardiol 2009; 54(23): 2129-38.
[http://dx.doi.org/10.1016/j.jacc.2009.09.009] [PMID: 19942084]
[10]
Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119-31.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[11]
Ridker PM, Libby P, MacFadyen JG, et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: Analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur Heart J 2018; 39(38): 3499-507.
[http://dx.doi.org/10.1093/eurheartj/ehy310] [PMID: 30165610]
[12]
Libby P, Tabas I, Fredman G, Fisher EA. Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res 2014; 114(12): 1867-79.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302699] [PMID: 24902971]
[13]
Tsiantoulas D, Diehl CJ, Witztum JL, Binder CJ. B cells and humoral immunity in atherosclerosis. Circ Res 2014; 114(11): 1743-56.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301145] [PMID: 24855199]
[14]
Meier LA, Binstadt BA. The contribution of autoantibodies to inflammatory cardiovascular pathology. Front Immunol 2018; 9: 911.
[http://dx.doi.org/10.3389/fimmu.2018.00911] [PMID: 29755478]
[15]
Satta N, Vuilleumier N. Auto-antibodies as possible markers and mediators of ischemic, dilated, and rhythmic cardiopathies. Curr Drug Targets 2015; 16(4): 342-60.
[http://dx.doi.org/10.2174/1389450115666141125122416] [PMID: 25429713]
[16]
Carapetis JR, Beaton A, Cunningham MW, et al. Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis Primers 2016; 2: 15084.
[http://dx.doi.org/10.1038/nrdp.2015.84] [PMID: 27188830]
[17]
Cunningham MW. Rheumatic fever, autoimmunity, and molecular mimicry: The streptococcal connection. Int Rev Immunol 2014; 33(4): 314-29.
[http://dx.doi.org/10.3109/08830185.2014.917411] [PMID: 24892819]
[18]
Wick G, Jakic B, Buszko M, Wick MC, Grundtman C. The role of heat shock proteins in atherosclerosis. Nat Rev Cardiol 2014; 11(9): 516-29.
[http://dx.doi.org/10.1038/nrcardio.2014.91] [PMID: 25027488]
[19]
Morrow DA, de Lemos JA. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation 2007; 115(8): 949-52.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.683110] [PMID: 17325253]
[20]
Solow EB, Vongpatanasin W, Skaug B, Karp DR, Ayers C, de Lemos JA. Antinuclear antibodies are associated with all-cause mortality and cardiovascular outcomes in the general population. J Am Coll Cardiol 2015; 65(24): 2669-70.
[http://dx.doi.org/10.1016/j.jacc.2015.03.578] [PMID: 26088310]
[21]
Solow EB, Vongpatanasin W, Skaug B, Karp DR, Ayers C, de Lemos JA. Antinuclear antibodies in the general population: Positive association with inflammatory and vascular biomarkers but not traditional cardiovascular risk factors. Clin Exp Rheumatol 2018; 36(6): 1031-7.
[PMID: 30299240]
[22]
Matsuura E, Kobayashi K, Matsunami Y, et al. Autoimmunity, infectious immunity, and atherosclerosis. J Clin Immunol 2009; 29(6): 714-21.
[http://dx.doi.org/10.1007/s10875-009-9333-5] [PMID: 19795194]
[23]
Roux-Lombard P, Pagano S, Montecucco F, Satta N, Vuilleumier N. Auto-antibodies as emergent prognostic markers and possible mediators of ischemic cardiovascular diseases. Clin Rev Allergy Immunol 2013; 44(1): 84-97.
[http://dx.doi.org/10.1007/s12016-010-8233-z] [PMID: 21188647]
[24]
Satta N, Kruithof EK, Fickentscher C, et al. Toll-like receptor 2 mediates the activation of human monocytes and endothelial cells by antiphospholipid antibodies. Blood 2011; 117(20): 5523-31.
[http://dx.doi.org/10.1182/blood-2010-11-316158] [PMID: 21330474]
[25]
Lehrer-Graiwer J, Singh P, Abdelbaky A, et al. FDG-PET imaging for oxidized LDL in stable atherosclerotic disease: A phase II study of safety, tolerability, and anti-inflammatory activity. JACC Cardiovasc Imaging 2015; 8(4): 493-4.
[http://dx.doi.org/10.1016/j.jcmg.2014.06.021] [PMID: 25457756]
[26]
Chistiakov DA, Orekhov AN, Bobryshev YV. ApoA1 and ApoA1-specific self-antibodies in cardiovascular disease. Lab Invest 2016; 96(7): 708-18.
[http://dx.doi.org/10.1038/labinvest.2016.56] [PMID: 27183204]
[27]
Batuca JR, Amaral MC, Favas C, et al. Extended-release niacin increases anti-apolipoprotein A-I antibodies that block the antioxidant effect of high-density lipoprotein-cholesterol: The EXPLORE clinical trial. Br J Clin Pharmacol 2017; 83(5): 1002-10.
[http://dx.doi.org/10.1111/bcp.13198] [PMID: 27891663]
[28]
Toth PP, Barter PJ, Rosenson RS, et al. High-density lipoproteins: A consensus statement from the National Lipid Association. J Clin Lipidol 2013; 7(5): 484-525.
[http://dx.doi.org/10.1016/j.jacl.2013.08.001] [PMID: 24079290]
[29]
Barter PJ, Rye KA. Cholesteryl ester transfer protein inhibitors as agents to reduce coronary heart disease risk. Cardiol Clin 2018; 36(2): 299-310.
[http://dx.doi.org/10.1016/j.ccl.2017.12.011] [PMID: 29609759]
[30]
Rosenson RS, Brewer HB Jr, Barter PJ, et al. HDL and atherosclerotic cardiovascular disease: Genetic insights into complex biology. Nat Rev Cardiol 2018; 15(1): 9-19.
[http://dx.doi.org/10.1038/nrcardio.2017.115] [PMID: 28795686]
[31]
Schandelmaier S, Briel M, Saccilotto R, et al. Niacin for primary and secondary prevention of cardiovascular events. Cochrane Database Syst Rev 2017; 6CD009744
[http://dx.doi.org/10.1002/14651858.CD009744.pub2] [PMID: 28616955]
[32]
Gillard BK, Lin HY, Massey JB, Pownall HJ. Apolipoproteins A-I, A-II and E are independently distributed among intracellular and newly secreted HDL of human hepatoma cells. Biochim Biophys Acta 2009; 1791(12): 1125-32.
[http://dx.doi.org/10.1016/j.bbalip.2009.07.004] [PMID: 19635584]
[33]
Vaisar T. Proteomics investigations of HDL: Challenges and promise. Curr Vasc Pharmacol 2012; 10(4): 410-21.
[http://dx.doi.org/10.2174/157016112800812755] [PMID: 22339300]
[34]
Shah AS, Tan L, Long JL, Davidson WS. Proteomic diversity of high density lipoproteins: Our emerging understanding of its importance in lipid transport and beyond. J Lipid Res 2013; 54(10): 2575-85.
[http://dx.doi.org/10.1194/jlr.R035725] [PMID: 23434634]
[35]
Kontush A, Lhomme M, Chapman MJ. Unraveling the complexities of the HDL lipidome. J Lipid Res 2013; 54(11): 2950-63.
[http://dx.doi.org/10.1194/jlr.R036095] [PMID: 23543772]
[36]
Kardassis D, Mosialou I, Kanaki M, Tiniakou I, Thymiakou E. Metabolism of HDL and its regulation. Curr Med Chem 2014; 21(25): 2864-80.
[http://dx.doi.org/10.2174/0929867321666140303153430] [PMID: 24606515]
[37]
Rye KA, Barter PJ. Regulation of high-density lipoprotein metabolism. Circ Res 2014; 114(1): 143-56.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.300632] [PMID: 24385508]
[38]
Feingold KR, Grunfeld C. Introduction to Lipids and Lipoproteins. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, ed. Endotext: South Dartmouth (MA): MDText.com, Inc.; 2000-2018..
[39]
Zannis VI, Fotakis P, Koukos G, et al. HDL biogenesis, remodeling, and catabolism. Handb Exp Pharmacol 2015; 224: 53-111.
[http://dx.doi.org/10.1007/978-3-319-09665-0_2] [PMID: 25522986]
[40]
Nanjee MN, Brinton EA. Very small apolipoprotein A-I-containing particles from human plasma: Isolation and quantification by high-performance size-exclusion chromatography. Clin Chem 2000; 46(2): 207-23.
[PMID: 10657377]
[41]
Jessup W, Gelissen IC, Gaus K, Kritharides L. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr Opin Lipidol 2006; 17(3): 247-57.
[http://dx.doi.org/10.1097/01.mol.0000226116.35555.eb] [PMID: 16680029]
[42]
Oram JF, Lawn RM, Garvin MR, Wade DP. ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J Biol Chem 2000; 275(44): 34508-11.
[http://dx.doi.org/10.1074/jbc.M006738200] [PMID: 10918070]
[43]
Santamarina-Fojo S, Peterson K, Knapper C, et al. Complete genomic sequence of the human ABCA1 gene: analysis of the human and mouse ATP-binding cassette A promoter. Proc Natl Acad Sci USA 2000; 97(14): 7987-92.
[http://dx.doi.org/10.1073/pnas.97.14.7987] [PMID: 10884428]
[44]
Nakamura K, Kennedy MA, Baldán A, Bojanic DD, Lyons K, Edwards PA. Expression and regulation of multiple murine ATP-binding cassette transporter G1 mRNAs/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein. J Biol Chem 2004; 279(44): 45980-9.
[http://dx.doi.org/10.1074/jbc.M408652200] [PMID: 15319426]
[45]
Wang N, Lan D, Chen W, Matsuura F, Tall AR. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci USA 2004; 101(26): 9774-9.
[http://dx.doi.org/10.1073/pnas.0403506101] [PMID: 15210959]
[46]
Ji Y, Jian B, Wang N, et al. Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem 1997; 272(34): 20982-5.
[http://dx.doi.org/10.1074/jbc.272.34.20982] [PMID: 9261096]
[47]
Yancey PG, Bortnick AE, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Rothblat GH. Importance of different pathways of cellular cholesterol efflux. Arterioscler Thromb Vasc Biol 2003; 23(5): 712-9.
[http://dx.doi.org/10.1161/01.ATV.0000057572.97137.DD] [PMID: 12615688]
[48]
Adorni MP, Zimetti F, Billheimer JT, et al. The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 2007; 48(11): 2453-62.
[http://dx.doi.org/10.1194/jlr.M700274-JLR200] [PMID: 17761631]
[49]
Yvan-Charvet L, Ranalletta M, Wang N, et al. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 2007; 117(12): 3900-8.
[http://dx.doi.org/10.1172/JCI33372] [PMID: 17992262]
[50]
Out R, Hoekstra M, Habets K, et al. Combined deletion of macrophage ABCA1 and ABCG1 leads to massive lipid accumulation in tissue macrophages and distinct atherosclerosis at relatively low plasma cholesterol levels. Arterioscler Thromb Vasc Biol 2008; 28(2): 258-64.
[http://dx.doi.org/10.1161/ATVBAHA.107.156935] [PMID: 18006857]
[51]
Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters, and cholesterol efflux: Implications for the treatment of atherosclerosis. Cell Metab 2008; 7(5): 365-75.
[http://dx.doi.org/10.1016/j.cmet.2008.03.001] [PMID: 18460328]
[52]
Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011; 364(2): 127-35.
[http://dx.doi.org/10.1056/NEJMoa1001689] [PMID: 21226578]
[53]
Ishikawa T, Ayaori M, Uto-Kondo H, Nakajima T, Mutoh M, Ikewaki K. High-density lipoprotein cholesterol efflux capacity as a relevant predictor of atherosclerotic coronary disease. Atherosclerosis 2015; 242(1): 318-22.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.06.028] [PMID: 26246268]
[54]
Rohatgi A, Khera A, Berry JD, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med 2014; 371(25): 2383-93.
[http://dx.doi.org/10.1056/NEJMoa1409065] [PMID: 25404125]
[55]
Saleheen D, Scott R, Javad S, et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: A prospective case-control study. Lancet Diabetes Endocrinol 2015; 3(7): 507-13.
[http://dx.doi.org/10.1016/S2213-8587(15)00126-6] [PMID: 26025389]
[56]
Li XM, Tang WH, Mosior MK, et al. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler Thromb Vasc Biol 2013; 33(7): 1696-705.
[http://dx.doi.org/10.1161/ATVBAHA.113.301373] [PMID: 23520163]
[57]
Lucero D, Sviridov D, Freeman L, et al. Increased cholesterol efflux capacity in metabolic syndrome: Relation with qualitative alterations in HDL and LCAT. Atherosclerosis 2015; 242(1): 236-42.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.07.019] [PMID: 26232163]
[58]
Nestel P, Hoang A, Sviridov D, Straznicky N. Cholesterol efflux from macrophages is influenced differentially by plasmas from overweight insulin-sensitive and -resistant subjects. Int J Obes 2012; 36(3): 407-13.
[http://dx.doi.org/10.1038/ijo.2011.170] [PMID: 21876547]
[59]
Charles-Schoeman C, Lee YY, Grijalva V, et al. Cholesterol efflux by high density lipoproteins is impaired in patients with active rheumatoid arthritis. Ann Rheum Dis 2012; 71(7): 1157-62.
[http://dx.doi.org/10.1136/annrheumdis-2011-200493] [PMID: 22267330]
[60]
Ronda N, Favari E, Borghi MO, et al. Impaired serum cholesterol efflux capacity in rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis 2014; 73(3): 609-15.
[http://dx.doi.org/10.1136/annrheumdis-2012-202914] [PMID: 23562986]
[61]
Ormseth MJ, Yancey PG, Yamamoto S, et al. Net cholesterol efflux capacity of HDL enriched serum and coronary atherosclerosis in rheumatoid arthritis. IJC Metab Endocr 2016; 13: 6-11.
[http://dx.doi.org/10.1016/j.ijcme.2016.08.002] [PMID: 28243578]
[62]
Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 2009; 50(Suppl.): S189-94.
[http://dx.doi.org/10.1194/jlr.R800088-JLR200] [PMID: 19064999]
[63]
Hirai K, Furusho H, Kawashima N, et al. Serum amyloid A contributes to chronic apical periodontitis via TLR2 and TLR4. J Dent Res 2019; 98(1): 117-25.
[http://dx.doi.org/10.1177/0022034518796456] [PMID: 30189157]
[64]
Vaisar T, Pennathur S, Green PS, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest 2007; 117(3): 746-56.
[http://dx.doi.org/10.1172/JCI26206] [PMID: 17332893]
[65]
Heinecke JW. The HDL proteome: A marker-and perhaps mediator-of coronary artery disease. J Lipid Res 2009; 50(Suppl.): S167-71.
[http://dx.doi.org/10.1194/jlr.R800097-JLR200] [PMID: 19060251]
[66]
Baranova IN, Vishnyakova TG, Bocharov AV, et al. Serum amyloid A binding to CLA-1 (CD36 and LIMPII analogous-1) mediates serum amyloid A protein-induced activation of ERK1/2 and p38 mitogen-activated protein kinases. J Biol Chem 2005; 280(9): 8031-40.
[http://dx.doi.org/10.1074/jbc.M405009200] [PMID: 15576377]
[67]
Lee HY, Kim SD, Baek SH, et al. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation. Biochem Biophys Res Commun 2013; 433(1): 18-23.
[http://dx.doi.org/10.1016/j.bbrc.2013.02.077] [PMID: 23454129]
[68]
Ye RD, Sun L. Emerging functions of serum amyloid A in inflammation. J Leukoc Biol 2015; 98(6): 923-9.
[http://dx.doi.org/10.1189/jlb.3VMR0315-080R] [PMID: 26130702]
[69]
Shridas P, De Beer MC, Webb NR. High-density lipoprotein inhibits serum amyloid A-mediated reactive oxygen species generation and NLRP3 inflammasome activation. J Biol Chem 2018; 293(34): 13257-69.
[http://dx.doi.org/10.1074/jbc.RA118.002428] [PMID: 29976759]
[70]
Zewinger S, Drechsler C, Kleber ME, et al. Serum amyloid A: High-density lipoproteins interaction and cardiovascular risk. Eur Heart J 2015; 36(43): 3007-16.
[http://dx.doi.org/10.1093/eurheartj/ehv352] [PMID: 26248570]
[71]
McEneny J, McKavanagh P, York E, et al. Serum- and HDL3-serum amyloid A and HDL3-LCAT activity are influenced by increased CVD-burden. Atherosclerosis 2016; 244: 172-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.11.018] [PMID: 26647373]
[72]
Rached F, Lhomme M, Camont L, et al. Defective functionality of small, dense HDL3 subpopulations in ST segment elevation myocardial infarction: Relevance of enrichment in lysophosphatidylcholine, phosphatidic acid and serum amyloid A. Biochim Biophys Acta 2015; 1851(9): 1254-61.
[http://dx.doi.org/10.1016/j.bbalip.2015.05.007] [PMID: 26037829]
[73]
Pajkrt D, Doran JE, Koster F, et al. Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. J Exp Med 1996; 184(5): 1601-8.
[http://dx.doi.org/10.1084/jem.184.5.1601] [PMID: 8920850]
[74]
van Bergenhenegouwen J, Kraneveld AD, Rutten L, Garssen J, Vos AP, Hartog A. Lipoproteins attenuate TLR2 and TLR4 activation by bacteria and bacterial ligands with differences in affinity and kinetics. BMC Immunol 2016; 17(1): 42.
[http://dx.doi.org/10.1186/s12865-016-0180-x] [PMID: 27793087]
[75]
Kirschning CJ, Au-Young J, Lamping N, et al. Similar organization of the lipopolysaccharide-binding protein (LBP) and phospholipid transfer protein (PLTP) genes suggests a common gene family of lipid-binding proteins. Genomics 1997; 46(3): 416-25.
[http://dx.doi.org/10.1006/geno.1997.5030] [PMID: 9441745]
[76]
Levels JH, Marquart JA, Abraham PR, et al. Lipopolysaccharide is transferred from high-density to low-density lipoproteins by lipopolysaccharide-binding protein and phospholipid transfer protein. Infect Immun 2005; 73(4): 2321-6.
[http://dx.doi.org/10.1128/IAI.73.4.2321-2326.2005] [PMID: 15784577]
[77]
Azzam KM, Fessler MB. Crosstalk between reverse cholesterol transport and innate immunity. Trends Endocrinol Metab 2012; 23(4): 169-78.
[http://dx.doi.org/10.1016/j.tem.2012.02.001] [PMID: 22406271]
[78]
Henning MF, Herlax V, Bakás L. Contribution of the C-terminal end of apolipoprotein AI to neutralization of lipopolysaccharide endotoxic effect. Innate Immun 2011; 17(3): 327-37.
[http://dx.doi.org/10.1177/1753425910370709] [PMID: 20501516]
[79]
Beck WH, Adams CP, Biglang-Awa IM, et al. Apolipoprotein A-I binding to anionic vesicles and lipopolysaccharides: Role for lysine residues in antimicrobial properties. Biochim Biophys Acta 2013; 1828(6): 1503-10.
[http://dx.doi.org/10.1016/j.bbamem.2013.02.009] [PMID: 23454085]
[80]
Sorci-Thomas MG, Thomas MJ. High density lipoprotein biogenesis, cholesterol efflux, and immune cell function. Arterioscler Thromb Vasc Biol 2012; 32(11): 2561-5.
[http://dx.doi.org/10.1161/ATVBAHA.112.300135] [PMID: 23077142]
[81]
Gruaz L, Delucinge-Vivier C, Descombes P, Dayer JM, Burger D. Blockade of T cell contact-activation of human monocytes by high-density lipoproteins reveals a new pattern of cytokine and inflammatory genes. PLoS One 2010; 5(2)e9418
[http://dx.doi.org/10.1371/journal.pone.0009418] [PMID: 20195532]
[82]
Parra S, Castro A, Masana L. The pleiotropic role of HDL in autoimmune diseases. Clin Investig Arterioscler 2015; 27(2): 97-106.
[http://dx.doi.org/10.1016/j.arteri.2014.09.002] [PMID: 25444650]
[83]
De Nardo D, Labzin LI, Kono H, et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol 2014; 15(2): 152-60.
[http://dx.doi.org/10.1038/ni.2784] [PMID: 24317040]
[84]
Wang L, Chen WZ, Wu MP. Apolipoprotein A-I inhibits chemotaxis, adhesion, activation of THP-1 cells and improves the plasma HDL inflammatory index. Cytokine 2010; 49(2): 194-200.
[http://dx.doi.org/10.1016/j.cyto.2009.08.008] [PMID: 19819722]
[85]
Liu D, Ji L, Zhao M, et al. Lysine glycation of apolipoprotein A-I impairs its anti-inflammatory function in type 2 diabetes mellitus. J Mol Cell Cardiol 2018; 122: 47-57.
[http://dx.doi.org/10.1016/j.yjmcc.2018.08.001] [PMID: 30092227]
[86]
Song GJ, Kim SM, Park KH, Kim J, Choi I, Cho KH. SR-BI mediates high density lipoprotein (HDL)-induced anti-inflammatory effect in macrophages. Biochem Biophys Res Commun 2015; 457(1): 112-8.
[http://dx.doi.org/10.1016/j.bbrc.2014.12.028] [PMID: 25528585]
[87]
van der Vorst EPC, Theodorou K, Wu Y, et al. High-density lipoproteins exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-κB/STAT1-IRF1 Signaling. Cell Metab 2017; 25(1): 197-207.
[http://dx.doi.org/10.1016/j.cmet.2016.10.013] [PMID: 27866837]
[88]
Li J, Wang W, Han L, et al. Human apolipoprotein A-I exerts a prophylactic effect on high-fat diet-induced atherosclerosis via inflammation inhibition in a rabbit model. Acta Biochim Biophys Sin (Shanghai) 2017; 49(2): 149-58.
[http://dx.doi.org/10.1093/abbs/gmw128] [PMID: 28069582]
[89]
Iqbal AJ, Barrett TJ, Taylor L, et al. Acute exposure to apolipoprotein A1 inhibits macrophage chemotaxis in vitro and monocyte recruitment in vivo. eLife 2016; 5: 5.
[http://dx.doi.org/10.7554/eLife.15190] [PMID: 27572261]
[90]
Bisoendial R, Tabet F, Tak PP, et al. Apolipoprotein A-I limits the negative effect of tumor necrosis factor on lymphangiogenesis. Arterioscler Thromb Vasc Biol 2015; 35(11): 2443-50.
[http://dx.doi.org/10.1161/ATVBAHA.115.305777] [PMID: 26359513]
[91]
Ashby DT, Rye KA, Clay MA, Vadas MA, Gamble JR, Barter PJ. Factors influencing the ability of HDL to inhibit expression of vascular cell adhesion molecule-1 in endothelial cells. Arterioscler Thromb Vasc Biol 1998; 18(9): 1450-5.
[http://dx.doi.org/10.1161/01.ATV.18.9.1450] [PMID: 9743234]
[92]
Filou S, Lhomme M, Karavia EA, et al. Distinct roles of apolipoproteins A1 and E in the modulation of high-density lipoprotein composition and function. Biochemistry 2016; 55(27): 3752-62.
[http://dx.doi.org/10.1021/acs.biochem.6b00389] [PMID: 27332083]
[93]
Calabresi L, Gomaraschi M, Villa B, Omoboni L, Dmitrieff C, Franceschini G. Elevated soluble cellular adhesion molecules in subjects with low HDL-cholesterol. Arterioscler Thromb Vasc Biol 2002; 22(4): 656-61.
[http://dx.doi.org/10.1161/hq0402.105901] [PMID: 11950706]
[94]
Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res 2004; 95(8): 764-72.
[http://dx.doi.org/10.1161/01.RES.0000146094.59640.13] [PMID: 15486323]
[95]
Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol 1995; 15(11): 1987-94.
[http://dx.doi.org/10.1161/01.ATV.15.11.1987] [PMID: 7583580]
[96]
Gomaraschi M, Calabresi L, Rossoni G, et al. Anti-inflammatory and cardioprotective activities of synthetic high-density lipoprotein containing apolipoprotein A-I mimetic peptides. J Pharmacol Exp Ther 2008; 324(2): 776-83.
[http://dx.doi.org/10.1124/jpet.107.129411] [PMID: 18042829]
[97]
Di Bartolo BA, Nicholls SJ, Bao S, et al. The apolipoprotein A-I mimetic peptide ETC-642 exhibits anti-inflammatory properties that are comparable to high density lipoproteins. Atherosclerosis 2011; 217(2): 395-400.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.04.001] [PMID: 21571275]
[98]
Mackness MI, Arrol S, Abbott C, Durrington PN. Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis 1993; 104(1-2): 129-35.
[http://dx.doi.org/10.1016/0021-9150(93)90183-U] [PMID: 8141836]
[99]
Mackness MI, Arrol S, Durrington PN. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett 1991; 286(1-2): 152-4.
[http://dx.doi.org/10.1016/0014-5793(91)80962-3] [PMID: 1650712]
[100]
Navab M, Hama SY, Cooke CJ, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: Step 1. J Lipid Res 2000; 41(9): 1481-94.
[PMID: 10974056]
[101]
Parthasarathy S, Barnett J, Fong LG. High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochim Biophys Acta 1990; 1044(2): 275-83.
[http://dx.doi.org/10.1016/0005-2760(90)90314-N] [PMID: 2344447]
[102]
Hessler JR, Robertson AL Jr, Chisolm GM III. LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis 1979; 32(3): 213-29.
[http://dx.doi.org/10.1016/0021-9150(79)90166-7] [PMID: 223585]
[103]
Ayub A, Mackness MI, Arrol S, Mackness B, Patel J, Durrington PN. Serum paraoxonase after myocardial infarction. Arterioscler Thromb Vasc Biol 1999; 19(2): 330-5.
[http://dx.doi.org/10.1161/01.ATV.19.2.330] [PMID: 9974415]
[104]
Bhattacharyya T, Nicholls SJ, Topol EJ, et al. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA 2008; 299(11): 1265-76.
[http://dx.doi.org/10.1001/jama.299.11.1265] [PMID: 18349088]
[105]
Mackness B, Davies GK, Turkie W, et al. Paraoxonase status in coronary heart disease: Are activity and concentration more important than genotype? Arterioscler Thromb Vasc Biol 2001; 21(9): 1451-7.
[http://dx.doi.org/10.1161/hq0901.094247] [PMID: 11557671]
[106]
Durrington PN, Mackness B, Mackness MI. Paraoxonase and atherosclerosis. Arterioscler Thromb Vasc Biol 2001; 21(4): 473-80.
[http://dx.doi.org/10.1161/01.ATV.21.4.473] [PMID: 11304460]
[107]
Wheeler JG, Keavney BD, Watkins H, Collins R, Danesh J. Four paraoxonase gene polymorphisms in 11212 cases of coronary heart disease and 12786 controls: Meta-analysis of 43 studies. Lancet 2004; 363(9410): 689-95.
[http://dx.doi.org/10.1016/S0140-6736(04)15642-0] [PMID: 15001326]
[108]
Ibrahim AA, El-Lebedy D, Ashmawy I, Hady MA. Association between paraoxonase-1 gene Q192R and L55M polymorphisms in systemic lupus erythematosus (SLE) and anti-phospholipid syndrome (APS) in a population from Cairo of Egypt. Clin Rheumatol 2017; 36(6): 1305-10.
[http://dx.doi.org/10.1007/s10067-017-3567-z] [PMID: 28185016]
[109]
Rodriguez-Carrio J, Alperi-Lopez M, Lopez P, et al. High triglycerides and low high-density lipoprotein cholesterol lipid profile in rheumatoid arthritis: A potential link among inflammation, oxidative status, and dysfunctional high-density lipoprotein. J Clin Lipidol 2017; 11: 1043-1054.e2.
[http://dx.doi.org/10.1016/j.jacl.2017.05.009]
[110]
Fernandez JA, Deguchi H, Banka CL, Witztum JL, Griffin JH. Re-evaluation of the anticoagulant properties of high-density lipoprotein-brief report. Arterioscler Thromb Vasc Biol 2015; 35(3): 570-2.
[http://dx.doi.org/10.1161/ATVBAHA.114.304938] [PMID: 25550205]
[111]
Griffin JH, Kojima K, Banka CL, Curtiss LK, Fernández JA. High-density lipoprotein enhancement of anticoagulant activities of plasma protein S and activated protein C. J Clin Invest 1999; 103(2): 219-27.
[http://dx.doi.org/10.1172/JCI5006] [PMID: 9916134]
[112]
Zhang QH, Zu XY, Cao RX, et al. An involvement of SR-B1 mediated PI3K-Akt-eNOS signaling in HDL-induced cyclooxygenase 2 expression and prostacyclin production in endothelial cells. Biochem Biophys Res Commun 2012; 420(1): 17-23.
[http://dx.doi.org/10.1016/j.bbrc.2012.02.103] [PMID: 22390933]
[113]
Liu D, Ji L, Tong X, et al. Human apolipoprotein A-I induces cyclooxygenase-2 expression and prostaglandin I-2 release in endothelial cells through ATP-binding cassette transporter A1. Am J Physiol Cell Physiol 2011; 301(3): C739-48.
[http://dx.doi.org/10.1152/ajpcell.00055.2011] [PMID: 21734188]
[114]
Sattler K, Levkau B. Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc Res 2009; 82(2): 201-11.
[http://dx.doi.org/10.1093/cvr/cvp070] [PMID: 19233866]
[115]
Mitra P, Oskeritzian CA, Payne SG, Beaven MA, Milstien S, Spiegel S. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci USA 2006; 103(44): 16394-9.
[http://dx.doi.org/10.1073/pnas.0603734103] [PMID: 17050692]
[116]
Kontush A, Therond P, Zerrad A, et al. Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: Relevance to antiapoptotic and antioxidative activities. Arterioscler Thromb Vasc Biol 2007; 27(8): 1843-9.
[http://dx.doi.org/10.1161/ATVBAHA.107.145672] [PMID: 17569880]
[117]
Theilmeier G, Schmidt C, Herrmann J, et al. High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 2006; 114(13): 1403-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.607135] [PMID: 16982942]
[118]
Frias MA, Lecour S, James RW, Pedretti S. High density lipoprotein/sphingosine-1-phosphate-induced cardioprotection: Role of STAT3 as part of the SAFE pathway. JAK-STAT 2012; 1(2): 92-100.
[http://dx.doi.org/10.4161/jkst.19754] [PMID: 24058758]
[119]
Kimura T, Sato K, Kuwabara A, et al. Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. J Biol Chem 2001; 276(34): 31780-5.
[http://dx.doi.org/10.1074/jbc.M104353200] [PMID: 11427538]
[120]
Liu D, Ji L, Wang Y, Zheng L. Cyclooxygenase-2 expression, prostacyclin production and endothelial protection of high-density lipoprotein. Cardiovasc Hematol Disord Drug Targets 2012; 12(2): 98-105.
[http://dx.doi.org/10.2174/1871529X11202020098] [PMID: 23030452]
[121]
Rodríguez C, González-Díez M, Badimon L, Martínez-González J. Sphingosine-1-phosphate: A bioactive lipid that confers high-density lipoprotein with vasculoprotection mediated by nitric oxide and prostacyclin. Thromb Haemost 2009; 101(4): 665-73.
[http://dx.doi.org/10.1160/TH08-10-0675] [PMID: 19350109]
[122]
Sattler KJ, Elbasan S, Keul P, et al. Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res Cardiol 2010; 105(6): 821-32.
[http://dx.doi.org/10.1007/s00395-010-0112-5] [PMID: 20652276]
[123]
Sattler K, Gräler M, Keul P, et al. Defects of high-density lipoproteins in coronary artery disease caused by low sphingosine-1-phosphate content: Correction by sphingosine-1-phosphate-loading. J Am Coll Cardiol 2015; 66(13): 1470-85.
[http://dx.doi.org/10.1016/j.jacc.2015.07.057] [PMID: 26403344]
[124]
Argraves KM, Sethi AA, Gazzolo PJ, et al. S1P, dihydro-S1P and C24:1-ceramide levels in the HDL-containing fraction of serum inversely correlate with occurrence of ischemic heart disease. Lipids Health Dis 2011; 10: 70.
[http://dx.doi.org/10.1186/1476-511X-10-70] [PMID: 21554699]
[125]
Jing XD, Wei XM, Deng SB, Du JL, Liu YJ, She Q. The relationship between the high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P) and coronary in-stent restenosis. Clin Chim Acta 2015; 446: 248-52.
[http://dx.doi.org/10.1016/j.cca.2015.04.038] [PMID: 25958848]
[126]
Sattler K, Lehmann I, Gräler M, et al. HDL-bound sphingosine 1-phosphate (S1P) predicts the severity of coronary artery atherosclerosis. Cell Physiol Biochem 2014; 34(1): 172-84.
[http://dx.doi.org/10.1159/000362993] [PMID: 24977490]
[127]
Levkau B. HDL-S1P: Cardiovascular functions, disease-associated alterations, and therapeutic applications. Front Pharmacol 2015; 6: 243.
[http://dx.doi.org/10.3389/fphar.2015.00243] [PMID: 26539121]
[128]
Charakida M, Besler C, Batuca JR, et al. Vascular abnormalities, paraoxonase activity, and dysfunctional HDL in primary antiphospholipid syndrome. JAMA 2009; 302(11): 1210-7.
[http://dx.doi.org/10.1001/jama.2009.1346] [PMID: 19755700]
[129]
McMahon M, Grossman J, FitzGerald J, et al. Proinflammatory high-density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 2006; 54(8): 2541-9.
[http://dx.doi.org/10.1002/art.21976] [PMID: 16868975]
[130]
Weihrauch D, Xu H, Shi Y, et al. Effects of D-4F on vasodilation, oxidative stress, angiostatin, myocardial inflammation, and angiogenic potential in tight-skin mice. Am J Physiol Heart Circ Physiol 2007; 293(3): H1432-41.
[http://dx.doi.org/10.1152/ajpheart.00038.2007] [PMID: 17496220]
[131]
de Souza JA, Vindis C, Hansel B, et al. Metabolic syndrome features small, apolipoprotein A-I-poor, triglyceride-rich HDL3 particles with defective anti-apoptotic activity. Atherosclerosis 2008; 197(1): 84-94.
[http://dx.doi.org/10.1016/j.atherosclerosis.2007.08.009] [PMID: 17868679]
[132]
Perségol L, Vergès B, Foissac M, Gambert P, Duvillard L. Inability of HDL from type 2 diabetic patients to counteract the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia 2006; 49(6): 1380-6.
[http://dx.doi.org/10.1007/s00125-006-0244-1] [PMID: 16596357]
[133]
Sorrentino SA, Besler C, Rohrer L, et al. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation 2010; 121(1): 110-22.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.836346] [PMID: 20026785]
[134]
Ansell BJ, Navab M, Hama S, et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 2003; 108(22): 2751-6.
[http://dx.doi.org/10.1161/01.CIR.0000103624.14436.4B] [PMID: 14638544]
[135]
Besler C, Heinrich K, Rohrer L, et al. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J Clin Invest 2011; 121(7): 2693-708.
[http://dx.doi.org/10.1172/JCI42946] [PMID: 21701070]
[136]
Riwanto M, Rohrer L, Roschitzki B, et al. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: Role of high-density lipoprotein-proteome remodeling. Circulation 2013; 127(8): 891-904.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.108753] [PMID: 23349247]
[137]
Ferretti G, Bacchetti T, Nègre-Salvayre A, Salvayre R, Dousset N, Curatola G. Structural modifications of HDL and functional consequences. Atherosclerosis 2006; 184(1): 1-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.08.008] [PMID: 16157342]
[138]
Holzer M, Gauster M, Pfeifer T, et al. Protein carbamylation renders high-density lipoprotein dysfunctional. Antioxid Redox Signal 2011; 14(12): 2337-46.
[http://dx.doi.org/10.1089/ars.2010.3640] [PMID: 21235354]
[139]
Santana JM, Brown CD. High-density lipoprotein carbamylation and dysfunction in vascular disease. Front Biosci 2018; 23: 2227-34.
[http://dx.doi.org/10.2741/4701] [PMID: 29772557]
[140]
Zheng L, Nukuna B, Brennan ML, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest 2004; 114(4): 529-41.
[http://dx.doi.org/10.1172/JCI200421109] [PMID: 15314690]
[141]
Undurti A, Huang Y, Lupica JA, Smith JD, DiDonato JA, Hazen SL. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J Biol Chem 2009; 284(45): 30825-35.
[http://dx.doi.org/10.1074/jbc.M109.047605] [PMID: 19726691]
[142]
Vuilleumier N, Dayer JM, von Eckardstein A, Roux-Lombard P. Pro- or anti-inflammatory role of apolipoprotein A-1 in high-density lipoproteins? Swiss Med Wkly 2013; 143w13781
[http://dx.doi.org/10.4414/smw.2013.13781] [PMID: 23740387]
[143]
Huang Y, DiDonato JA, Levison BS, et al. An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med 2014; 20(2): 193-203.
[http://dx.doi.org/10.1038/nm.3459] [PMID: 24464187]
[144]
DiDonato JA, Huang Y, Aulak KS, et al. Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma. Circulation 2013; 128(15): 1644-55.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002624] [PMID: 23969698]
[145]
DiDonato JA, Aulak K, Huang Y, et al. Site-specific nitration of apolipoprotein A-I at tyrosine 166 is both abundant within human atherosclerotic plaque and dysfunctional. J Biol Chem 2014; 289(15): 10276-92.
[http://dx.doi.org/10.1074/jbc.M114.556506] [PMID: 24558038]
[146]
Rosenson RS, Brewer HB Jr, Ansell BJ, et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2016; 13(1): 48-60.
[http://dx.doi.org/10.1038/nrcardio.2015.124] [PMID: 26323267]
[147]
von Eckardstein A, Rohrer L. HDLs in crises. Curr Opin Lipidol 2016; 27(3): 264-73.
[http://dx.doi.org/10.1097/MOL.0000000000000294] [PMID: 27031272]
[148]
Luo M, Liu A, Wang S, et al. ApoCIII enrichment in HDL impairs HDL-mediated cholesterol efflux capacity. Sci Rep 2017; 7(1): 2312.
[http://dx.doi.org/10.1038/s41598-017-02601-7] [PMID: 28539597]
[149]
Jensen MK, Aroner SA, Mukamal KJ, et al. High-density lipoprotein subspecies defined by presence of apolipoprotein c-iii and incident coronary heart disease in four cohorts. Circulation 2018; 137(13): 1364-73.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.031276] [PMID: 29162611]
[150]
Hansel B, Giral P, Nobecourt E, et al. Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. J Clin Endocrinol Metab 2004; 89(10): 4963-71.
[http://dx.doi.org/10.1210/jc.2004-0305] [PMID: 15472192]
[151]
Nobécourt E, Jacqueminet S, Hansel B, et al. Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: Relationship to elevated oxidative stress and hyperglycaemia. Diabetologia 2005; 48(3): 529-38.
[http://dx.doi.org/10.1007/s00125-004-1655-5] [PMID: 15729582]
[152]
Kontush A, de Faria EC, Chantepie S, Chapman MJ. A normotriglyceridemic, low HDL-cholesterol phenotype is characterised by elevated oxidative stress and HDL particles with attenuated antioxidative activity. Atherosclerosis 2005; 182(2): 277-85.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.03.001] [PMID: 16159600]
[153]
Curtiss LK, Bonnet DJ, Rye KA. The conformation of apolipoprotein A-I in high-density lipoproteins is influenced by core lipid composition and particle size: A surface plasmon resonance study. Biochemistry 2000; 39(19): 5712-21.
[http://dx.doi.org/10.1021/bi992902m] [PMID: 10801321]
[154]
Sparks DL, Davidson WS, Lund-Katz S, Phillips MC. Effects of the neutral lipid content of high density lipoprotein on apolipoprotein A-I structure and particle stability. J Biol Chem 1995; 270(45): 26910-7.
[http://dx.doi.org/10.1074/jbc.270.45.26910] [PMID: 7592936]
[155]
Kim JY, Lee EY, Park JK, Song YW, Kim JR, Cho KH. Patients with rheumatoid arthritis show altered lipoprotein profiles with dysfunctional high-density lipoproteins that can exacerbate inflammatory and atherogenic process. PLoS One 2016; 11(10)e0164564
[http://dx.doi.org/10.1371/journal.pone.0164564] [PMID: 27736980]
[156]
Rader DJ, Hovingh GK. HDL and cardiovascular disease. Lancet 2014; 384(9943): 618-25.
[http://dx.doi.org/10.1016/S0140-6736(14)61217-4] [PMID: 25131981]
[157]
Lahita RG, Rivkin E, Cavanagh I, Romano P. Low levels of total cholesterol, high-density lipoprotein, and apolipoprotein A1 in association with anticardiolipin antibodies in patients with systemic lupus erythematosus. Arthritis Rheum 1993; 36(11): 1566-74.
[http://dx.doi.org/10.1002/art.1780361111] [PMID: 8240433]
[158]
Merrill JT, Rivkin E, Shen C, Lahita RG. Selection of a gene for apolipoprotein A1 using autoantibodies from a patient with systemic lupus erythematosus. Arthritis Rheum 1995; 38(11): 1655-9.
[http://dx.doi.org/10.1002/art.1780381118] [PMID: 7488287]
[159]
Dinu AR, Merrill JT, Shen C, Antonov IV, Myones BL, Lahita RG. Frequency of antibodies to the cholesterol transport protein apolipoprotein A1 in patients with SLE. Lupus 1998; 7(5): 355-60.
[http://dx.doi.org/10.1191/096120398678920262] [PMID: 9696140]
[160]
Phillips MC. New insights into the determination of HDL structure by apolipoproteins: Thematic review series: High density lipoprotein structure, function, and metabolism. J Lipid Res 2013; 54(8): 2034-48.
[http://dx.doi.org/10.1194/jlr.R034025] [PMID: 23230082]
[161]
Davidson WS, Thompson TB. The structure of apolipoprotein A-I in high density lipoproteins. J Biol Chem 2007; 282(31): 22249-53.
[http://dx.doi.org/10.1074/jbc.R700014200] [PMID: 17526499]
[162]
Batuca JR, Ames PR, Amaral M, Favas C, Isenberg DA, Delgado Alves J. Anti-atherogenic and anti-inflammatory properties of high-density lipoprotein are affected by specific antibodies in systemic lupus erythematosus. Rheumatology (Oxford) 2009; 48(1): 26-31.
[http://dx.doi.org/10.1093/rheumatology/ken397] [PMID: 19000993]
[163]
Batuca JR, Ames PR, Isenberg DA, Alves JD. Antibodies toward high-density lipoprotein components inhibit paraoxonase activity in patients with systemic lupus erythematosus. Ann N Y Acad Sci 2007; 1108: 137-46.
[http://dx.doi.org/10.1196/annals.1422.016] [PMID: 17893980]
[164]
O’Neill SG, Giles I, Lambrianides A, et al. Antibodies to apolipoprotein A-I, high-density lipoprotein, and C-reactive protein are associated with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 2010; 62(3): 845-54.
[http://dx.doi.org/10.1002/art.27286] [PMID: 20131231]
[165]
Ames PR, Matsuura E, Batuca JR, et al. High-density lipoprotein inversely relates to its specific autoantibody favoring oxidation in thrombotic primary antiphospholipid syndrome. Lupus 2010; 19(6): 711-6.
[http://dx.doi.org/10.1177/0961203309357765] [PMID: 20064910]
[166]
Rodríguez-Carrio J, Alperi-López M, López-Mejías R, et al. Antibodies to paraoxonase 1 are associated with oxidant status and endothelial activation in rheumatoid arthritis. Clin Sci (Lond) 2016; 130(21): 1889-99.
[http://dx.doi.org/10.1042/CS20160374] [PMID: 27520507]
[167]
Antiochos P, Marques-Vidal P, Virzi J, et al. Association between anti-apolipoprotein A-1 antibodies and cardiovascular disease in the general population. Results from the CoLaus study. Thromb Haemost 2016; 116(4): 764-71.
[PMID: 27384400]
[168]
Vuilleumier N, Reber G, James R, et al. Presence of autoantibodies to apolipoprotein A-1 in patients with acute coronary syndrome further links autoimmunity to cardiovascular disease. J Autoimmun 2004; 23(4): 353-60.
[http://dx.doi.org/10.1016/j.jaut.2004.08.003] [PMID: 15571929]
[169]
Batuca JR, Amaral MC, Favas C, et al. Antibodies against HDL components in ischaemic stroke and coronary artery disease. Thromb Haemost 2018; 118(6): 1088-100.
[http://dx.doi.org/10.1055/s-0038-1645857] [PMID: 29723873]
[170]
Rodríguez-Carrio J, Mozo L, López P, Nikiphorou E, Suárez A. Anti-high-density lipoprotein antibodies and antioxidant dysfunction in immune-driven diseases. Front Med (Lausanne) 2018; 5: 114.
[http://dx.doi.org/10.3389/fmed.2018.00114] [PMID: 29740582]
[171]
Rodríguez-Carrio J, Alperi-López M, López P, Ballina-García FJ, Abal F, Suárez A. Antibodies to high-density lipoproteins are associated with inflammation and cardiovascular disease in rheumatoid arthritis patients. Transl Res 2015; 166(6): 529-39.
[http://dx.doi.org/10.1016/j.trsl.2015.07.004] [PMID: 26279255]
[172]
Vuilleumier N, Bratt J, Alizadeh R, Jogestrand T, Hafström I, Frostegård J. Anti-apoA-1 IgG and oxidized LDL are raised in rheumatoid arthritis (RA): Potential associations with cardiovascular disease and RA disease activity. Scand J Rheumatol 2010; 39(6): 447-53.
[http://dx.doi.org/10.3109/03009741003742755] [PMID: 20604674]
[173]
Croca S, Bassett P, Chambers S, et al. IgG anti-apolipoprotein A-1 antibodies in patients with systemic lupus erythematosus are associated with disease activity and corticosteroid therapy: An observational study. Arthritis Res Ther 2015; 17: 26.
[http://dx.doi.org/10.1186/s13075-015-0539-z] [PMID: 25890187]
[174]
López P, Rodríguez-Carrio J, Martínez-Zapico A, et al. Serum levels of anti-PON1 and anti-HDL antibodies as potential biomarkers of premature atherosclerosis in systemic lupus erythematosus. Thromb Haemost 2017; 117(11): 2194-206.
[http://dx.doi.org/10.1160/TH17-03-0221] [PMID: 29044294]
[175]
Rodríguez-Carrio J, López-Mejías R, Alperi-López M, et al. Paraoxonase 1 activity is modulated by the rs662 polymorphism and IgG anti-high-density lipoprotein antibodies in patients with rheumatoid arthritis: Potential implications for cardiovascular disease. Arthritis Rheumatol 2016; 68(6): 1367-76.
[http://dx.doi.org/10.1002/art.39609] [PMID: 26815637]
[176]
Vuilleumier N, Bas S, Pagano S, et al. Anti-apolipoprotein A-1 IgG predicts major cardiovascular events in patients with rheumatoid arthritis. Arthritis Rheum 2010; 62(9): 2640-50.
[http://dx.doi.org/10.1002/art.27546] [PMID: 20506304]
[177]
Vuilleumier N, Rossier MF, Pagano S, et al. Anti-apolipoprotein A-1 IgG as an independent cardiovascular prognostic marker affecting basal heart rate in myocardial infarction. Eur Heart J 2010; 31(7): 815-23.
[http://dx.doi.org/10.1093/eurheartj/ehq055] [PMID: 20176799]
[178]
Finckh A, Courvoisier DS, Pagano S, et al. Evaluation of cardiovascular risk in patients with rheumatoid arthritis: Do cardiovascular biomarkers offer added predictive ability over established clinical risk scores? Arthritis Care Res (Hoboken) 2012; 64(6): 817-25.
[http://dx.doi.org/10.1002/acr.21631] [PMID: 22302385]
[179]
Montecucco F, Vuilleumier N, Pagano S, et al. Anti-Apolipoprotein A-1 auto-antibodies are active mediators of atherosclerotic plaque vulnerability. Eur Heart J 2011; 32(4): 412-21.
[http://dx.doi.org/10.1093/eurheartj/ehq521] [PMID: 21224292]
[180]
Pagano S, Carbone F, Burger F, et al. Anti-apolipoprotein A-1 auto-antibodies as active modulators of atherothrombosis. Thromb Haemost 2016; 116(3): 554-64.
[http://dx.doi.org/10.1160/TH16-03-0229] [PMID: 27356567]
[181]
Vuilleumier N, Montecucco F, Spinella G, et al. Serum levels of anti-apolipoprotein A-1 auto-antibodies and myeloperoxidase as predictors of major adverse cardiovascular events after carotid endarterectomy. Thromb Haemost 2013; 109(4): 706-15.
[http://dx.doi.org/10.1160/TH12-10-0714] [PMID: 23364307]
[182]
Antiochos P, Marques-Vidal P, Virzi J, et al. Anti-apolipoprotein A-1 IgG predict all-cause mortality and are associated with Fc receptor-like 3 polymorphisms. Front Immunol 2017; 8: 437.
[http://dx.doi.org/10.3389/fimmu.2017.00437] [PMID: 28458671]
[183]
Antiochos P, Marques-Vidal P, Virzi J, et al. Impact of CD14 polymorphisms on anti-apolipoprotein A-1 IgG-related coronary artery disease prediction in the general population. Arterioscler Thromb Vasc Biol 2017; 37(12): 2342-9.
[http://dx.doi.org/10.1161/ATVBAHA.117.309602] [PMID: 29074586]
[184]
Keller PF, Pagano S, Roux-Lombard P, et al. Autoantibodies against apolipoprotein A-1 and phosphorylcholine for diagnosis of non-ST-segment elevation myocardial infarction. J Intern Med 2012; 271(5): 451-62.
[http://dx.doi.org/10.1111/j.1365-2796.2011.02479.x] [PMID: 22061093]
[185]
Rubini Gimenez M, Pagano S, Virzi J, et al. Diagnostic and prognostic value of autoantibodies anti-apolipoprotein A-1 and anti-phosphorylcholine in acute non-ST elevation myocardial infarction. Eur J Clin Invest 2015; 45(4): 369-79.
[http://dx.doi.org/10.1111/eci.12411] [PMID: 25627775]
[186]
Lagerstedt JO, Dalla-Riva J, Marinkovic G, et al. Anti-ApoA-I IgG antibodies are not associated with carotid artery disease progression and first-time cardiovascular events in middle-aged individuals. J Intern Med 2019; 285(1): 49-58.
[http://dx.doi.org/10.1111/joim.12817] [PMID: 30028049]
[187]
Carbone F, Satta N, Montecucco F, et al. Anti-ApoA-1 IgG serum levels predict worse poststroke outcomes. Eur J Clin Invest 2016; 46(9): 805-17.
[http://dx.doi.org/10.1111/eci.12664] [PMID: 27490973]
[188]
Montecucco F, Braunersreuther V, Burger F, et al. Anti-apoA-1 auto-antibodies increase mouse atherosclerotic plaque vulnerability, myocardial necrosis and mortality triggering TLR2 and TLR4. Thromb Haemost 2015; 114(2): 410-22.
[PMID: 25879306]
[189]
Pagano S, Satta N, Werling D, et al. Anti-apolipoprotein A-1 IgG in patients with myocardial infarction promotes inflammation through TLR2/CD14 complex. J Intern Med 2012; 272(4): 344-57.
[http://dx.doi.org/10.1111/j.1365-2796.2012.02530.x] [PMID: 22329401]
[190]
Wick PA, Mombelli A, Pagano S, et al. Anti-apolipoprotein A-1 autoantibodies as biomarker for atherosclerosis burden in patients with periodontitis. J Periodontal Res 2013; 48(3): 350-6.
[http://dx.doi.org/10.1111/jre.12014] [PMID: 23050768]
[191]
El-Lebedy D, Rasheed E, Kafoury M, Abd-El Haleem D, Awadallah E, Ashmawy I. Anti-apolipoprotein A-1 autoantibodies as risk biomarker for cardiovascular diseases in type 2 diabetes mellitus. J Diabetes Complications 2016; 30(4): 580-5.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.02.014] [PMID: 26965796]
[192]
Quercioli A, Montecucco F, Galan K, et al. Anti-apolipoprotein A-1 IgG levels predict coronary artery calcification in obese but otherwise healthy individuals. Mediators Inflamm 2012; 2012243158
[http://dx.doi.org/10.1155/2012/243158] [PMID: 23258951]
[193]
Radwan MM, El-Lebedy D, Fouda R, Elsorougy E. Anti-apolipoprotein A-1 antibodies and carotid intima-media thickness in Egyptian women with systemic lupus erythematosus. Clin Rheumatol 2014; 33(4): 493-8.
[http://dx.doi.org/10.1007/s10067-013-2399-8] [PMID: 24077952]
[194]
Chew KW, Bhattacharya D, McGinnis KA, et al. Short communication: Coronary heart disease risk by framingham risk score in Hepatitis C and HIV/Hepatitis C-coinfected persons. AIDS Res Hum Retroviruses 2015; 31(7): 718-22.
[http://dx.doi.org/10.1089/aid.2014.0284] [PMID: 25858663]
[195]
Satapathy SK, Kim YJ, Kataria A, et al. Higher prevalence and more severe coronary artery disease in Hepatitis C virus-infected patients: A case control study. J Clin Exp Hepatol 2013; 3(3): 186-91.
[http://dx.doi.org/10.1016/j.jceh.2013.05.004] [PMID: 25755499]
[196]
Zanni MV, Schouten J, Grinspoon SK, Reiss P. Risk of coronary heart disease in patients with HIV infection. Nat Rev Cardiol 2014; 11(12): 728-41.
[http://dx.doi.org/10.1038/nrcardio.2014.167] [PMID: 25331088]
[197]
Satta N, Pagano S, Montecucco F, et al. Anti-apolipoprotein A-1 autoantibodies are associated with immunodeficiency and systemic inflammation in HIV patients. J Infect 2018; 76(2): 186-95.
[http://dx.doi.org/10.1016/j.jinf.2017.11.008] [PMID: 29198606]
[198]
Bridge SH, Pagano S, Jones M, et al. Autoantibody to apolipoprotein A-1 in hepatitis C virus infection: A role in atherosclerosis? Hepatol Int 2018; 12(1): 17-25.
[http://dx.doi.org/10.1007/s12072-018-9842-5] [PMID: 29423541]
[199]
Nordell AD, McKenna M, Borges AH, et al. Severity of cardiovascular disease outcomes among patients with HIV is related to markers of inflammation and coagulation. J Am Heart Assoc 2014; 3(3)e000844
[http://dx.doi.org/10.1161/JAHA.114.000844] [PMID: 24870935]
[200]
McCombs J, Matsuda T, Tonnu-Mihara I, et al. The risk of long-term morbidity and mortality in patients with chronic hepatitis C: Results from an analysis of data from a Department of Veterans Affairs Clinical Registry. JAMA Intern Med 2014; 174(2): 204-12.
[http://dx.doi.org/10.1001/jamainternmed.2013.12505] [PMID: 24193887]
[201]
Panin LE, Kostina NE, Lukashev VA. The role of structural and functional homology between human apolipoprotein A-I and envelope proteins of human immunodeficiency virus type 1 in CD4 receptor binding. Dokl Biochem Biophys 2002; 385: 209-12.
[http://dx.doi.org/10.1023/A:1019963423498] [PMID: 12462973]
[202]
Mancone C, Steindler C, Santangelo L, et al. Hepatitis C virus production requires apolipoprotein A-I and affects its association with nascent low-density lipoproteins. Gut 2011; 60(3): 378-86.
[http://dx.doi.org/10.1136/gut.2010.211292] [PMID: 20940285]
[203]
Catanese MT, Uryu K, Kopp M, et al. Ultrastructural analysis of hepatitis C virus particles. Proc Natl Acad Sci USA 2013; 110(23): 9505-10.
[http://dx.doi.org/10.1073/pnas.1307527110] [PMID: 23690609]
[204]
Syder AJ, Lee H, Zeisel MB, et al. Small molecule scavenger receptor BI antagonists are potent HCV entry inhibitors. J Hepatol 2011; 54(1): 48-55.
[http://dx.doi.org/10.1016/j.jhep.2010.06.024] [PMID: 20932595]
[205]
Madsen CM, Varbo A, Nordestgaard BG. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: Two prospective cohort studies. Eur Heart J 2017; 38(32): 2478-86.
[http://dx.doi.org/10.1093/eurheartj/ehx163] [PMID: 28419274]
[206]
Wang XL, Dudman NP, Wang J, Wilcken DE. Mechanisms responsible for increasing immunoreactivity of apolipoprotein A-I with storage: The role of oxidation. Clin Chem 1989; 35(10): 2082-6.
[PMID: 2507198]
[207]
Pagano S, Gaertner H, Cerini F, et al. The Human Autoantibody Response to Apolipoprotein A-I Is Focused on the C-Terminal Helix: A New Rationale for Diagnosis and Treatment of Cardiovascular Disease? PLoS One 2015; 10(7)e0132780
[http://dx.doi.org/10.1371/journal.pone.0132780] [PMID: 26177543]
[208]
Teixeira PC, Ducret A, Ferber P, et al. Definition of human apolipoprotein A-I epitopes recognized by autoantibodies present in patients with cardiovascular diseases. J Biol Chem 2014; 289(41): 28249-59.
[http://dx.doi.org/10.1074/jbc.M114.589002] [PMID: 25170076]
[209]
Baudino L, Azeredo da Silveira S, Nakata M, Izui S. Molecular and cellular basis for pathogenicity of autoantibodies: Lessons from murine monoclonal autoantibodies. Springer Semin Immunopathol 2006; 28(2): 175-84.
[http://dx.doi.org/10.1007/s00281-006-0037-0] [PMID: 16953439]
[210]
Ludwig RJ, Vanhoorelbeke K, Leypoldt F, et al. Mechanisms of autoantibody-induced pathology. Front Immunol 2017; 8: 603.
[http://dx.doi.org/10.3389/fimmu.2017.00603] [PMID: 28620373]
[211]
Koneczny I. A new classification system for IgG4 autoantibodies. Front Immunol 2018; 9: 97.
[http://dx.doi.org/10.3389/fimmu.2018.00097] [PMID: 29483905]
[212]
Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today 1993; 14(9): 426-30.
[http://dx.doi.org/10.1016/0167-5699(93)90244-F] [PMID: 8216719]
[213]
Uchida Y, Hiruta N, Yamanoi D, Shimoyama E, Maezawa Y, Uchida Y. Imaging of native high-density lipoprotein in human coronary plaques by color fluorescent angioscopy. Circ J 2014; 78(7): 1667-75.
[http://dx.doi.org/10.1253/circj.CJ-13-1585] [PMID: 24770335]
[214]
Mannic T, Satta N, Pagano S, et al. CD14 as a mediator of the mineralocorticoid receptor-dependent anti-apolipoprotein A-1 IgG chronotropic effect on cardiomyocytes. Endocrinology 2015; 156(12): 4707-19.
[http://dx.doi.org/10.1210/en.2015-1605] [PMID: 26393305]
[215]
Rossier MF, Pagano S, Python M, et al. Antiapolipoprotein A-1 IgG chronotropic effects require nongenomic action of aldosterone on L-type calcium channels. Endocrinology 2012; 153(3): 1269-78.
[http://dx.doi.org/10.1210/en.2011-1835] [PMID: 22253414]
[216]
Ellis JA, Kemp AS, Ponsonby AL. Gene-environment interaction in autoimmune disease. Expert Rev Mol Med 2014; 16e4
[http://dx.doi.org/10.1017/erm.2014.5] [PMID: 24602341]
[217]
Cornaby C, Gibbons L, Mayhew V, Sloan CS, Welling A, Poole BD. B cell epitope spreading: mechanisms and contribution to autoimmune diseases. Immunol Lett 2015; 163(1): 56-68.
[http://dx.doi.org/10.1016/j.imlet.2014.11.001] [PMID: 25445494]
[218]
Kochi Y, Myouzen K, Yamada R, et al. FCRL3, an autoimmune susceptibility gene, has inhibitory potential on B-cell receptor-mediated signaling. J Immunol 2009; 183(9): 5502-10.
[http://dx.doi.org/10.4049/jimmunol.0901982] [PMID: 19843936]
[219]
Kochi Y, Yamada R, Suzuki A, et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet 2005; 37(5): 478-85.
[http://dx.doi.org/10.1038/ng1540] [PMID: 15838509]
[220]
Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007; 357(21): 2109-22.
[http://dx.doi.org/10.1056/NEJMoa0706628] [PMID: 17984165]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy