Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Role of the Endocannabinoidome in Human and Mouse Atherosclerosis

Author(s): Fabiana Piscitelli and Cristoforo Silvestri*

Volume 25, Issue 29, 2019

Page: [3147 - 3164] Pages: 18

DOI: 10.2174/1381612825666190826162735

Price: $65

Abstract

The Endocannabinoid (eCB) system and its role in many physiological and pathological conditions is well described and accepted, and includes cardiovascular disorders. However, the eCB system has been expanded to an “-ome”; the endocannabinoidome (eCBome) that includes endocannabinoid-related mediators, their protein targets and metabolic enzymes, many of which significantly impact upon cardiometabolic health. These recent discoveries are here summarized with a special focus on their potential involvement in atherosclerosis. We described the role of classical components of the eCB system (eCBs, CB1 and CB2 receptors) and eCB-related lipids, their regulatory enzymes and molecular targets in atherosclerosis. Furthermore, since increasing evidence points to significant cross-talk between the eCBome and the gut microbiome and the gut microbiome and atherosclerosis, we explore the possibility that a gut microbiome - eCBome axis has potential implications in atherosclerosis.

Keywords: Endocannabinoids, cannabinoid receptors, cardiovascular, atherogenesis, gut microbiome, atherosclerosis.

[1]
Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258(5090): 1946-9.
[http://dx.doi.org/10.1126/science.1470919] [PMID: 1470919]
[2]
Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995; 50(1): 83-90.
[http://dx.doi.org/10.1016/0006-2952(95)00109-D] [PMID: 7605349]
[3]
Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258(5090): 1946-9.
[http://dx.doi.org/10.1126/science.1470919] [PMID: 1470919]
[4]
Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990; 346(6284): 561-4.
[http://dx.doi.org/10.1038/346561a0] [PMID: 2165569]
[5]
Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993; 365(6441): 61-5.
[http://dx.doi.org/10.1038/365061a0] [PMID: 7689702]
[6]
Howlett AC, Barth F, Bonner TI, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 2002; 54(2): 161-202.
[http://dx.doi.org/10.1124/pr.54.2.161] [PMID: 12037135]
[7]
Childers SR, Breivogel CS. Cannabis and endogenous cannabinoid systems. Drug Alcohol Depend 1998; 51(1-2): 173-87.
[http://dx.doi.org/10.1016/S0376-8716(98)00075-1] [PMID: 9716939]
[8]
Howlett AC, Fleming RM. Cannabinoid inhibition of adenylate cyclase. Pharmacology of the response in neuroblastoma cell membranes. Mol Pharmacol 1984; 26(3): 532-8.
[PMID: 6092901]
[9]
Caulfield MP, Brown DA. Cannabinoid receptor agonists inhibit Ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol 1992; 106(2): 231-2.
[http://dx.doi.org/10.1111/j.1476-5381.1992.tb14321.x] [PMID: 1327374]
[10]
Mackie K, Hille B. Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci USA 1992; 89(9): 3825-9.
[http://dx.doi.org/10.1073/pnas.89.9.3825] [PMID: 1315042]
[11]
Mackie K, Lai Y, Westenbroek R, Mitchell R. Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci 1995; 15(10): 6552-61.
[http://dx.doi.org/10.1523/JNEUROSCI.15-10-06552.1995] [PMID: 7472417]
[12]
Deadwyler SA, Hampson RE, Mu J, Whyte A, Childers S. Cannabinoids modulate voltage sensitive potassium A-current in hippocampal neurons via a cAMP-dependent process. J Pharmacol Exp Ther 1995; 273(2): 734-43.
[PMID: 7538581]
[13]
Bouaboula M, Poinot-Chazel C, Bourrié B, et al. Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem J 1995; 312(Pt 2): 637-41.
[http://dx.doi.org/10.1042/bj3120637] [PMID: 8526880]
[14]
Demuth DG, Molleman A. Cannabinoid signalling. Life Sci 2006; 78(6): 549-63.
[http://dx.doi.org/10.1016/j.lfs.2005.05.055] [PMID: 16109430]
[15]
Herkenham M, Lynn AB, Little MD, et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 1990; 87(5): 1932-6.
[http://dx.doi.org/10.1073/pnas.87.5.1932] [PMID: 2308954]
[16]
Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 1991; 11(2): 563-83.
[http://dx.doi.org/10.1523/JNEUROSCI.11-02-00563.1991] [PMID: 1992016]
[17]
Tsou K, Brown S, Sañudo-Peña MC, Mackie K, Walker JM. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 1998; 83(2): 393-411.
[http://dx.doi.org/10.1016/S0306-4522(97)00436-3] [PMID: 9460749]
[18]
Ashton JC, Appleton I, Darlington CL, Smith PF. Immunohistochemical localization of cannabinoid CB1 receptor in inhibitory interneurons in the cerebellum. Cerebellum 2004; 3(4): 222-6.
[http://dx.doi.org/10.1080/14734220410019011] [PMID: 15686100]
[19]
Bermúdez-Silva FJ, Suárez J, Baixeras E, et al. Presence of functional cannabinoid receptors in human endocrine pancreas. Diabetologia 2008; 51(3): 476-87.
[http://dx.doi.org/10.1007/s00125-007-0890-y] [PMID: 18092149]
[20]
Katona I, Sperlágh B, Sík A, et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 1999; 19(11): 4544-58.
[http://dx.doi.org/10.1523/JNEUROSCI.19-11-04544.1999] [PMID: 10341254]
[21]
Egertová M, Elphick MR. Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB. J Comp Neurol 2000; 422(2): 159-71.
[http://dx.doi.org/10.1002/(SICI)1096-9861(20000626)422:2<159:AID-CNE1>3.0.CO;2-1] [PMID: 10842224]
[22]
Katona I, Urbán GM, Wallace M, et al. Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci 2006; 26(21): 5628-37.
[http://dx.doi.org/10.1523/JNEUROSCI.0309-06.2006] [PMID: 16723519]
[23]
Kawamura Y, Fukaya M, Maejima T, et al. The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci 2006; 26(11): 2991-3001.
[http://dx.doi.org/10.1523/JNEUROSCI.4872-05.2006] [PMID: 16540577]
[24]
Takahashi KA, Castillo PE. The CB1 cannabinoid receptor mediates glutamatergic synaptic suppression in the hippocampus. Neuroscience 2006; 139(3): 795-802.
[http://dx.doi.org/10.1016/j.neuroscience.2006.01.024] [PMID: 16527424]
[25]
Galiègue S, Mary S, Marchand J, et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 1995; 232(1): 54-61.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20780.x] [PMID: 7556170]
[26]
Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 1997; 74(2): 129-80.
[http://dx.doi.org/10.1016/S0163-7258(97)82001-3] [PMID: 9336020]
[27]
Niederhoffer N, Szabo B. Effect of the cannabinoid receptor agonist WIN55212-2 on sympathetic cardiovascular regulation. Br J Pharmacol 1999; 126(2): 457-66.
[http://dx.doi.org/10.1038/sj.bjp.0702337] [PMID: 10077239]
[28]
Varga K, Lake KD, Huangfu D, Guyenet PG, Kunos G. Mechanism of the hypotensive action of anandamide in anesthetized rats. Hypertension 1996; 28(4): 682-6.
[29]
Sierra S, Luquin N, Navarro-Otano J. The endocannabinoid system in cardiovascular function: novel insights and clinical implications. Clin Auton Res 2018; 28(1): 35-52.
[http://dx.doi.org/10.1007/s10286-017-0488-5] [PMID: 29222605]
[30]
Mallat A, Lotersztajn S. Endocannabinoids as novel mediators of liver diseases. J Endocrinol Invest 2006; 29(3)(Suppl.): 58-65.
[PMID: 16751709]
[31]
Starowicz K, Cristino L, Di Marzo V. TRPV1 receptors in the central nervous system: potential for previously unforeseen therapeutic applications. Curr Pharm Des 2008; 14(1): 42-54.
[http://dx.doi.org/10.2174/138161208783330790] [PMID: 18220817]
[32]
Cavuoto P, McAinch AJ, Hatzinikolas G, Janovská A, Game P, Wittert GA. The expression of receptors for endocannabinoids in human and rodent skeletal muscle. Biochem Biophys Res Commun 2007; 364(1): 105-10.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.099] [PMID: 17935697]
[33]
Van Sickle MD, Duncan M, Kingsley PJ, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 2005; 310(5746): 329-32.
[http://dx.doi.org/10.1126/science.1115740] [PMID: 16224028]
[34]
Brusco A, Tagliaferro PA, Saez T, Onaivi ES. Ultrastructural localization of neuronal brain CB2 cannabinoid receptors. Ann N Y Acad Sci 2008; 1139: 450-7.
[http://dx.doi.org/10.1196/annals.1432.037] [PMID: 18991892]
[35]
Gong J-P, Onaivi ES, Ishiguro H, et al. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res 2006; 1071(1): 10-23.
[http://dx.doi.org/10.1016/j.brainres.2005.11.035] [PMID: 16472786]
[36]
Onaivi ES, Ishiguro H, Gong J-P, et al. Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 2006; 1074: 514-36.
[http://dx.doi.org/10.1196/annals.1369.052] [PMID: 17105950]
[37]
Klein TW, Newton CA, Friedman H. Cannabinoids and the immune system. Pain Res Manag 2001; 6(2): 95-101.
[http://dx.doi.org/10.1155/2001/326867] [PMID: 11854771]
[38]
Lombard C, Nagarkatti M, Nagarkatti P. CB2 cannabinoid receptor agonist, JWH-015, triggers apoptosis in immune cells: potential role for CB2-selective ligands as immunosuppressive agents. Clin Immunol 2007; 122(3): 259-70.
[http://dx.doi.org/10.1016/j.clim.2006.11.002] [PMID: 17185040]
[39]
Benito C, Núñez E, Tolón RM, et al. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 2003; 23(35): 11136-41.
[http://dx.doi.org/10.1523/JNEUROSCI.23-35-11136.2003] [PMID: 14657172]
[40]
Benito C, Tolón RM, Pazos MR, Núñez E, Castillo AI, Romero J. Cannabinoid CB2 receptors in human brain inflammation. Br J Pharmacol 2008; 153(2): 277-85.
[http://dx.doi.org/10.1038/sj.bjp.0707505] [PMID: 17934510]
[41]
Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN. Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J Neurochem 2005; 95(2): 437-45.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03380.x] [PMID: 16086683]
[42]
Fulmer ML, Thewke DP. The endocannabinoid system and heart disease: the role of cannabinoid receptor type 2. Cardiovasc Hematol Disord Drug Targets 2018; 18(1): 34-51.
[http://dx.doi.org/10.2174/1871529X18666180206161457] [PMID: 29412125]
[43]
Di Marzo V, Goparaju SK, Wang L, et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 2001; 410(6830): 822-5.
[http://dx.doi.org/10.1038/35071088] [PMID: 11298451]
[44]
Maccarrone M, Bab I, Bíró T, et al. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol Sci 2015; 36(5): 277-96.
[http://dx.doi.org/10.1016/j.tips.2015.02.008] [PMID: 25796370]
[45]
Silvestri C, Di Marzo V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab 2013; 17(4): 475-90.
[http://dx.doi.org/10.1016/j.cmet.2013.03.001] [PMID: 23562074]
[46]
Iannotti FA, Di Marzo V, Petrosino S. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders. Prog Lipid Res 2016; 62: 107-28.
[http://dx.doi.org/10.1016/j.plipres.2016.02.002] [PMID: 26965148]
[47]
Elphick MR, Egertová M. The neurobiology and evolution of cannabinoid signalling. Philos Trans R Soc Lond B Biol Sci 2001; 356(1407): 381-408.
[http://dx.doi.org/10.1098/rstb.2000.0787] [PMID: 11316486]
[48]
Di Marzo V, Wang J. The endocannabinoidome: The world of endocannabinoids and related mediators. 1st ed. Academic Press 2014.
[49]
Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov 2018; 17(9): 623-39.
[http://dx.doi.org/10.1038/nrd.2018.115] [PMID: 30116049]
[50]
Thabuis C, Tissot-Favre D, Bezelgues J-B, et al. Biological functions and metabolism of oleoylethanolamide. Lipids 2008; 43(10): 887-94.
[http://dx.doi.org/10.1007/s11745-008-3217-y] [PMID: 18704536]
[51]
Costa B, Comelli F, Bettoni I, Colleoni M, Giagnoni G. The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB(1), TRPV1 and PPARgamma receptors and neurotrophic factors. Pain 2008; 139(3): 541-50.
[http://dx.doi.org/10.1016/j.pain.2008.06.003] [PMID: 18602217]
[52]
LoVerme J, La Rana G, Russo R, Calignano A, Piomelli D. The search for the palmitoylethanolamide receptor. Life Sci 2005; 77(14): 1685-98.
[http://dx.doi.org/10.1016/j.lfs.2005.05.012] [PMID: 15963531]
[53]
Leung FW. Capsaicin as an anti-obesity drug. Prog Drug Res 2014; 68: 171-9.
[PMID: 24941669]
[54]
Baggelaar MP, Maccarrone M, van der Stelt M. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog Lipid Res 2018; 71: 1-17.
[http://dx.doi.org/10.1016/j.plipres.2018.05.002] [PMID: 29751000]
[55]
Meijerink J, Balvers M, Witkamp R. N-Acyl amines of docosahexaenoic acid and other n-3 polyunsatured fatty acids - from fishy endocannabinoids to potential leads. Br J Pharmacol 2013; 169(4): 772-83.
[http://dx.doi.org/10.1111/bph.12030] [PMID: 23088259]
[56]
Woodward DF, Carling RWC, Cornell CL, et al. The pharmacology and therapeutic relevance of endocannabinoid derived cyclo-oxygenase (COX)-2 products. Pharmacol Ther 2008; 120(1): 71-80.
[http://dx.doi.org/10.1016/j.pharmthera.2008.08.001] [PMID: 18700152]
[57]
Bisogno T, Ligresti A, Di Marzo V. The endocannabinoid signalling system: biochemical aspects. Pharmacol Biochem Behav 2005; 81(2): 224-38.
[http://dx.doi.org/10.1016/j.pbb.2005.01.027] [PMID: 15935454]
[58]
Ben-Shabat S, Fride E, Sheskin T, et al. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol 1998; 353(1): 23-31.
[http://dx.doi.org/10.1016/S0014-2999(98)00392-6] [PMID: 9721036]
[59]
Saghatelian A, Trauger SA, Want EJ, Hawkins EG, Siuzdak G, Cravatt BF. Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry 2004; 43(45): 14332-9.
[http://dx.doi.org/10.1021/bi0480335] [PMID: 15533037]
[60]
Mulder AM, Cravatt BF. Endocannabinoid metabolism in the absence of fatty acid amide hydrolase (FAAH): discovery of phosphorylcholine derivatives of N-acyl ethanolamines. Biochemistry 2006; 45(38): 11267-77.
[http://dx.doi.org/10.1021/bi061122s] [PMID: 16981687]
[61]
Bisogno T, De Petrocellis L, Di Marzo V. Fatty acid amide hydrolase, an enzyme with many bioactive substrates. Possible therapeutic implications. Curr Pharm Des 2002; 8(7): 533-47.
[http://dx.doi.org/10.2174/1381612023395655] [PMID: 11945157]
[62]
Blankman JL, Simon GM, Cravatt BF. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 2007; 14(12): 1347-56.
[http://dx.doi.org/10.1016/j.chembiol.2007.11.006] [PMID: 18096503]
[63]
Kozak KR, Marnett LJ. Oxidative metabolism of endocannabinoids. Prostaglandins Leukot Essent Fatty Acids 2002; 66(2-3): 211-20.
[http://dx.doi.org/10.1054/plef.2001.0359] [PMID: 12052037]
[64]
Fukushima N, Chun J. The LPA receptors. Prostaglandins Other Lipid Mediat 2001; 64(1-4): 21-32.
[http://dx.doi.org/10.1016/S0090-6980(01)00105-8] [PMID: 11324705]
[65]
Nakane S, Oka S, Arai S, et al. 2-Arachidonoyl-sn-glycero-3-phosphate, an arachidonic acid-containing lysophosphatidic acid: occurrence and rapid enzymatic conversion to 2-arachidonoyl-sn-glycerol, a cannabinoid receptor ligand, in rat brain. Arch Biochem Biophys 2002; 402(1): 51-8.
[http://dx.doi.org/10.1016/S0003-9861(02)00038-3] [PMID: 12051682]
[66]
Gerhardt T, Ley K. Monocyte trafficking across the vessel wall. Cardiovasc Res 2015; 107(3): 321-30.
[http://dx.doi.org/10.1093/cvr/cvv147] [PMID: 25990461]
[67]
Lake KD, Compton DR, Varga K, Martin BR, Kunos G. Cannabinoid-induced hypotension and bradycardia in rats mediated by CB1-like cannabinoid receptors. J Pharmacol Exp Ther 1997; 281(3): 1030-7.
[PMID: 9190833]
[68]
Lake KD, Martin BR, Kunos G, Varga K. Cardiovascular effects of anandamide in anesthetized and conscious normotensive and hypertensive rats. Hypertens Dallas Tex 1979; 29(5): 1204-0.
[69]
Randall MD, Kendall DA. Involvement of a cannabinoid in endothelium-derived hyperpolarizing factor-mediated coronary vasorelaxation. Eur J Pharmacol 1997; 335(2-3): 205-9.
[http://dx.doi.org/10.1016/S0014-2999(97)01237-5] [PMID: 9369375]
[70]
Duerr GD, Heinemann JC, Gestrich C, et al. Impaired border zone formation and adverse remodeling after reperfused myocardial infarction in cannabinoid CB2 receptor deficient mice. Life Sci 2015; 138: 8-17.
[http://dx.doi.org/10.1016/j.lfs.2014.11.005] [PMID: 25447445]
[71]
Hiley CR, Ford WR. Endocannabinoids as mediators in the heart: a potential target for therapy of remodelling after myocardial infarction? Br J Pharmacol 2003; 138(7): 1183-4.
[http://dx.doi.org/10.1038/sj.bjp.0705155] [PMID: 12711614]
[73]
Noyes R Jr, Brunk SF, Baram DA, Canter A. Analgesic effect of delta-9-tetrahydrocannabinol. J Clin Pharmacol 1975; 15(2-3): 139-43.
[http://dx.doi.org/10.1002/j.1552-4604.1975.tb02348.x] [PMID: 1091664]
[74]
Frankel JP, Hughes A, Lees AJ, Stern GM. Marijuana for parkinsonian tremor. J Neurol Neurosurg Psychiatry 1990; 53(5): 436.
[http://dx.doi.org/10.1136/jnnp.53.5.436] [PMID: 2351975]
[75]
Beal JE, Olson R, Lefkowitz L, et al. Long-term efficacy and safety of dronabinol for acquired immunodeficiency syndrome-associated anorexia. J Pain Symptom Manage 1997; 14(1): 7-14.
[http://dx.doi.org/10.1016/S0885-3924(97)00038-9] [PMID: 9223837]
[76]
Pacher P, Bátkai S, Kunos G. Cardiovascular pharmacology of cannabinoids. Handb Exp Pharmacol 2005; (168): 599-625.
[http://dx.doi.org/10.1007/3-540-26573-2_20] [PMID: 16596789]
[77]
Gorelick DA, Heishman SJ, Preston KL, Nelson RA, Moolchan ET, Huestis MA. The cannabinoid CB1 receptor antagonist rimonabant attenuates the hypotensive effect of smoked marijuana in male smokers. Am Heart J 2006; 151(3): 754.e1-5.
[http://dx.doi.org/10.1016/j.ahj.2005.11.006] [PMID: 16504646]
[78]
Jones RT. Cardiovascular system effects of marijuana. J Clin Pharmacol 2002; 42(S1): 58S-63S.
[http://dx.doi.org/10.1002/j.1552-4604.2002.tb06004.x] [PMID: 12412837]
[79]
Wagner JA, Varga K, Kunos G. Cardiovascular actions of cannabinoids and their generation during shock. J Mol Med (Berl) 1998; 76(12): 824-36.
[http://dx.doi.org/10.1007/s001090050287] [PMID: 9846953]
[80]
Steffens S, Veillard NR, Arnaud C, et al. Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 2005; 434(7034): 782-6.
[http://dx.doi.org/10.1038/nature03389] [PMID: 15815632]
[81]
Yuan M, Kiertscher SM, Cheng Q, Zoumalan R, Tashkin DP, Roth MD. Delta 9-Tetrahydrocannabinol regulates Th1/Th2 cytokine balance in activated human T cells. J Neuroimmunol 2002; 133(1-2): 124-31.
[http://dx.doi.org/10.1016/S0165-5728(02)00370-3] [PMID: 12446015]
[82]
Gebremedhin D, Lange AR, Campbell WB, Hillard CJ, Harder DR. Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. Am J Physiol 1999; 276(6): H2085-93.
[PMID: 10362691]
[83]
Liu J, Gao B, Mirshahi F, et al. Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem J 2000; 346(Pt 3): 835-40.
[http://dx.doi.org/10.1042/bj3460835] [PMID: 10698714]
[84]
Montecucco F, Di Marzo V. At the heart of the matter: the endocannabinoid system in cardiovascular function and dysfunction. Trends Pharmacol Sci 2012; 33(6): 331-40.
[http://dx.doi.org/10.1016/j.tips.2012.03.002] [PMID: 22503477]
[85]
Rajesh M, Mukhopadhyay P, Haskó G, Pacher P. Cannabinoid CB1 receptor inhibition decreases vascular smooth muscle migration and proliferation. Biochem Biophys Res Commun 2008; 377(4): 1248-52.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.159] [PMID: 18996082]
[86]
Curcio A, Torella D, Indolfi C. Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: approach to therapy. Circ J 2011; 75(6): 1287-96.
[http://dx.doi.org/10.1253/circj.CJ-11-0366] [PMID: 21532177]
[87]
Jiang LS, Pu J, Han ZH, Hu LH, He B. Role of activated endocannabinoid system in regulation of cellular cholesterol metabolism in macrophages. Cardiovasc Res 2009; 81(4): 805-13.
[http://dx.doi.org/10.1093/cvr/cvn344] [PMID: 19074161]
[88]
Han KH, Lim S, Ryu J, et al. CB1 and CB2 cannabinoid receptors differentially regulate the production of reactive oxygen species by macrophages. Cardiovasc Res 2009; 84(3): 378-86.
[http://dx.doi.org/10.1093/cvr/cvp240] [PMID: 19596672]
[89]
Rajesh M, Mukhopadhyay P, Haskó G, Liaudet L, Mackie K, Pacher P. Cannabinoid-1 receptor activation induces reactive oxygen species-dependent and -independent mitogen-activated protein kinase activation and cell death in human coronary artery endothelial cells. Br J Pharmacol 2010; 160(3): 688-700.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00712.x] [PMID: 20590572]
[90]
Sugamura K, Sugiyama S, Nozaki T, et al. Activated endocannabinoid system in coronary artery disease and antiinflammatory effects of cannabinoid 1 receptor blockade on macrophages. Circulation 2009; 119(1): 28-36.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.811992] [PMID: 19103987]
[91]
Dol-Gleizes F, Paumelle R, Visentin V, et al. Rimonabant, a selective cannabinoid CB1 receptor antagonist, inhibits atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 2009; 29(1): 12-8.
[http://dx.doi.org/10.1161/ATVBAHA.108.168757] [PMID: 18845788]
[92]
Tiyerili V, Zimmer S, Jung S, et al. CB1 receptor inhibition leads to decreased vascular AT1 receptor expression, inhibition of oxidative stress and improved endothelial function. Basic Res Cardiol 2010; 105(4): 465-77.
[http://dx.doi.org/10.1007/s00395-010-0090-7] [PMID: 20361197]
[93]
Katsimpoulas M, Kadoglou NE, Moustardas P, et al. The role of exercise training and the endocannabinoid system in atherosclerotic plaque burden and composition in Apo-E-deficient mice. Hellenic J Cardiol 2016; 57(6): 417-25.
[http://dx.doi.org/10.1016/j.hjc.2016.11.013] [PMID: 28254386]
[94]
Nissen SE, Nicholls SJ, Wolski K, et al. Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the stradivarius randomized controlled trial. JAMA 2008; 299(13): 1547-60.
[http://dx.doi.org/10.1001/jama.299.13.1547] [PMID: 18387931]
[95]
O’Leary DH, Reuwer AQ, Nissen SE, et al. Effect of rimonabant on carotid intima-media thickness (CIMT) progression in patients with abdominal obesity and metabolic syndrome: the AUDITOR Trial. Heart 2011; 97(14): 1143-50.
[http://dx.doi.org/10.1136/hrt.2011.223446] [PMID: 21610270]
[96]
Meletta R, Slavik R, Mu L, et al. Cannabinoid receptor type 2 (CB2) as one of the candidate genes in human carotid plaque imaging: Evaluation of the novel radiotracer [11C]RS-016 targeting CB2 in atherosclerosis. Nucl Med Biol 2017; 47: 31-43.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.01.001] [PMID: 28104528]
[97]
Montecucco F, Burger F, Mach F, Steffens S. CB2 cannabinoid receptor agonist JWH-015 modulates human monocyte migration through defined intracellular signaling pathways. Am J Physiol Heart Circ Physiol 2008; 294(3): H1145-55.
[http://dx.doi.org/10.1152/ajpheart.01328.2007] [PMID: 18178718]
[98]
Rajesh M, Pan H, Mukhopadhyay P, et al. Cannabinoid-2 receptor agonist HU-308 protects against hepatic ischemia/reperfusion injury by attenuating oxidative stress, inflammatory response, and apoptosis. J Leukoc Biol 2007; 82(6): 1382-9.
[http://dx.doi.org/10.1189/jlb.0307180] [PMID: 17652447]
[99]
Molica F, Matter CM, Burger F, et al. Cannabinoid receptor CB2 protects against balloon-induced neointima formation. Am J Physiol Heart Circ Physiol 2012; 302(5): H1064-74.
[http://dx.doi.org/10.1152/ajpheart.00444.2011] [PMID: 22227125]
[100]
Zhao Y, Yuan Z, Liu Y, et al. Activation of cannabinoid CB2 receptor ameliorates atherosclerosis associated with suppression of adhesion molecules. J Cardiovasc Pharmacol 2010; 55(3): 292-8.
[http://dx.doi.org/10.1097/FJC.0b013e3181d2644d] [PMID: 20075743]
[101]
Delsing DJM, Leijten FP, Arts K, et al. Cannabinoid Receptor 2 Deficiency in Haematopoietic cells Aggravates early atherosclerosis in ldl receptor deficient mice. Open Cardiovasc Med J 2011; 5: 15-21.
[http://dx.doi.org/10.2174/1874192401105010015] [PMID: 21660251]
[102]
Hoyer FF, Steinmetz M, Zimmer S, et al. Atheroprotection via cannabinoid receptor-2 is mediated by circulating and vascular cells in vivo. J Mol Cell Cardiol 2011; 51(6): 1007-14.
[http://dx.doi.org/10.1016/j.yjmcc.2011.08.008] [PMID: 21884703]
[103]
Montecucco F, Di Marzo V, da Silva RF, et al. The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques. Eur Heart J 2012; 33(7): 846-56.
[http://dx.doi.org/10.1093/eurheartj/ehr449] [PMID: 22112961]
[104]
Chiurchiù V, Lanuti M, Catanzaro G, Fezza F, Rapino C, Maccarrone M. Detailed characterization of the endocannabinoid system in human macrophages and foam cells, and anti-inflammatory role of type-2 cannabinoid receptor. Atherosclerosis 2014; 233(1): 55-63.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.12.042] [PMID: 24529123]
[105]
Xu X, Guo H, Jing Z, et al. N-Oleoylethanolamine reduces inflammatory cytokines and adhesion molecules in tnf-α-induced human umbilical vein endothelial cells by activating cb2 and ppar-α. J Cardiovasc Pharmacol 2016; 68(4): 280-91.
[http://dx.doi.org/10.1097/FJC.0000000000000413] [PMID: 27281236]
[106]
Netherland-Van Dyke C, Rodgers W, Fulmer M, Lahr Z, Thewke D. Cannabinoid Receptor Type 2 (CB2) dependent and independent effects of WIN55,212-2 on Atherosclerosis in Ldlr-null Mice. J Cardiol Ther 2015; 3(2): 53-63.
[http://dx.doi.org/10.12970/2311-052X.2015.03.02.2] [PMID: 26413498]
[107]
Jiang L, Chen Y, Huang X, et al. Selective activation of CB2 receptor improves efferocytosis in cultured macrophages. Life Sci 2016; 161: 10-8.
[http://dx.doi.org/10.1016/j.lfs.2016.07.013] [PMID: 27474129]
[108]
Bondarenko AI, Panasiuk O, Okhai I, Montecucco F, Brandt KJ, Mach F. Ca2+-dependent potassium channels and cannabinoid signaling in the endothelium of apolipoprotein E knockout mice before plaque formation. J Mol Cell Cardiol 2018; 115: 54-63.
[http://dx.doi.org/10.1016/j.yjmcc.2018.01.002] [PMID: 29305938]
[109]
Ishioka N, Bukoski RD. A role for N-arachidonylethanolamine (anandamide) as the mediator of sensory nerve-dependent Ca2+-induced relaxation. J Pharmacol Exp Ther 1999; 289(1): 245-50.
[PMID: 10087011]
[110]
Szabo B, Nordheim U, Niederhoffer N. Effects of cannabinoids on sympathetic and parasympathetic neuroeffector transmission in the rabbit heart. J Pharmacol Exp Ther 2001; 297(2): 819-26.
[PMID: 11303075]
[111]
Járai Z, Wagner JA, Goparaju SK, et al. Cardiovascular effects of 2-arachidonoyl glycerol in anesthetized mice. Hypertens Dallas Tex 1979; 35(2): 679-84.
[112]
Montecucco F, Matias I, Lenglet S, et al. Regulation and possible role of endocannabinoids and related mediators in hypercholesterolemic mice with atherosclerosis. Atherosclerosis 2009; 205(2): 433-41.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.12.040] [PMID: 19187936]
[113]
Rinne P, Guillamat-Prats R, Rami M, et al. Palmitoylethanolamide promotes a proresolving macrophage phenotype and attenuates atherosclerotic plaque formation. Arterioscler Thromb Vasc Biol 2018; 38(11): 2562-75.
[http://dx.doi.org/10.1161/ATVBAHA.118.311185] [PMID: 30354245]
[114]
Vujic N, Schlager S, Eichmann TO, et al. Monoglyceride lipase deficiency modulates endocannabinoid signaling and improves plaque stability in ApoE-knockout mice. Atherosclerosis 2016; 244: 9-21.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.10.109] [PMID: 26584135]
[115]
Vujic N, Korbelius M, Leopold C, et al. Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE-/- mice. Oncotarget 2017; 8(20): 33122-36.
[http://dx.doi.org/10.18632/oncotarget.16529] [PMID: 28380440]
[116]
Jehle J, Schöne B, Bagheri S, et al. Elevated levels of 2-arachidonoylglycerol promote atherogenesis in ApoE-/- mice. PLoS One 2018; 13(5)e0197751
[117]
Jehle J, Hoyer FF, Schöne B, et al. Myeloid-specific deletion of diacylglycerol lipase α inhibits atherogenesis in apoe-deficient mice. PLoS One 2016; 11(1)e0146267
[http://dx.doi.org/10.1371/journal.pone.0146267]
[118]
Bátkai S, Rajesh M, Mukhopadhyay P, et al. Decreased age-related cardiac dysfunction, myocardial nitrative stress, inflammatory gene expression, and apoptosis in mice lacking fatty acid amide hydrolase. Am J Physiol Heart Circ Physiol 2007; 293(2): H909-18.
[http://dx.doi.org/10.1152/ajpheart.00373.2007] [PMID: 17434980]
[119]
Lenglet S, Thomas A, Soehnlein O, et al. Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice. Arterioscler Thromb Vasc Biol 2013; 33(2): 215-23.
[http://dx.doi.org/10.1161/ATVBAHA.112.300275] [PMID: 23241405]
[120]
Hoyer FF, Khoury M, Slomka H, et al. Inhibition of endocannabinoid-degrading enzyme fatty acid amide hydrolase increases atherosclerotic plaque vulnerability in mice. J Mol Cell Cardiol 2014; 66: 126-32.
[http://dx.doi.org/10.1016/j.yjmcc.2013.11.013] [PMID: 24286707]
[121]
Fan A, Wu X, Wu H, et al. Atheroprotective Effect of Oleoylethanolamide (OEA) Targeting Oxidized LDL. PLoS One 2014; 9(1)e85337
[122]
Ma L, Guo X, Chen W. Inhibitory effects of oleoylethanolamide (OEA) on H2O2-induced human umbilical vein endothelial cell (HUVEC) injury and apolipoprotein E knockout (ApoE-/-) atherosclerotic mice. Int J Clin Exp Pathol 2015; 8(6): 6301-11.
[PMID: 26261506]
[123]
Zhao Y, Yan L, Peng L, et al. Oleoylethanolamide alleviates macrophage formation via AMPK/PPARα/STAT3 pathway. Pharmacol Rep 2018; 70(6): 1185-94.
[http://dx.doi.org/10.1016/j.pharep.2018.06.006] [PMID: 30336422]
[124]
Lanuti M, Talamonti E, Maccarrone M, Chiurchiù V. Activation of GPR55 receptors exacerbates oxLDL-induced lipid accumulation and inflammatory responses, while reducing cholesterol efflux from human macrophages. PLoS One 2015; 10(5)e0126839
[125]
Montecucco F, Bondarenko AI, Lenglet S, et al. Treatment with the GPR55 antagonist CID16020046 increases neutrophil activation in mouse atherogenesis. Thromb Haemost 2016; 116(5): 987-7.
[126]
Hu Y-W, Yang J-Y, Ma X, et al. A lincRNA-DYNLRB2-2/GPR119/GLP-1R/ABCA1-dependent signal transduction pathway is essential for the regulation of cholesterol homeostasis. J Lipid Res 2014; 55(4): 681-97.
[http://dx.doi.org/10.1194/jlr.M044669] [PMID: 24493833]
[127]
Ma L, Zhong J, Zhao Z, et al. Activation of TRPV1 reduces vascular lipid accumulation and attenuates atherosclerosis. Cardiovasc Res 2011; 92(3): 504-13.
[http://dx.doi.org/10.1093/cvr/cvr245] [PMID: 21908651]
[128]
Li B-H, Yin Y-W, Liu Y, et al. TRPV1 activation impedes foam cell formation by inducing autophagy in oxLDL-treated vascular smooth muscle cells. Cell Death Dis 2014; 5e1182
[http://dx.doi.org/10.1038/cddis.2014.146] [PMID: 24743737]
[129]
Wang Y, Cui L, Xu H, et al. TRPV1 agonism inhibits endothelial cell inflammation via activation of eNOS/NO pathway. Atherosclerosis 2017; 260: 13-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.03.016] [PMID: 28324760]
[130]
Gao W, Sun Y, Cai M, et al. Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis. Nat Commun 2018; 9(1): 231.
[http://dx.doi.org/10.1038/s41467-017-02657-z]
[131]
Li AC, Binder CJ, Gutierrez A, et al. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest 2004; 114(11): 1564-76.
[http://dx.doi.org/10.1172/JCI18730] [PMID: 15578089]
[132]
Cao H, Wen G, Li H. Role of peroxisome proliferator-activated receptor α in atherosclerosis. Mol Med Rep 2014; 9(5): 1755-60.
[http://dx.doi.org/10.3892/mmr.2014.2020] [PMID: 24604149]
[133]
Babaev VR, Ishiguro H, Ding L, et al. Macrophage expression of peroxisome proliferator-activated receptor-alpha reduces atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 2007; 116(12): 1404-12.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.684704] [PMID: 17724261]
[134]
Milman G, Maor Y, Abu-Lafi S, et al. N-arachidonoyl L-serine, an endocannabinoid-like brain constituent with vasodilatory properties. Proc Natl Acad Sci USA 2006; 103(7): 2428-33.
[http://dx.doi.org/10.1073/pnas.0510676103] [PMID: 16467152]
[135]
Zhang X, Maor Y, Wang JF, Kunos G, Groopman JE. Endocannabinoid-like N-arachidonoyl serine is a novel pro-angiogenic mediator. Br J Pharmacol 2010; 160(7): 1583-94.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00841.x] [PMID: 20649563]
[136]
O’Sullivan SE, Kendall DA, Randall MD. Characterisation of the vasorelaxant properties of the novel endocannabinoid N-arachidonoyl-dopamine (NADA). Br J Pharmacol 2004; 141(5): 803-12.
[http://dx.doi.org/10.1038/sj.bjp.0705643] [PMID: 14769783]
[137]
Ho W-SV, Hiley CR. Vasorelaxant activities of the putative endocannabinoid virodhamine in rat isolated small mesenteric artery. J Pharm Pharmacol 2004; 56(7): 869-75.
[http://dx.doi.org/10.1211/0022357023682] [PMID: 15233865]
[138]
Wheal AJ, Alexander SPH, Randall MD. Vasorelaxation to N-oleoylethanolamine in rat isolated arteries: mechanisms of action and modulation via cyclooxygenase activity. Br J Pharmacol 2010; 160(3): 701-11.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00770.x] [PMID: 20590573]
[139]
Hopps JJ, Dunn WR, Randall MD. Enhanced vasorelaxant effects of the endocannabinoid-like mediator, oleamide, in hypertension. Eur J Pharmacol 2012; 684(1-3): 102-7.
[http://dx.doi.org/10.1016/j.ejphar.2012.03.027] [PMID: 22465182]
[140]
Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature 2017; 548(7665): 43-51.
[http://dx.doi.org/10.1038/nature23292] [PMID: 28770836]
[141]
Moran CP, Shanahan F. Gut microbiota and obesity: role in aetiology and potential therapeutic target. Best Pract Res Clin Gastroenterol 2014; 28(4): 585-97.
[http://dx.doi.org/10.1016/j.bpg.2014.07.005] [PMID: 25194177]
[142]
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559-63.
[http://dx.doi.org/10.1038/nature12820] [PMID: 24336217]
[143]
Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS One 2014; 9(1)e84689
[http://dx.doi.org/10.1371/journal.pone.0084689] [PMID: 24416266]
[144]
Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature 2009; 457(7228): 480-4.
[http://dx.doi.org/10.1038/nature07540] [PMID: 19043404]
[145]
Kasselman LJ, Vernice NA, DeLeon J, Reiss AB. The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity. Atherosclerosis 2018; 271: 203-13.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.02.036] [PMID: 29524863]
[146]
Ascher S, Reinhardt C. The gut microbiota: An emerging risk factor for cardiovascular and cerebrovascular disease. Eur J Immunol 2018; 48(4): 564-75.
[http://dx.doi.org/10.1002/eji.201646879] [PMID: 29230812]
[147]
Ma J, Li H. The Role of Gut Microbiota in Atherosclerosis and Hypertension. Front Pharmacol 2018; 9: 1082.
[http://dx.doi.org/10.3389/fphar.2018.01082]
[148]
van den Munckhof ICL, Kurilshikov A, Ter Horst R, et al. Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obes Rev 2018; 19(12): 1719-34.
[http://dx.doi.org/10.1111/obr.12750] [PMID: 30144260]
[149]
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444(7122): 1027-31.
[http://dx.doi.org/10.1038/nature05414] [PMID: 17183312]
[150]
Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 2007; 104(3): 979-84.
[http://dx.doi.org/10.1073/pnas.0605374104] [PMID: 17210919]
[151]
Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341(6150)1241214
[http://dx.doi.org/10.1126/science.1241214] [PMID: 24009397]
[152]
Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143(4): 913-6.e7.
[http://dx.doi.org/10.1053/j.gastro.2012.06.031] [PMID: 22728514]
[153]
Koren O, Spor A, Felin J, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA 2011; 108(Suppl. 1): 4592-8.
[http://dx.doi.org/10.1073/pnas.1011383107] [PMID: 20937873]
[154]
Kelly TN, Bazzano LA, Ajami NJ, et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among bogalusa heart study participants. Circ Res 2016; 119(8): 956-64.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309219] [PMID: 27507222]
[155]
Emoto T, Yamashita T, Sasaki N, et al. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb 2016; 23(8): 908-21.
[http://dx.doi.org/10.5551/jat.32672] [PMID: 26947598]
[156]
Karlsson FH, Fåk F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012; 3: 1245.
[http://dx.doi.org/10.1038/ncomms2266] [PMID: 23212374]
[157]
Jie Z, Xia H, Zhong S-L, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 2017; 8(1): 845.
[http://dx.doi.org/10.1038/s41467-017-00900-1]
[158]
Chambers ES, Preston T, Frost G, Morrison DJ. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep 2018; 7(4): 198-206.
[http://dx.doi.org/10.1007/s13668-018-0248-8] [PMID: 30264354]
[159]
Lukasova M, Malaval C, Gille A, Kero J, Offermanns S. Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. J Clin Invest 2011; 121(3): 1163-73.
[http://dx.doi.org/10.1172/JCI41651] [PMID: 21317532]
[160]
Kriaa A, Bourgin M, Potiron A, et al. Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res 2019; 60(2): 323-32.
[http://dx.doi.org/10.1194/jlr.R088989] [PMID: 30487175]
[161]
Ryan PM, Stanton C, Caplice NM. Bile acids at the cross-roads of gut microbiome–host cardiometabolic interactions. Diabetol Metab Syndr 2017; 9: 102.
[http://dx.doi.org/10.1186/s13098-017-0299-9]
[162]
Vítek L. Bile acids in the treatment of cardiometabolic diseases. Ann Hepatol 2017; 16(1): s43-52.
[http://dx.doi.org/10.5604/01.3001.0010.5496]
[163]
Jones ML, Martoni CJ, Prakash S. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr 2012; 66(11): 1234-41.
[http://dx.doi.org/10.1038/ejcn.2012.126] [PMID: 22990854]
[164]
Zhang Y, Wang X, Vales C, et al. FXR deficiency causes reduced atherosclerosis in Ldlr-/- mice. Arterioscler Thromb Vasc Biol 2006; 26(10): 2316-21.
[http://dx.doi.org/10.1161/01.ATV.0000235697.35431.05] [PMID: 16825595]
[165]
Guo GL, Santamarina-Fojo S, Akiyama TE, et al. Effects of FXR in foam-cell formation and atherosclerosis development. Biochim Biophys Acta 2006; 1761(12): 1401-9.
[http://dx.doi.org/10.1016/j.bbalip.2006.09.018] [PMID: 17110163]
[166]
Hanniman EA, Lambert G, McCarthy TC, Sinal CJ. Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice. J Lipid Res 2005; 46(12): 2595-604.
[http://dx.doi.org/10.1194/jlr.M500390-JLR200] [PMID: 16186601]
[167]
Sui Y, Xu J, Rios-Pilier J, Zhou C. Deficiency of PXR decreases atherosclerosis in apoE-deficient mice. J Lipid Res 2011; 52(9): 1652-9.
[http://dx.doi.org/10.1194/jlr.M017376] [PMID: 21685500]
[168]
Skoura A, Michaud J, Im DS, et al. Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31(1): 81-5.
[http://dx.doi.org/10.1161/ATVBAHA.110.213496] [PMID: 20947824]
[169]
Pols TWH, Nomura M, Harach T, et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab 2011; 14(6): 747-57.
[http://dx.doi.org/10.1016/j.cmet.2011.11.006] [PMID: 22152303]
[170]
Ufnal M, Zadlo A, Ostaszewski R. TMAO: A small molecule of great expectations. Nutrition 2015; 31(11-12): 1317-23.
[http://dx.doi.org/10.1016/j.nut.2015.05.006] [PMID: 26283574]
[171]
Bennett BJ, de Aguiar Vallim TQ, Wang Z, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 2013; 17(1): 49-60.
[http://dx.doi.org/10.1016/j.cmet.2012.12.011] [PMID: 23312283]
[172]
Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-Oxide Promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J Am Heart Assoc 2016; 5(2)e002767
[http://dx.doi.org/10.1161/JAHA.115.002767] [PMID: 26903003]
[173]
Spector R. New insight into the dietry cause of atherosclerosis: implications for pharmacology. J Pharmacol Exp Ther 2016; 358(1): 103-8.
[174]
Schiattarella GG, Sannino A, Toscano E, et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: A systematic review and dose-response meta-analysis. Eur Heart J 2017; 38(39): 2948-56.
[http://dx.doi.org/10.1093/eurheartj/ehx342] [PMID: 29020409]
[175]
Gregory JC, Buffa JA, Org E, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem 2015; 290(9): 5647-60.
[http://dx.doi.org/10.1074/jbc.M114.618249] [PMID: 25550161]
[176]
Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015; 163(7): 1585-95.
[http://dx.doi.org/10.1016/j.cell.2015.11.055] [PMID: 26687352]
[177]
Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472(7341): 57-63.
[http://dx.doi.org/10.1038/nature09922] [PMID: 21475195]
[178]
Collins HL, Drazul-Schrader D, Sulpizio AC, et al. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE(-/-) transgenic mice expressing CETP. Atherosclerosis 2016; 244: 29-37.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.10.108] [PMID: 26584136]
[179]
Landfald B, Valeur J, Berstad A, Raa J. Microbial trimethylamine-N-oxide as a disease marker: something fishy? Microb Ecol Health Dis 2018; 28(1)1327309
[http://dx.doi.org/10.1080/16512235.2017.1327309]
[180]
Graham C, Mullen A, Whelan K. Obesity and the gastrointestinal microbiota: a review of associations and mechanisms. Nutr Rev 2015; 73(6): 376-85.
[http://dx.doi.org/10.1093/nutrit/nuv004] [PMID: 26011912]
[181]
Glaros TG, Chang S, Gilliam EA, Maitra U, Deng H, Li L. Causes and consequences of low grade endotoxemia and inflammatory diseases.Front Biosci Sch Ed. 2013; 1: pp. (5)754-65.
[http://dx.doi.org/10.2741/S405]
[182]
Neves AL, Coelho J, Couto L, Leite-Moreira A, Roncon-Albuquerque R Jr. Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk. J Mol Endocrinol 2013; 51(2): R51-64.
[http://dx.doi.org/10.1530/JME-13-0079] [PMID: 23943858]
[183]
Bujak M, Frangogiannis NG. The role of IL-1 in the pathogenesis of heart disease. Arch Immunol Ther Exp (Warsz) 2009; 57(3): 165-76.
[http://dx.doi.org/10.1007/s00005-009-0024-y] [PMID: 19479203]
[184]
Serrano M, Moreno-Navarrete JM, Puig J, et al. Serum lipopolysaccharide-binding protein as a marker of atherosclerosis. Atherosclerosis 2013; 230(2): 223-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.07.004] [PMID: 24075748]
[185]
Pastori D, Carnevale R, Nocella C, et al. Gut-derived serum lipopolysaccharide is associated with enhanced risk of major adverse cardiovascular events in atrial fibrillation: effect of adherence to mediterranean diet. J Am Heart Assoc 2017; 6(6)e005784
[http://dx.doi.org/10.1161/JAHA.117.005784] [PMID: 28584074]
[186]
Jaw JE, Tsuruta M, Oh Y, et al. Lung exposure to lipopolysaccharide causes atherosclerotic plaque destabilisation. Eur Respir J 2016; 48(1): 205-15.
[http://dx.doi.org/10.1183/13993003.00972-2015] [PMID: 27009170]
[187]
Lehr HA, Sagban TA, Ihling C, et al. Immunopathogenesis of atherosclerosis: endotoxin accelerates atherosclerosis in rabbits on hypercholesterolemic diet. Circulation 2001; 104(8): 914-20.
[http://dx.doi.org/10.1161/hc3401.093153] [PMID: 11514379]
[188]
Michelsen KS, Wong MH, Shah PK, et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA 2004; 101(29): 10679-84.
[http://dx.doi.org/10.1073/pnas.0403249101] [PMID: 15249654]
[189]
Ding Y, Subramanian S, Montes VN, et al. Toll-like receptor 4 deficiency decreases atherosclerosis but does not protect against inflammation in obese low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2012; 32(7): 1596-604.
[http://dx.doi.org/10.1161/ATVBAHA.112.249847] [PMID: 22580897]
[190]
Li J, Lin S, Vanhoutte PM, Woo CW, Xu A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe-/- Mice. Circulation 2016; 133(24): 2434-46.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.019645] [PMID: 27143680]
[191]
Muccioli GG, Naslain D, Bäckhed F, et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 2010; 392.
[http://dx.doi.org/10.1038/msb.2010.46]
[192]
Geurts L, Lazarevic V, Derrien M, et al. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol
[http://dx.doi.org/10.3389/fmicb.2011.00149]
[193]
Di Marzo V, Bisogno T, De Petrocellis L, et al. Biosynthesis and inactivation of the endocannabinoid 2-arachidonoylglycerol in circulating and tumoral macrophages. Eur J Biochem 1999; 264(1): 258-67.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00631.x] [PMID: 10447696]
[194]
Grunewald ZI, Lee S, Kirkland R, Ross M, de La Serre CB. Cannabinoid receptor type-1 partially mediates metabolic endotoxemia-induced inflammation and insulin resistance. Physiol Behav 2019; 199: 282-91.
[http://dx.doi.org/10.1016/j.physbeh.2018.11.035] [PMID: 30502357]
[195]
Rohla M, Weiss TW. Adipose tissue, inflammation and atherosclerosis. Clin Lipidol 2014; 9(1): 71-81.
[http://dx.doi.org/10.2217/clp.13.80]
[196]
Nagareddy PR, Noothi SK, Flynn MC, Murphy AJ. It’s reticulated: the liver at the heart of atherosclerosis. J Endocrinol 2018; 238(1): R1-R11.
[http://dx.doi.org/10.1530/JOE-18-0082] [PMID: 29720539]
[197]
Rousseaux C, Thuru X, Gelot A, et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med 2007; 13(1): 35-7.
[http://dx.doi.org/10.1038/nm1521] [PMID: 17159985]
[198]
Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013; 110(22): 9066-71.
[http://dx.doi.org/10.1073/pnas.1219451110] [PMID: 23671105]
[199]
Aguilera M, Vergara P, Martínez V. Stress and antibiotics alter luminal and wall-adhered microbiota and enhance the local expression of visceral sensory-related systems in mice. Neurogastroenterol Motil 2013; 25(8): e515-29.
[http://dx.doi.org/10.1111/nmo.12154] [PMID: 23711047]
[200]
Guida F, Turco F, Iannotta M, et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav Immun 2018; 67: 230-45.
[http://dx.doi.org/10.1016/j.bbi.2017.09.001] [PMID: 28890155]
[201]
Gioacchini G, Rossi G, Carnevali O. Host-probiotic interaction: new insight into the role of the endocannabinoid system by in vivo and ex vivo approaches. Sci Rep 2017; 7(1): 1261.
[http://dx.doi.org/10.1038/s41598-017-01322-1]
[202]
Geurts L, Everard A, Van Hul M, et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat Commun 2015; 6: 6495.
[http://dx.doi.org/10.1038/ncomms7495]
[203]
Mehrpouya-Bahrami P, Chitrala KN, Ganewatta MS, et al. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci Rep 2017; 7(1): 15645.
[http://dx.doi.org/10.1038/s41598-017-15154-6]
[204]
Ceccarini J, Kuepper R, Kemels D, van Os J, Henquet C, Van Laere K. [18F]MK-9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users. Addict Biol 2015; 20(2): 357-67.
[http://dx.doi.org/10.1111/adb.12116] [PMID: 24373053]
[205]
Cluny NL, Keenan CM, Reimer RA, Le Foll B, Sharkey KA. Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Δ9-Tetrahydrocannabinol. PLoS One 2015; 10(12)e0144270
[206]
Cohen LJ, Kang H-S, Chu J, et al. Functional metagenomic discovery of bacterial effectors in the human microbiome and isolation of commendamide, a GPCR G2A/132 agonist. Proc Natl Acad Sci USA 2015; 112(35): E4825-34.
[http://dx.doi.org/10.1073/pnas.1508737112] [PMID: 26283367]
[207]
Cohen LJ, Esterhazy D, Kim S-H, et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 2017; 549(7670): 48-53.
[http://dx.doi.org/10.1038/nature23874] [PMID: 28854168]
[208]
Bolick DT, Skaflen MD, Johnson LE, et al. G2A deficiency in mice promotes macrophage activation and atherosclerosis. Circ Res 2009; 104(3): 318-27.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.181131] [PMID: 19106413]
[209]
Chen Z, Guo L, Zhang Y, et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 2014; 124(8): 3391-406.
[http://dx.doi.org/10.1172/JCI72517] [PMID: 24960158]
[210]
May-Zhang LS, Chen Z, Dosoky NS, et al. Administration of N-AcylPhosphatidylethanolamine Expressing Bacteria to Low Density Lipoprotein Receptor−/− Mice Improves Indices of Cardiometabolic Disease. Sci Rep 2019; 9: 420.
[211]
Dalle Carbonare M, Del Giudice E, Stecca A, et al. A saturated N-acylethanolamine other than N-palmitoyl ethanolamine with anti-inflammatory properties: a neglected story..... J Neuroendocrinol 2008; 20(Suppl. 1): 26-34.
[http://dx.doi.org/10.1111/j.1365-2826.2008.01689.x] [PMID: 18426496]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy