Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Review Article

Berberine: A Plant-derived Alkaloid with Therapeutic Potential to Combat Alzheimer’s disease

Author(s): Anurag K. Singh, Santosh K. Singh, Manmath K. Nandi, Gaurav Mishra, Anand Maurya, Arati Rai, Gopal K. Rai, Rajendra Awasthi*, Bhupesh Sharma and Giriraj T. Kulkarni

Volume 19, Issue 3, 2019

Page: [154 - 170] Pages: 17

DOI: 10.2174/1871524919666190820160053

Abstract

Berberine (a protoberberine isoquinoline alkaloid) has shown promising pharmacological activities, including analgesic, anti-inflammatory, anticancer, antidiabetic, anti-hyperlipidemic, cardioprotective, memory enhancement, antidepressant, antioxidant, anti-nociceptive, antimicrobial, anti- HIV and cholesterol-lowering effects. It is used in the treatment of the neurodegenerative disorder. It has strong evidence to serve as a potent phytoconstituent in the treatment of various neurodegenerative disorders such as AD. It limits the extracellular amyloid plaques and intracellular neurofibrillary tangles. It has also lipid-glucose lowering ability, hence can be used as a protective agent in atherosclerosis and AD. However, more detailed investigations along with safety assessment of berberine are warranted to clarify its role in limiting various risk factors and AD-related pathologies. This review highlights the pharmacological basis to control oxidative stress, neuroinflammation and protective effect of berberine in AD, which will benefit to the biological scientists in understanding and exploring the new vistas of berberine in combating Alzheimer’s disease.

Keywords: Alzheimer’s disease, berberine, amyloid, tau, oxidative stress, neuroinflammation, neurodegenerative disorder.

Graphical Abstract

[1]
Corriveau, R.A.; Koroshetz, W.J.; Gladman, J.T.; Jeon, S.; Babcock, D.; Bennett, D.A.; Carmichael, S.T.; Dickinson, S.L.J.; Dickson, D.W.; Emr, M.; Fillit, H.; Greenberg, S.M.; Hutton, M.L.; Knopman, D.S.; Manly, J.J.; Marder, K.S.; Moy, C.S.; Phelps, C.H.; Scott, P.A.; Seeley, W.W.; Sieber, B.A.; Silverberg, N.B.; Sutherland, M.L.; Taylor, A.; Torborg, C.L.; Waddy, S.P.; Gubitz, A.K.; Holtzman, D.M. Alzheimer’s disease-related dementias summit 2016: National research priorities. Neurology, 2017, 89(23), 2381-2391.
[http://dx.doi.org/10.1212/WNL.0000000000004717] [PMID: 29117955]
[2]
Hebert, L.E.; Scherr, P.A.; Bienias, J.L.; Bennett, D.A.; Evans, D.A. Alzheimer disease in the US population: Prevalence estimates using the 2000 census. Arch. Neurol., 2003, 60(8), 1119-1122.
[http://dx.doi.org/10.1001/archneur.60.8.1119] [PMID: 12925369]
[3]
Anand, R.; Gill, K.D.; Mahdi, A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology, 2014, 76(Pt A), 27-50.
[http://dx.doi.org/10.1016/j.neuropharm.2013.07.004] [PMID: 23891641]
[4]
Xu, G.; Bai, F.; Lin, X.; Wang, Q.; Wu, Q.; Sun, S.; Jiang, C.; Liang, Q.; Gao, B. Association between antihypertensive drug use and the incidence of cognitive decline and dementia: A meta-analysis of prospective cohort studies. BioMed Res. Int., 2017, 20174368474
[http://dx.doi.org/10.1155/2017/4368474] [PMID: 29094046]
[5]
Ramirez-Bermudez, J. Alzheimer’s disease: Critical notes on the history of a medical concept. Arch. Med. Res., 2012, 43(8), 595-599.
[http://dx.doi.org/10.1016/j.arcmed.2012.11.008] [PMID: 23178566]
[6]
Kanner, A.M.; Scharfman, H.; Jette, N.; Anagnostou, E.; Bernard, C.; Camfield, C.; Camfield, P.; Legg, K.; Dinstein, I.; Giacobbe, P.; Friedman, A.; Pohlmann-Eden, B. Epilepsy as a Network Disorder (1): What can we learn from other network disorders such as autistic spectrum disorder and mood disorders? Epilepsy Behav., 2017, 77, 106-113.
[http://dx.doi.org/10.1016/j.yebeh.2017.09.014] [PMID: 29107450]
[7]
Drachman, D.A.; Leavitt, J. Human memory and the cholinergic system. A relationship to aging? Arch. Neurol., 1974, 30(2), 113-121.
[http://dx.doi.org/10.1001/archneur.1974.00490320001001] [PMID: 4359364]
[8]
Davies, P.; Maloney, A.J.F. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet, 1976, 2(8000), 1403.
[http://dx.doi.org/10.1016/S0140-6736(76)91936-X] [PMID: 63862]
[9]
Bowen, D.M.; Smith, C.B.; White, P.; Davison, A.N. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain, 1976, 99(3), 459-496.
[http://dx.doi.org/10.1093/brain/99.3.459] [PMID: 11871]
[10]
Coyle, E.F.; Hagberg, J.M.; Hurley, B.F.; Martin, W.H.; Ehsani, A.A.; Holloszy, J.O. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J. Appl. Physiol., 1983, 55(1), 230-235.
[http://dx.doi.org/10.1152/jappl.1983.55.1.230] [PMID: 6350247]
[11]
Potdar, D.; Hirwani, R.R.; Dhulap, S. Phyto-chemical and pharmacological applications of Berberis aristata. Fitoterapia, 2012, 83(5), 817-830.
[http://dx.doi.org/10.1016/j.fitote.2012.04.012] [PMID: 22808523]
[12]
Singh, A.; Bajpai, V.; Srivastava, M.; Arya, K.R.; Kumar, B. Rapid screening and distribution of bioactive compounds in different parts of Berberis petiolaris using direct analysis in real time mass spectrometry. J. Pharm. Anal., 2015, 5(5), 332-335.
[http://dx.doi.org/10.1016/j.jpha.2015.05.002] [PMID: 29403947]
[13]
Suau, R.; Rico, R.; López-Romero, J.M.; Nájera, F.; Cuevas, A. Isoquinoline alkaloids from Berberis vulgaris subsp. australis. Phytochemistry, 1998, 49(8), 2545-2549.
[http://dx.doi.org/10.1016/S0031-9422(98)00121-6]
[14]
Amritpal, S.; Sanjiv, D.; Navpreet, K.; Jaswinder, S. Berberine: alkaloid with wide spectrum of pharmacological activities. J. Nat. Prod (India), 2010, 3, 64-75.https://www.scienceopen.com/document?vid=cd6accdf-33ed-4057-b738-ba21e744cef1
[15]
Habtemariam, S. The hidden treasure in Europe’s garden plants: Case examples; Berberis darwinni and Bergenia cordifolia. Med. Aromat. Plants, 2013, 2, 4.
[http://dx.doi.org/10.4172/2167-0412.1000130]
[16]
Habtemariam, S. The therapeutic potential of Berberis darwinii stem-bark: quantification of berberine and in vitro evidence for Alzheimer’s disease therapy. Nat. Prod. Commun., 2011, 6, 8.
[http://dx.doi.org/10.1177/1934578X1100600809]
[17]
Jin, Y.; Khadka, D.B.; Cho, W.J. Pharmacological effects of berberine and its derivatives: a patent update. Expert Opin. Ther. Pat., 2016, 26(2), 229-243.
[http://dx.doi.org/10.1517/13543776.2016.1118060] [PMID: 26610159]
[18]
Tang, Q.L.; Lai, M.L.; Zhong, Y.F.; Wang, A.M.; Su, J.K.; Zhang, M.Q. Antinociceptive effect of berberine on visceral hypersensitivity in rats. World J. Gastroenterol., 2013, 19(28), 4582-4589.
[http://dx.doi.org/10.3748/wjg.v19.i28.4582] [PMID: 23901236]
[19]
Jiang, W.; Li, S.; Li, X. Therapeutic potential of berberine against neurodegenerative diseases. Sci. China Life Sci., 2015, 58(6), 564-569.
[http://dx.doi.org/10.1007/s11427-015-4829-0] [PMID: 25749423]
[20]
Mo, C.; Wang, L.; Zhang, J.; Numazawa, S.; Tang, H.; Tang, X.; Han, X.; Li, J.; Yang, M.; Wang, Z.; Wei, D.; Xiao, H. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid. Redox Signal., 2014, 20(4), 574-588.
[http://dx.doi.org/10.1089/ars.2012.5116] [PMID: 23875776]
[21]
Javadi, B.; Sahebkar, A. Natural products with anti-inflammatory and immunomodulatory activities against autoimmune myocarditis. Pharmacol. Res., 2017, 124, 34-42.
[http://dx.doi.org/10.1016/j.phrs.2017.07.022] [PMID: 28757189]
[22]
Chang, W.; Li, K.; Guan, F.; Yao, F.; Yu, Y.; Zhang, M.; Hatch, G.M.; Chen, L. Berberine pretreatment confers cardioprotection against ischemia-reperfusion injury in a rat model of type 2 diabetes. J. Cardiovasc. Pharmacol. Ther., 2016, 21(5), 486-494.
[http://dx.doi.org/10.1177/1074248415627873] [PMID: 26846272]
[23]
Tan, W.; Li, Y.; Chen, M.; Wang, Y. Berberine hydrochloride: Anticancer activity and nanoparticulate delivery system. Int. J. Nanomedicine, 2011, 6, 1773-1777.
[http://dx.doi.org/10.2147/IJN.S22683] [PMID: 21931477]
[24]
Naveen, C.R.; Gaikwad, S.; Agrawal-Rajput, R. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells. Phytomedicine, 2016, 23(7), 736-744.
[http://dx.doi.org/10.1016/j.phymed.2016.03.013] [PMID: 27235712]
[25]
Ayati, S.H.; Fazeli, B.; Momtazi-Borojeni, A.A.; Cicero, A.F.G.; Pirro, M.; Sahebkar, A. Regulatory effects of berberine on microRNome in Cancer and other conditions. Crit. Rev. Oncol. Hematol., 2017, 116, 147-158.
[http://dx.doi.org/10.1016/j.critrevonc.2017.05.008] [PMID: 28693796]
[26]
Hsu, Y.Y.; Tseng, Y.T.; Lo, Y.C. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth. Toxicol. Appl. Pharmacol., 2013, 272(3), 787-796.
[http://dx.doi.org/10.1016/j.taap.2013.08.008] [PMID: 23954465]
[27]
Singh, S.P.; Sashidhara, K.V. Lipid lowering agents of natural origin: An account of some promising chemotypes. Eur. J. Med. Chem., 2017, 140, 331-348.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.020] [PMID: 28987600]
[28]
Derosa, G.; Maffioli, P.; Cicero, A.F. Berberine on metabolic and cardiovascular risk factors: An analysis from preclinical evidences to clinical trials. Expert Opin. Biol. Ther., 2012, 12(8), 1113-1124.
[http://dx.doi.org/10.1517/14712598.2012.704014] [PMID: 22780092]
[29]
Bhutada, P.; Mundhada, Y.; Bansod, K.; Tawari, S.; Patil, S.; Dixit, P.; Umathe, S.; Mundhada, D. Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes. Behav. Brain Res., 2011, 220(1), 30-41.
[http://dx.doi.org/10.1016/j.bbr.2011.01.022] [PMID: 21262264]
[30]
Kulkarni, S.K.; Dhir, A. Berberine: A plant alkaloid with therapeutic potential for central nervous system disorders. Phytother. Res., 2010, 24(3), 317-324.
[http://dx.doi.org/10.1002/ptr.2968] [PMID: 19998323]
[31]
Peng, W.H.; Lo, K.L.; Lee, Y.H.; Hung, T.H.; Lin, Y.C. Berberine produces antidepressant-like effects in the forced swim test and in the tail suspension test in mice. Life Sci., 2007, 81(11), 933-938.
[http://dx.doi.org/10.1016/j.lfs.2007.08.003] [PMID: 17804020]
[32]
Shan, W.J.; Huang, L.; Zhou, Q.; Meng, F.C.; Li, X.S. Synthesis, biological evaluation of 9-N-substituted berberine derivatives as multi-functional agents of antioxidant, inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation. Eur. J. Med. Chem., 2011, 46(12), 5885-5893.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.051] [PMID: 22019228]
[33]
Küpeli, E.; Koşar, M.; Yeşilada, E.; Hüsnü, K.; Başer, C. A comparative study on the anti-inflammatory, antinociceptive and antipyretic effects of isoquinoline alkaloids from the roots of Turkish Berberis species. Life Sci., 2002, 72(6), 645-657.
[http://dx.doi.org/10.1016/S0024-3205(02)02200-2] [PMID: 12467905]
[34]
Shamsa, F.; Ahmadiani, A.; Khosrokhavar, R. Antihistaminic and anticholinergic activity of barberry fruit (Berberis vulgaris) in the guinea-pig ileum. J. Ethnopharmacol., 1999, 64(2), 161-166.
[http://dx.doi.org/10.1016/S0378-8741(98)00122-6] [PMID: 10197751]
[35]
Bodiwala, H.S.; Sabde, S.; Mitra, D.; Bhutani, K.K.; Singh, I.P. Synthesis of 9-substituted derivatives of berberine as anti-HIV agents. Eur. J. Med. Chem., 2011, 46(4), 1045-1049.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.016] [PMID: 21295891]
[36]
Kong, W.; Wei, J.; Abidi, P.; Lin, M.; Inaba, S.; Li, C.; Wang, Y.; Wang, Z.; Si, S.; Pan, H.; Wang, S.; Wu, J.; Wang, Y.; Li, Z.; Liu, J.; Jiang, J.D. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med., 2004, 10(12), 1344-1351.
[http://dx.doi.org/10.1038/nm1135] [PMID: 15531889]
[37]
Li, C.; He, J.Z.; Zhou, X.D.; Xu, X. Berberine regulates type 2 diabetes mellitus related with insulin resistance. Zhongguo Zhongyao Zazhi, 2017, 42(12), 2254-2260.
[PMID: 28822177]
[38]
Caliceti, C.; Franco, P.; Spinozzi, S.; Roda, A.; Cicero, A.F.; Berberine, A. new insights from pharmacological aspects to clinical evidences in the management of metabolic disorders. Curr. Med. Chem., 2016, 23(14), 1460-1476.
[http://dx.doi.org/10.2174/0929867323666160411143314] [PMID: 27063256]
[39]
Pirillo, A.; Catapano, A.L. Berberine, a plant alkaloid with lipid and glucose-lowering properties: From in vitro evidence to clinical studies. Atherosclerosis, 2015, 243(2), 449-461.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.032] [PMID: 26520899]
[40]
Chang, W.; Zhang, M.; Meng, Z.; Yu, Y.; Yao, F.; Hatch, G.M.; Chen, L. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5′-adenosine monophosphate activated protein kinase in type 2 diabetic rats and in palmitate induced hypertrophic H9c2 cells. Eur. J. Pharmacol., 2015, 769, 55-63.
[http://dx.doi.org/10.1016/j.ejphar.2015.10.043] [PMID: 26522928]
[41]
Zhou, X.Q.; Zeng, X.N.; Kong, H.; Sun, X.L. Neuroprotective effects of berberine on stroke models in vitro and in vivo. Neurosci. Lett., 2008, 447(1), 31-36.
[http://dx.doi.org/10.1016/j.neulet.2008.09.064] [PMID: 18838103]
[42]
Yoo, K.Y.; Hwang, I.K.; Kim, J.D.; Kang, I.J.; Park, J.; Yi, J.S.; Kim, J.K.; Bae, Y.S.; Won, M.H. Anti-inflammatory effect of the ethanol extract of Berberis koreana in a gerbil model of cerebral ischemia/reperfusion. Phytother. Res., 2008, 22(11), 1527-1532.
[http://dx.doi.org/10.1002/ptr.2527] [PMID: 18688884]
[43]
Dong, H.; Zhao, Y.; Zhao, L.; Lu, F. The effects of berberine on blood lipids: A systemic review and meta-analysis of randomized controlled trials. Planta Med., 2013, 79(6), 437-446.
[http://dx.doi.org/10.1055/s-0032-1328321] [PMID: 23512497]
[44]
Li, H.; He, C.; Wang, J.; Li, X.; Yang, Z.; Sun, X.; Fang, L.; Liu, N. Berberine activates peroxisome proliferator-activated receptor gamma to increase atherosclerotic plaque stability in Apoe-/- mice with hyperhomocysteinemia. J. Diabetes Investig., 2016, 7(6), 824-832.
[http://dx.doi.org/10.1111/jdi.12516] [PMID: 27181586]
[45]
Ma, L.; Zhang, L.; Wang, B.; Wei, J.; Liu, J.; Zhang, L. Berberine inhibits Chlamydia pneumoniae infection-induced vascular smooth muscle cell migration through downregulating MMP3 and MMP9 via PI3K. Eur. J. Pharmacol., 2015, 755, 102-109.
[http://dx.doi.org/10.1016/j.ejphar.2015.02.039] [PMID: 25746423]
[46]
Ortiz, L.M.; Lombardi, P.; Tillhon, M.; Scovassi, A.I. Berberine, an epiphany against cancer. Molecules, 2014, 19(8), 12349-12367.
[http://dx.doi.org/10.3390/molecules190812349] [PMID: 25153862]
[47]
Zeng, X.; Zeng, X. Relationship between the clinical effects of berberine on severe congestive heart failure and its concentration in plasma studied by HPLC. Biomed. Chromatogr., 1999, 13(7), 442-444.
[http://dx.doi.org/10.1002/(SICI)1099-0801(199911)13:7<4 42:AID-BMC908>3.0.CO;2-A] [PMID: 10534753]
[48]
Chen, K.; Li, G.; Geng, F.; Zhang, Z.; Li, J.; Yang, M.; Dong, L.; Gao, F. Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K-Akt signaling in diabetic rats. Apoptosis, 2014, 19(6), 946-957.
[http://dx.doi.org/10.1007/s10495-014-0977-0] [PMID: 24664781]
[49]
Di Pierro, F.; Villanova, N.; Agostini, F.; Marzocchi, R.; Soverini, V.; Marchesini, G. Pilot study on the additive effects of berberine and oral type 2 diabetes agents for patients with suboptimal glycemic control. Diabetes Metab. Syndr. Obes., 2012, 5, 213-217.
[http://dx.doi.org/10.2147/DMSO.S33718] [PMID: 22924000]
[50]
Xie, X.; Meng, X.; Zhou, X.; Shu, X.; Kong, H. Research on therapeutic effect and hemorrheology change of berberine in new diagnosed patients with type 2 diabetes combining nonalcoholic fatty liver disease. Zhongguo Zhongyao Zazhi, 2011, 36(21), 3032-3035.
[PMID: 22308697]
[51]
Zhang, Y.; Li, X.; Zou, D.; Liu, W.; Yang, J.; Zhu, N.; Huo, L.; Wang, M.; Hong, J.; Wu, P.; Ren, G.; Ning, G. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J. Clin. Endocrinol. Metab., 2008, 93(7), 2559-2565.
[http://dx.doi.org/10.1210/jc.2007-2404] [PMID: 18397984]
[52]
Ghareeb, D.A.; Khalil, S.; Hafez, H.S.; Bajorath, J.; Ahmed, H.E.; Sarhan, E.; Elwakeel, E.; El-Demellawy, M.A. Berberine reduces neurotoxicity related to nonalcoholic steatohepatitis in rats. Evid. Based Complement. Alternat. Med., 2015, 2015361847
[http://dx.doi.org/10.1155/2015/361847] [PMID: 26576191]
[53]
Meng, S.; Wang, L.S.; Huang, Z.Q.; Zhou, Q.; Sun, Y.G.; Cao, J.T.; Li, Y.G.; Wang, C.Q. Berberine ameliorates inflammation in patients with acute coronary syndrome following percutaneous coronary intervention. Clin. Exp. Pharmacol. Physiol., 2012, 39(5), 406-411.
[http://dx.doi.org/10.1111/j.1440-1681.2012.05670.x] [PMID: 22220931]
[54]
Kysenius, K.; Huttunen, H.J. Stress-induced upregulation of VLDL receptor alters Wnt-signaling in neurons. Exp. Cell Res., 2016, 340(2), 238-247.
[http://dx.doi.org/10.1016/j.yexcr.2016.01.001] [PMID: 26751967]
[55]
Zhang, J.; Yang, J.Q.; He, B.C.; Zhou, Q.X.; Yu, H.R.; Tang, Y.; Liu, B.Z. Berberine and total base from rhizoma coptis chinensis attenuate brain injury in an aluminum-induced rat model of neurodegenerative disease. Saudi Med. J., 2009, 30(6), 760-766.
[PMID: 19526156]
[56]
Amat-Ur-Rasool, H.; Ahmed, M.H.; Ahmed, M. Designing second generation anti-Alzheimer compounds as inhibitors of human acetylcholinesterase: Computational screening of synthetic molecules and dietary phytochemicals. PLoS One, 2015, 10(9)e0136509
[http://dx.doi.org/10.1371/journal.pone.0136509] [PMID: 26325402]
[57]
Kim, M.; Cho, K.H.; Shin, M.S.; Lee, J.M.; Cho, H.S.; Kim, C.J.; Shin, D.H.; Yang, H.J. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson’s disease. Int. J. Mol. Med., 2014, 33(4), 870-878.
[http://dx.doi.org/10.3892/ijmm.2014.1656] [PMID: 24535622]
[58]
Jiang, W.; Wei, W.; Gaertig, M.A.; Li, S.; Li, X.J. Therapeutic effect of berberine on Huntington’s disease transgenic mouse model. PLoS One, 2015, 10(7)e0134142
[http://dx.doi.org/10.1371/journal.pone.0134142] [PMID: 26225560]
[59]
Zou, H.; Long, J.; Zhang, Q.; Zhao, H.; Bian, B.; Wang, Y.; Zhang, J.; Zhao, H.; Wang, L. Induced cortical neurogenesis after focal cerebral ischemia--Three active components from Huang-Lian-Jie-Du Decoction. J. Ethnopharmacol., 2016, 178, 115-124.
[http://dx.doi.org/10.1016/j.jep.2015.12.001] [PMID: 26657578]
[60]
Simões Pires, E.N.; Frozza, R.L.; Hoppe, J.B. Menezes, Bde.M.; Salbego, C.G. Berberine was neuroprotective against an in vitro model of brain ischemia: survival and apoptosis pathways involved. Brain Res., 2014, 1557, 26-33.
[http://dx.doi.org/10.1016/j.brainres.2014.02.021] [PMID: 24560603]
[61]
Benaissa, F.; Mohseni-Rad, H.; Rahimi-Moghaddam, P.; Mahmoudian, M. Berberine reduces the hypoxic-ischemic insult in rat pup brain. Acta Physiol. Hung., 2009, 96(2), 213-220.
[http://dx.doi.org/10.1556/APhysiol.96.2009.2.6] [PMID: 19457765]
[62]
Kim, M.; Shin, M.S.; Lee, J.M.; Cho, H.S.; Kim, C.J.; Kim, Y.J.; Choi, H.R.; Jeon, J.W. Inhibitory effects of isoquinoline alkaloid berberine on ischemia-induced apoptosis via activation of phosphoinositide 3-kinase/protein kinase B signaling pathway. Int. Neurourol. J., 2014, 18(3), 115-125.
[http://dx.doi.org/10.5213/inj.2014.18.3.115] [PMID: 25279238]
[63]
Li, S.; Wu, C.; Chen, J.; Lu, P.; Chen, C.; Fu, M.; Fang, J.; Gao, J.; Zhu, L.; Liang, R.; Shen, X.; Yang, H. An effective solution to discover synergistic drugs for anti-cerebral ischemia from traditional Chinese medicinal formulae. PLoS One, 2013, 8(11)e78902
[http://dx.doi.org/10.1371/journal.pone.0078902] [PMID: 24236065]
[64]
Lin, T.Y.; Lin, Y.W.; Lu, C.W.; Huang, S.K.; Wang, S.J. Berberine inhibits the release of glutamate in nerve terminals from rat cerebral cortex. PLoS One, 2013, 8(6)e67215
[http://dx.doi.org/10.1371/journal.pone.0067215] [PMID: 23840629]
[65]
Friedemann, T.; Schumacher, U.; Tao, Y.; Leung, A.K.M.; Schröder, S. Neuroprotective activity of coptisine from Coptis chinensis (Franch). J. Evid. Based Complementary Altern. Med., 2015, 2015827308
[66]
Ahmed, T.; Gilani, A.U.; Abdollahi, M.; Daglia, M.; Nabavi, S.F.; Nabavi, S.M. Berberine and neurodegeneration: A review of literature. Pharmacol. Rep., 2015, 67(5), 970-979.
[http://dx.doi.org/10.1016/j.pharep.2015.03.002] [PMID: 26398393]
[67]
Mak, S.; Luk, W.W.; Cui, W.; Hu, S.; Tsim, K.W.; Han, Y. Synergistic inhibition on acetylcholinesterase by the combination of berberine and palmatine originally isolated from Chinese medicinal herbs. J. Mol. Neurosci., 2014, 53(3), 511-516.
[http://dx.doi.org/10.1007/s12031-014-0288-5] [PMID: 24793543]
[68]
Kim, M.H.; Kim, S.H.; Yang, W.M. Mechanisms of action of phytochemicals from medicinal herbs in the treatment of Alzheimer’s disease. Planta Med., 2014, 80(15), 1249-1258.
[http://dx.doi.org/10.1055/s-0034-1383038] [PMID: 25210998]
[69]
Shen, Z.X. Brain cholinesterases: II. The molecular and cellular basis of Alzheimer’s disease. Med. Hypotheses, 2004, 63(2), 308-321.
[http://dx.doi.org/10.1016/j.mehy.2004.02.031] [PMID: 15236795]
[70]
Wenk, G.L. Neuropathologic changes in Alzheimer’s disease. J. Clin. Psychiatry, 2003, 64(Suppl. 9), 7-10.https://www.ncbi.nlm.nih.gov/pubmed/12934968
[PMID: 12934968]
[71]
Hori, K.; Konishi, K.; Akita, R.; Tani, M.; Tomioka, H.; Kitajima, Y.; Yokoyama, S.; Azuma, K.; Ikuse, D.; Akashi, N.; Yuda, H.; Hachisu, M. Proposal of endogenous anticholinergic hypothesis in Alzheimer disease. Nihon Shinkei Seishin Yakurigaku Zasshi, 2013, 33(3), 117-126.https://www.ncbi.nlm.nih.gov/pubmed/25069245
[PMID: 25069245]
[72]
Cho, K.M.; Yoo, I.D.; Kim, W.G. 8-hydroxydihydrochelerythrine and 8-hydroxydihydrosanguinarine with a potent acetylcholinesterase inhibitory activity from Chelidonium majus L. Biol. Pharm. Bull., 2006, 29(11), 2317-2320.
[http://dx.doi.org/10.1248/bpb.29.2317] [PMID: 17077538]
[73]
Jiang, H.; Wang, X.; Huang, L.; Luo, Z.; Su, T.; Ding, K.; Li, X. Benzenediol-berberine hybrids: Multifunctional agents for Alzheimer’s disease. Bioorg. Med. Chem., 2011, 19(23), 7228-7235.
[http://dx.doi.org/10.1016/j.bmc.2011.09.040] [PMID: 22041172]
[74]
Huang, L.; Su, T.; Shan, W.; Luo, Z.; Sun, Y.; He, F.; Li, X. Inhibition of cholinesterase activity and amyloid aggregation by berberine-phenyl-benzoheterocyclic and tacrine-phenyl-benzoheterocyclic hybrids. Bioorg. Med. Chem., 2012a, 20(9), 3038-3048.
[http://dx.doi.org/10.1016/j.bmc.2012.02.059] [PMID: 22472046]
[75]
Su, T.; Xie, S.; Wei, H.; Yan, J.; Huang, L.; Li, X. Synthesis and biological evaluation of berberine-thiophenyl hybrids as multi-functional agents: Inhibition of acetylcholinesterase, butyrylcholinesterase, and Aβ aggregation and antioxidant activity. Bioorg. Med. Chem., 2013, 21(18), 5830-5840.
[http://dx.doi.org/10.1016/j.bmc.2013.07.011] [PMID: 23932451]
[76]
Abd El-Wahab, A.E.; Ghareeb, D.A.; Sarhan, E.E.; Abu-Serie, M.M.; El Demellawy, M.A. In vitro biological assessment of Berberis vulgaris and its active constituent, berberine: Antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects. BMC Complement. Altern. Med., 2013, 13, 218-218.
[http://dx.doi.org/10.1186/1472-6882-13-218] [PMID: 24007270]
[77]
Zhao, H.; Zhou, S.; Zhang, M.; Feng, J.; Wang, S.; Wang, D.; Geng, Y.; Wang, X. An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of Coptis chinensis Franch. J. Pharm. Biomed. Anal., 2016, 120, 235-240.
[http://dx.doi.org/10.1016/j.jpba.2015.12.025] [PMID: 26760241]
[78]
Hardy, J.; Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci., 1991, 12(10), 383-388.
[http://dx.doi.org/10.1016/0165-6147(91)90609-V] [PMID: 1763432]
[79]
Solomon, B. Immunotherapeutic strategies for Alzheimer’s disease treatment. Sci. World J., 2009, 9, 909-919.
[http://dx.doi.org/10.1100/tsw.2009.99] [PMID: 19734964]
[80]
Stokin, G.B.; Lillo, C.; Falzone, T.L.; Brusch, R.G.; Rockenstein, E.; Mount, S.L.; Raman, R.; Davies, P.; Masliah, E.; Williams, D.S.; Goldstein, L.S. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science, 2005, 307(5713), 1282-1288.
[http://dx.doi.org/10.1126/science.1105681] [PMID: 15731448]
[81]
Costa, C.J.; Willis, D.E. To the end of the line: Axonal mRNA transport and local translation in health and neurodegenerative disease. Dev. Neurobiol., 2018, 78(3), 209-220.
[http://dx.doi.org/10.1002/dneu.22555] [PMID: 29115051]
[82]
Lombroso, P.J.; Ogren, M.; Kurup, P.; Nairn, A.C. Molecular underpinnings of neurodegenerative disorders: Striatal-enriched protein tyrosine phosphatase signaling and synaptic plasticity. F1000 Res., 2016, 5(F1000), 2932.
[http://dx.doi.org/10.12688/f1000research.8571.1] [PMID: 29098072]
[83]
Rukmangadachar, L.A.; Bhimji, S.S. Amyloid beta peptide; StatPearls Publishing: Treasure Island, FL, 2018. https://www.ncbi.nlm.nih.gov/books/NBK459119/
[84]
Mathew, A.; Fukuda, T.; Nagaoka, Y.; Hasumura, T.; Morimoto, H.; Yoshida, Y.; Maekawa, T.; Venugopal, K.; Kumar, D.S. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One, 2012, 7(3) e32616
[http://dx.doi.org/10.1371/journal.pone.0032616] [PMID: 22403681]
[85]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol., 2018, 14, 450-464.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[86]
Jack, C.R., Jr; Knopman, D.S.; Jagust, W.J.; Petersen, R.C.; Weiner, M.W.; Aisen, P.S.; Shaw, L.M.; Vemuri, P.; Wiste, H.J.; Weigand, S.D.; Lesnick, T.G.; Pankratz, V.S.; Donohue, M.C.; Trojanowski, J.Q. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol., 2013, 12(2), 207-216.
[http://dx.doi.org/10.1016/S1474-4422(12)70291-0] [PMID: 23332364]
[87]
Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr; Kaye, J.; Montine, T.J.; Park, D.C.; Reiman, E.M.; Rowe, C.C.; Siemers, E.; Stern, Y.; Yaffe, K.; Carrillo, M.C.; Thies, B.; Morrison-Bogorad, M.; Wagster, M.V.; Phelps, C.H. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 280-292.
[http://dx.doi.org/10.1016/j.jalz.2011.03.003] [PMID: 21514248]
[88]
Hardy, J. The amyloid hypothesis for Alzheimer’s disease: A critical reappraisal. J. Neurochem., 2009, 110(4), 1129-1134.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06181.x] [PMID: 19457065]
[89]
Ringman, J.M. What the study of persons at risk for familial Alzheimer’s disease can tell us about the earliest stages of the disorder: A review. J. Geriatr. Psychiatry Neurol., 2005, 18(4), 228-233.
[http://dx.doi.org/10.1177/0891988705281878] [PMID: 16306245]
[90]
Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet, 2006, 368(9533), 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[91]
Haass, C. Take five--BACE and the γ-secretase quartet conduct Alzheimer’s amyloid β-peptide generation. EMBO J., 2004, 23(3), 483-488.
[http://dx.doi.org/10.1038/sj.emboj.7600061] [PMID: 14749724]
[92]
Selivanova, A.; Winblad, B.; Dantuma, N.P.; Farmery, M.R. Biogenesis and processing of the amyloid precursor protein in the early secretory pathway. Biochem. Biophys. Res. Commun., 2007, 357(4), 1034-1039.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.062] [PMID: 17466275]
[93]
Beel, A.J.; Sakakura, M.; Barrett, P.J.; Sanders, C.R. Direct binding of cholesterol to the amyloid precursor protein: An important interaction in lipid-Alzheimer’s disease relationships? Biochim. Biophys. Acta, 2010, 1801(8), 975-982.
[http://dx.doi.org/10.1016/j.bbalip.2010.03.008] [PMID: 20304095]
[94]
Eggert, S.; Thomas, C.; Kins, S.; Hermey, G. Trafficking in Alzheimer’s disease: modulation of APP transport and processing by the transmembrane proteins LRP1, SorLA, SorCS1c, sortilin, and calsyntenin. Mol. Neurobiol., 2018, 55(7), 5809-5829.
[http://dx.doi.org/10.1007/s12035-017-0806-x] [PMID: 29079999]
[95]
Deng, Y.; Wang, Z.; Wang, R.; Zhang, X.; Zhang, S.; Wu, Y.; Staufenbiel, M.; Cai, F.; Song, W. Amyloid-β protein (Aβ) Glu11 is the major β-secretase site of β-site amyloid-β precursor protein-cleaving enzyme 1(BACE1), and shifting the cleavage site to Aβ Asp1 contributes to Alzheimer pathogenesis. Eur. J. Neurosci., 2013, 37(12), 1962-1969.
[http://dx.doi.org/10.1111/ejn.12235] [PMID: 23773065]
[96]
Torres, M.; Jimenez, S.; Sanchez-Varo, R.; Navarro, V.; Trujillo-Estrada, L.; Sanchez-Mejias, E.; Carmona, I.; Davila, J.C.; Vizuete, M.; Gutierrez, A.; Vitorica, J. Defective lysosomal proteolysis and axonal transport are early pathogenic events that worsen with age leading to increased APP metabolism and synaptic Abeta in transgenic APP/PS1 hippocampus. Mol. Neurodegener., 2012, 7(1), 59.
[http://dx.doi.org/10.1186/1750-1326-7-59] [PMID: 23173743]
[97]
Shimojo, M.; Sahara, N.; Mizoroki, T.; Funamoto, S.; Morishima-Kawashima, M.; Kudo, T.; Takeda, M.; Ihara, Y.; Ichinose, H.; Takashima, A. Enzymatic characteristics of I213T mutant presenilin-1/γ-secretase in cell models and knock-in mouse brains: familial Alzheimer disease-linked mutation impairs γ-site cleavage of amyloid precursor protein C-terminal fragment β. J. Biol. Chem., 2008, 283(24), 16488-16496.
[http://dx.doi.org/10.1074/jbc.M801279200] [PMID: 18430735]
[98]
McPhie, D.L.; Lee, R.K.; Eckman, C.B.; Olstein, D.H.; Durham, S.P.; Yager, D.; Younkin, S.G.; Wurtman, R.J.; Neve, R.L. Neuronal expression of β-amyloid precursor protein Alzheimer mutations causes intracellular accumulation of a C-terminal fragment containing both the amyloid β and cytoplasmic domains. J. Biol. Chem., 1997, 272(40), 24743-24746.
[http://dx.doi.org/10.1074/jbc.272.40.24743] [PMID: 9312066]
[99]
Shoji, M.; Kawarabayashi, T.; Sato, M.; Sasaki, A.; Matsubara, E.; Iizuka, T.; Harigaya, Y.; Hirai, S. Systemic overexpression of a C-terminal fragment of human amyloid beta-protein precursor causes accumulation of Alzheimer beta-amyloid fibrils in pancreas of transgenic mice. Gerontology, 1996, 42(Suppl. 1), 48-56.
[http://dx.doi.org/10.1159/000213824] [PMID: 8964522]
[100]
Ji, H.F.; Shen, L. Berberine: a potential multipotent natural product to combat Alzheimer’s disease. Molecules, 2011, 16(8), 6732-6740.
[http://dx.doi.org/10.3390/molecules16086732] [PMID: 21829148]
[101]
Haghani, M.; Shabani, M.; Tondar, M. The therapeutic potential of berberine against the altered intrinsic properties of the CA1 neurons induced by Aβ neurotoxicity. Eur. J. Pharmacol., 2015, 758, 82-88.
[http://dx.doi.org/10.1016/j.ejphar.2015.03.016] [PMID: 25861937]
[102]
Jia, L.; Liu, J.; Song, Z.; Pan, X.; Chen, L.; Cui, X.; Wang, M. Berberine suppresses amyloid-beta-induced inflammatory response in microglia by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase signalling pathways. J. Pharm. Pharmacol., 2012, 64(10), 1510-1521.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01529.x] [PMID: 22943182]
[103]
Durairajan, S.S.K.; Liu, L.F.; Lu, J.H.; Chen, L.L.; Yuan, Q.; Chung, S.K.; Huang, L.; Li, X.S.; Huang, J.D.; Li, M. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol. Aging, 2012, 33(12), 2903-2919.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.02.016] [PMID: 22459600]
[104]
Panahi, N.; Mahmoudian, M.; Mortazavi, P.; Hashjin, G.S. Effects of berberine on β-secretase activity in a rabbit model of Alzheimer’s disease. Arch. Med. Sci., 2013, 9(1), 146-150.
[http://dx.doi.org/10.5114/aoms.2013.33354] [PMID: 23516061]
[105]
Sun, J.; Roy, S. The physical approximation of APP and BACE-1: A key event in alzheimer’s disease pathogenesis. Dev. Neurobiol., 2018, 78(3), 340-347.
[http://dx.doi.org/10.1002/dneu.22556] [PMID: 29106038]
[106]
Asai, M.; Iwata, N.; Yoshikawa, A.; Aizaki, Y.; Ishiura, S.; Saido, T.C.; Maruyama, K. Berberine alters the processing of Alzheimer’s amyloid precursor protein to decrease Abeta secretion. Biochem. Biophys. Res. Commun., 2007, 352(2), 498-502.
[http://dx.doi.org/10.1016/j.bbrc.2006.11.043] [PMID: 17125739]
[107]
Jung, H.A.; Min, B.S.; Yokozawa, T.; Lee, J.H.; Kim, Y.S.; Choi, J.S. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol. Pharm. Bull., 2009, 32(8), 1433-1438.
[http://dx.doi.org/10.1248/bpb.32.1433] [PMID: 19652386]
[108]
Zhu, F.; Wu, F.; Ma, Y.; Liu, G.; Li, Z.; Sun, Y.; Pei, Z. Decrease in the production of β-amyloid by berberine inhibition of the expression of β-secretase in HEK293 cells. BMC Neurosci., 2011, 12(1), 125.
[http://dx.doi.org/10.1186/1471-2202-12-125] [PMID: 22152059]
[109]
Lu, J.; Cao, Y.; Cheng, K.; Xu, B.; Wang, T.; Yang, Q.; Yang, Q.; Feng, X.; Xia, Q. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status. Exp. Cell Res., 2015, 334(2), 194-206.
[http://dx.doi.org/10.1016/j.yexcr.2015.04.006] [PMID: 25889370]
[110]
Ma, X.; Jiang, Y.; Wu, A.; Chen, X.; Pi, R.; Liu, M.; Liu, Y. Berberine attenuates experimental autoimmune encephalomyelitis in C57 BL/6 mice. PLoS One, 2010, 5(10)e13489
[http://dx.doi.org/10.1371/journal.pone.0013489] [PMID: 20976070]
[111]
Kneynsberg, A.; Combs, B.; Christensen, K.; Morfini, G.; Kanaan, N.M. Axonal degeneration in tauopathies: Disease relevance and underlying mechanisms. Front. Neurosci., 2017, 11, 572.
[http://dx.doi.org/10.3389/fnins.2017.00572] [PMID: 29089864]
[112]
Bradke, F.; Dotti, C.G. Establishment of neuronal polarity: Lessons from cultured hippocampal neurons. Curr. Opin. Neurobiol., 2000, 10(5), 574-581.
[http://dx.doi.org/10.1016/S0959-4388(00)00124-0] [PMID: 11084319]
[113]
Lee, V.M.Y.; Trojanowski, J.Q. The disordered neuronal cytoskeleton in Alzheimer’s disease. Curr. Opin. Neurobiol., 1992, 2(5), 653-656.
[http://dx.doi.org/10.1016/0959-4388(92)90034-I] [PMID: 1422122]
[114]
Clark, C.M.; Xie, S.; Chittams, J.; Ewbank, D.; Peskind, E.; Galasko, D.; Morris, J.C.; McKeel, D.W., Jr; Farlow, M.; Weitlauf, S.L.; Quinn, J.; Kaye, J.; Knopman, D.; Arai, H.; Doody, R.S.; DeCarli, C.; Leight, S.; Lee, V.M.; Trojanowski, J.Q. Cerebrospinal fluid tau and β-amyloid: How well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch. Neurol., 2003, 60(12), 1696-1702.
[http://dx.doi.org/10.1001/archneur.60.12.1696] [PMID: 14676043]
[115]
Arriagada, P.V.; Growdon, J.H.; Hedley-Whyte, E.T.; Hyman, B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology, 1992, 42(3), 631-639.
[http://dx.doi.org/10.1212/WNL.42.3.631] [PMID: 1549228]
[116]
Liu, X.; Zhou, J.; Abid, M.D.N.; Yan, H.; Huang, H.; Wan, L.; Feng, Z.; Chen, J. Berberine attenuates axonal transport impairment and axonopathy induced by Calyculin A in N2a cells. PLoS One, 2014, 9(4) e93974
[http://dx.doi.org/10.1371/journal.pone.0093974] [PMID: 24713870]
[117]
Yu, G.; Li, Y.; Tian, Q.; Liu, R.; Wang, Q.; Wang, J.Z.; Wang, X. Berberine attenuates calyculin A-induced cytotoxicity and Tau hyperphosphorylation in HEK293 cells. J. Alzheimers Dis., 2011, 24(3), 525-535.
[http://dx.doi.org/10.3233/JAD-2011-101779] [PMID: 21297267]
[118]
Huang, M.; Chen, S.; Liang, Y.; Guo, Y. The role of berberine in the multi-target treatment of senile dementia. Curr. Top. Med. Chem., 2016, 16(8), 867-873.
[http://dx.doi.org/10.2174/1568026615666150827095433] [PMID: 26311424]
[119]
Tan, Y.; Tang, Q.; Hu, B.R.; Xiang, J.Z. Antioxidant properties of berberine on cultured rabbit corpus cavernosum smooth muscle cells injured by hydrogen peroxide. Acta Pharmacol. Sin., 2007, 28(12), 1914-1918.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00705.x] [PMID: 18031604]
[120]
Xiao, X.; Liu, J.; Hu, J.; Zhu, X.; Yang, H.; Wang, C.; Zhang, Y. Protective effects of protopine on hydrogen peroxide-induced oxidative injury of PC12 cells via Ca(2+) antagonism and antioxidant mechanisms. Eur. J. Pharmacol., 2008, 591(1-3), 21-27.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.045] [PMID: 18602385]
[121]
Luo, T.; Zhang, H.; Zhang, W.W.; Huang, J.T.; Song, E.L.; Chen, S.G.; He, F.; Xu, J.; Wang, H.Q. Neuroprotective effect of Jatrorrhizine on hydrogen peroxide-induced cell injury and its potential mechanisms in PC12 cells. Neurosci. Lett., 2011, 498(3), 227-231.
[http://dx.doi.org/10.1016/j.neulet.2011.05.017] [PMID: 21605627]
[122]
Hsu, Y.Y.; Chen, C.S.; Wu, S.N.; Jong, Y.J.; Lo, Y.C. Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells. Eur. J. Pharm. Sci., 2012, 46(5), 415-425.
[http://dx.doi.org/10.1016/j.ejps.2012.03.004] [PMID: 22469516]
[123]
Yin, J.; Xing, H.; Ye, J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism, 2008, 57(5), 712-717.
[http://dx.doi.org/10.1016/j.metabol.2008.01.013] [PMID: 18442638]
[124]
Dai, P.; Wang, J.; Lin, L.; Zhang, Y.; Wang, Z. Renoprotective effects of berberine as adjuvant therapy for hypertensive patients with type 2 diabetes mellitus: Evaluation via biochemical markers and color Doppler ultrasonography. Exp. Ther. Med., 2015, 10(3), 869-876.
[http://dx.doi.org/10.3892/etm.2015.2585] [PMID: 26622407]
[125]
Ríos, J.L.; Francini, F.; Schinella, G.R. Natural products for the treatment of type 2 diabetes mellitus. Planta Med., 2015, 81(12-13), 975-994.
[http://dx.doi.org/10.1055/s-0035-1546131] [PMID: 26132858]
[126]
Zhou, J.; Zhou, S.; Tang, J.; Zhang, K.; Guang, L.; Huang, Y.; Xu, Y.; Ying, Y.; Zhang, L.; Li, D. Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats. Eur. J. Pharmacol., 2009, 606(1-3), 262-268.
[http://dx.doi.org/10.1016/j.ejphar.2008.12.056] [PMID: 19374872]
[127]
Rahigude, A.B.; Kaulaskar, S.V.; Bhutada, P.S. Possible therapeutic potential of berberine in diabetic osteopathy. Med. Hypotheses, 2012, 79(4), 440-444.
[http://dx.doi.org/10.1016/j.mehy.2012.06.016] [PMID: 22840327]
[128]
Chatuphonprasert, W.; Lao-Ong, T.; Jarukamjorn, K. Improvement of superoxide dismutase and catalase in streptozotocin-nicotinamide-induced type 2-diabetes in mice by berberine and glibenclamide. Pharm. Biol., 2013, 52(4), 419-427.
[http://dx.doi.org/10.3109/13880209.2013.839714] [PMID: 24188560]
[129]
Xie, X.; Chang, X.; Chen, L.; Huang, K.; Huang, J.; Wang, S.; Shen, X.; Liu, P.; Huang, H. Berberine ameliorates experimental diabetes-induced renal inflammation and fibronectin by inhibiting the activation of RhoA/ROCK signaling. Mol. Cell. Endocrinol., 2013, 381(1-2), 56-65.
[http://dx.doi.org/10.1016/j.mce.2013.07.019] [PMID: 23896433]
[130]
Deng, X.W.; Xie, N. Progress of berberine for treatment of type 2 diabetes. Zhongguo Zhongyao Zazhi, 2014, 39(8), 1374-1378.https://www.ncbi.nlm.nih.gov/pubmed/25039167
[PMID: 25039167]
[131]
Li, Z.; Geng, Y.N.; Jiang, J.D.; Kong, W.J. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid. Based Complement. Alternat. Med., 2014, 2014289264
[http://dx.doi.org/10.1155/2014/289264] [PMID: 24669227]
[132]
Liu, L.; Liu, J.; Gao, Y.; Yu, X.; Xu, G.; Huang, Y. Uncoupling protein-2 mediates the protective action of berberine against oxidative stress in rat insulinoma INS-1E cells and in diabetic mouse islets. Br. J. Pharmacol., 2014, 171(13), 3246-3254.
[http://dx.doi.org/10.1111/bph.12666] [PMID: 24588674]
[133]
Yin, J.; Gao, Z.; Liu, D.; Liu, Z.; Ye, J. Berberine improves glucose metabolism through induction of glycolysis. Am. J. Physiol. Endocrinol. Metab., 2008, 294(1), E148-E156.
[http://dx.doi.org/10.1152/ajpendo.00211.2007] [PMID: 17971514]
[134]
Kumar, A. Ekavali; Chopra, K.; Mukherjee, M.; Pottabathini, R.; Dhull, D.K. Current knowledge and pharmacological profile of berberine: An update. Eur. J. Pharmacol., 2015, 761, 288-297.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.068] [PMID: 26092760]
[135]
Luo, T.; Jiang, W.; Kong, Y.; Li, S.; He, F.; Xu, J.; Wang, H.Q. The protective effects of jatrorrhizine on β-amyloid (25-35)-induced neurotoxicity in rat cortical neurons. CNS Neurol. Disord. Drug Targets, 2012, 11(8), 1030-1037.
[http://dx.doi.org/10.2174/1871527311211080013] [PMID: 23244426]
[136]
McGeer, P.L.; Schulzer, M.; McGeer, E.G. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: A review of 17 epidemiologic studies. Neurology, 1996, 47(2), 425-432.
[http://dx.doi.org/10.1212/WNL.47.2.425] [PMID: 8757015]
[137]
Szekely, C.A.; Breitner, J.C.; Fitzpatrick, A.L.; Rea, T.D.; Psaty, B.M.; Kuller, L.H.; Zandi, P.P. NSAID use and dementia risk in the Cardiovascular Health Study: Role of APOE and NSAID type. Neurology, 2008, 70(1), 17-24.
[http://dx.doi.org/10.1212/01.wnl.0000284596.95156.48] [PMID: 18003940]
[138]
Dufouil, C.; Richard, F.; Fiévet, N.; Dartigues, J.F.; Ritchie, K.; Tzourio, C.; Amouyel, P.; Alpérovitch, A. APOE genotype, cholesterol level, lipid-lowering treatment, and dementia: the Three-City Study. Neurology, 2005, 64(9), 1531-1538.
[http://dx.doi.org/10.1212/01.WNL.0000160114.42643.31] [PMID: 15883313]
[139]
Haag, M.D.; Hofman, A.; Koudstaal, P.J.; Stricker, B.H.; Breteler, M.M. Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity. The Rotterdam Study. J. Neurol. Neurosurg. Psychiatry, 2009, 80(1), 13-17.
[http://dx.doi.org/10.1136/jnnp.2008.150433] [PMID: 18931004]
[140]
Sparks, D.L.; Scheff, S.W.; Hunsaker, J.C., III; Liu, H.; Landers, T.; Gross, D.R. Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp. Neurol., 1994, 126(1), 88-94.
[http://dx.doi.org/10.1006/exnr.1994.1044] [PMID: 8157129]
[141]
Aisen, P.S.; Schafer, K.A.; Grundman, M.; Pfeiffer, E.; Sano, M.; Davis, K.L.; Farlow, M.R.; Jin, S.; Thomas, R.G.; Thal, L.J. Alzheimer’s disease cooperative study. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: A randomized controlled trial. JAMA, 2003, 289(21), 2819-2826.
[http://dx.doi.org/10.1001/jama.289.21.2819] [PMID: 12783912]
[142]
Martin, B.K.; Szekely, C.; Brandt, J.; Piantadosi, S.; Breitner, J.C.; Craft, S.; Evans, D.; Green, R.; Mullan, M. ADAPT Research Group. Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): Results of a randomized, controlled trial of naproxen and celecoxib. Arch. Neurol., 2008, 65(7), 896-905.
[http://dx.doi.org/10.1001/archneur.2008.65.7.nct70006] [PMID: 18474729]
[143]
Lyketsos, C.G.; Breitner, J.C.; Green, R.C.; Martin, B.K.; Meinert, C.; Piantadosi, S.; Sabbagh, M. ADAPT Research Group. Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial. Neurology, 2007, 68(21), 1800-1808.
[http://dx.doi.org/10.1212/01.wnl.0000260269.93245.d2] [PMID: 17460158]
[144]
Arvanitakis, Z.; Schneider, J.A.; Wilson, R.S.; Bienias, J.L.; Kelly, J.F.; Evans, D.A.; Bennett, D.A. Statins, incident Alzheimer disease, change in cognitive function, and neuropathology. Neurology, 2008, 70(19), 1795-1802.
[http://dx.doi.org/10.1212/01.wnl.0000288181.00826.63] [PMID: 18199831]
[145]
Rea, T.D.; Breitner, J.C.; Psaty, B.M.; Fitzpatrick, A.L.; Lopez, O.L.; Newman, A.B.; Hazzard, W.R.; Zandi, P.P.; Burke, G.L.; Lyketsos, C.G.; Bernick, C.; Kuller, L.H. Statin use and the risk of incident dementia: the Cardiovascular Health Study. Arch. Neurol., 2005, 62(7), 1047-1051.
[http://dx.doi.org/10.1001/archneur.62.7.1047] [PMID: 16009757]
[146]
Solas, M.; Milagro, F.I.; Ramírez, M.J.; Martínez, J.A. Inflammation and gut-brain axis link obesity to cognitive dysfunction: Plausible pharmacological interventions. Curr. Opin. Pharmacol., 2017, 37, 87-92.
[http://dx.doi.org/10.1016/j.coph.2017.10.005] [PMID: 29107872]
[147]
Li, G.; Larson, E.B.; Sonnen, J.A.; Shofer, J.B.; Petrie, E.C.; Schantz, A.; Peskind, E.R.; Raskind, M.A.; Breitner, J.C.S.; Montine, T.J. Statin therapy is associated with reduced neuropathologic changes of Alzheimer disease. Neurology, 2007, 69(9), 878-885.
[http://dx.doi.org/10.1212/01.wnl.0000277657.95487.1c] [PMID: 17724290]
[148]
Jones, R.W.; Kivipelto, M.; Feldman, H.; Sparks, L.; Doody, R.; Waters, D.D.; Hey-Hadavi, J.; Breazna, A.; Schindler, R.J.; Ramos, H. LEADe investigators. The Atorvastatin/Donepezil in Alzheimer’s disease study (LEADe): Design and baseline characteristics. Alzheimers Dement., 2008, 4(2), 145-153.
[http://dx.doi.org/10.1016/j.jalz.2008.02.001] [PMID: 18631958]
[149]
Tabeshpour, J.; Imenshahidi, M.; Hosseinzadeh, H. A review of the effects of Berberis vulgaris and its major component, berberine, in metabolic syndrome. Iran. J. Basic Med. Sci., 2017, 20(5), 557-568.
[PMID: 28656091]
[150]
De Felice, F.G.; Ferreira, S.T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes, 2014, 63(7), 2262-2272.
[http://dx.doi.org/10.2337/db13-1954] [PMID: 24931033]
[151]
Cai, Z.; Xiao, M.; Chang, L.; Yan, L.J. Role of insulin resistance in Alzheimer’s disease. Metab. Brain Dis., 2015, 30(4), 839-851.
[http://dx.doi.org/10.1007/s11011-014-9631-3] [PMID: 25399337]
[152]
Cai, Z.; Hussain, M.D.; Yan, L.J. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int. J. Neurosci., 2014, 124(5), 307-321.
[http://dx.doi.org/10.3109/00207454.2013.833510] [PMID: 23930978]
[153]
Lathe, R.; Sapronova, A.; Kotelevtsev, Y. Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatr., 2014, 14, 36.
[http://dx.doi.org/10.1186/1471-2318-14-36] [PMID: 24656052]
[154]
Kitazawa, M.; Trinh, D.N.; LaFerla, F.M. Inflammation induces tau pathology in inclusion body myositis model via glycogen synthase kinase-3β. Ann. Neurol., 2008, 64(1), 15-24.
[http://dx.doi.org/10.1002/ana.21325] [PMID: 18318434]
[155]
Eikelenboom, P.; Rozemuller, A.J.; Hoozemans, J.J.; Veerhuis, R.; van Gool, W.A. Neuroinflammation and Alzheimer disease: Clinical and therapeutic implications. Alzheimer Dis. Assoc. Disord., 2000, 14(Suppl. 1), S54-S61.
[http://dx.doi.org/10.1097/00002093-200000001-00009] [PMID: 10850731]
[156]
Cai, Z.; Xiao, M. Oligodendrocytes and Alzheimer’s disease. Int. J. Neurosci., 2016, 126(2), 97-104.
[http://dx.doi.org/10.3109/00207454.2015.1025778] [PMID: 26000818]
[157]
Zhu, F.; Qian, C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer’s disease. BMC Neurosci., 2006, 7, 78.
[http://dx.doi.org/10.1186/1471-2202-7-78] [PMID: 17137520]
[158]
Green, K.N.; Steffan, J.S.; Martinez-Coria, H.; Sun, X.; Schreiber, S.S.; Thompson, L.M.; LaFerla, F.M. Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci., 2008, 28(45), 11500-11510.
[http://dx.doi.org/10.1523/JNEUROSCI.3203-08.2008] [PMID: 18987186]
[159]
Han, A.M.; Heo, H.; Kwon, Y.K. Berberine promotes axonal regeneration in injured nerves of the peripheral nervous system. J. Med. Food, 2012, 15(4), 413-417.
[http://dx.doi.org/10.1089/jmf.2011.2029] [PMID: 22316297]
[160]
Lee, B.; Sur, B.; Shim, I.; Lee, H.; Hahm, D.H. Phellodendron amurense and its major alkaloid compound, berberine ameliorates scopolamine-induced neuronal impairment and memory dysfunction in rats. Korean J. Physiol. Pharmacol., 2012, 16(2), 79-89.
[http://dx.doi.org/10.4196/kjpp.2012.16.2.79] [PMID: 22563252]
[161]
Hu, J.; Chai, Y.; Wang, Y.; Kheir, M.M.; Li, H.; Yuan, Z.; Wan, H.; Xing, D.; Lei, F.; Du, L. PI3K p55γ promoter activity enhancement is involved in the anti-apoptotic effect of berberine against cerebral ischemia-reperfusion. Eur. J. Pharmacol., 2012, 674(2-3), 132-142.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.014] [PMID: 22119079]
[162]
Chai, Y.S.; Hu, J.; Lei, F.; Wang, Y.G.; Yuan, Z.Y.; Lu, X.; Wang, X.P.; Du, F.; Zhang, D.; Xing, D.M.; Du, L.J. Effect of berberine on cell cycle arrest and cell survival during cerebral ischemia and reperfusion and correlations with p53/cyclin D1 and PI3K/Akt. Eur. J. Pharmacol., 2013, 708(1-3), 44-55.
[http://dx.doi.org/10.1016/j.ejphar.2013.02.041] [PMID: 23499694]
[163]
Hong, J.S.; Chu, Y.K.; Lee, H.; Ahn, B.H.; Park, J.H.; Kim, M.J.; Lee, S.; Ryoo, H.S.; Jang, J.H.; Lee, S.R.; Park, J.W. Effects of berberine on hippocampal neuronal damage and matrix metalloproteinase-9 activity following transient global cerebral ischemia. J. Neurosci. Res., 2012, 90(2), 489-497.
[http://dx.doi.org/10.1002/jnr.22756] [PMID: 22052603]
[164]
Kysenius, K.; Brunello, C.A.; Huttunen, H.J. Mitochondria and NMDA receptor-dependent toxicity of berberine sensitizes neurons to glutamate and rotenone injury. PLoS One, 2014, 9(9) e107129
[http://dx.doi.org/10.1371/journal.pone.0107129] [PMID: 25192195]
[165]
Jiang, Y.; Wu, A.; Zhu, C.; Pi, R.; Chen, S.; Liu, Y.; Ma, L.; Zhu, D.; Chen, X. The protective effect of berberine against neuronal damage by inhibiting matrix metalloproteinase-9 and laminin degradation in experimental autoimmune encephalomyelitis. Neurol. Res., 2013, 35(4), 360-368.
[http://dx.doi.org/10.1179/1743132812Y.0000000156] [PMID: 23540404]
[166]
Sun, H.; Zhu, L.; Yang, H.; Qian, W.; Guo, L.; Zhou, S.; Gao, B.; Li, Z.; Zhou, Y.; Jiang, H.; Chen, K.; Zhen, X.; Liu, H. Asymmetric total synthesis and identification of tetrahydroprotoberberine derivatives as new antipsychotic agents possessing a dopamine D(1), D(2) and serotonin 5-HT(1A) multi-action profile. Bioorg. Med. Chem., 2013, 21(4), 856-868.
[http://dx.doi.org/10.1016/j.bmc.2012.12.016] [PMID: 23332346]
[167]
Kessler, S.; Vlimant, M.; Guerin, P.M. The sugar meal of the African malaria mosquito Anopheles gambiae and how deterrent compounds interfere with it: A behavioural and neurophysiological study. J. Exp. Biol., 2013, 216(Pt 7), 1292-1306.
[http://dx.doi.org/10.1242/jeb.076588] [PMID: 23264482]
[168]
Zhang, Q.; Qian, Z.; Pan, L.; Li, H.; Zhu, H. Hypoxia-inducible factor 1 mediates the anti-apoptosis of berberine in neurons during hypoxia/ischemia. Acta Physiol. Hung., 2012, 99(3), 311-323.
[http://dx.doi.org/10.1556/APhysiol.99.2012.3.8] [PMID: 22982719]
[169]
Kalalian-Moghaddam, H.; Baluchnejadmojarad, T.; Roghani, M.; Goshadrou, F.; Ronaghi, A. Hippocampal synaptic plasticity restoration and anti-apoptotic effect underlie berberine improvement of learning and memory in streptozotocin-diabetic rats. Eur. J. Pharmacol., 2013, 698(1-3), 259-266.
[http://dx.doi.org/10.1016/j.ejphar.2012.10.020] [PMID: 23099256]
[170]
Hu, Y.; Ehli, E.A.; Hudziak, J.J.; Davies, G.E. Berberine and evodiamine influence serotonin transporter (5-HTT) expression via the 5-HTT-linked polymorphic region. Pharmacogenom. J., 2012, 12(5), 372-378.
[http://dx.doi.org/10.1038/tpj.2011.24] [PMID: 21647174]
[171]
Arora, V.; Chopra, K. Possible involvement of oxido-nitrosative stress induced neuro-inflammatory cascade and monoaminergic pathway: Underpinning the correlation between nociceptive and depressive behaviour in a rodent model. J. Affect. Disord., 2013, 151(3), 1041-1052.
[http://dx.doi.org/10.1016/j.jad.2013.08.032] [PMID: 24126118]
[172]
Zhang, C.; Li, C.; Chen, S.; Li, Z.; Jia, X.; Wang, K.; Bao, J.; Liang, Y.; Wang, X.; Chen, M.; Li, P.; Su, H.; Wan, J.B.; Lee, S.M.Y.; Liu, K.; He, C. Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox Biol., 2017, 11, 1-11.
[http://dx.doi.org/10.1016/j.redox.2016.10.019] [PMID: 27835779]
[173]
Defina, P.A.; Moser, R.S.; Glenn, M.; Lichtenstein, J.D.; Fellus, J. Alzheimer’s disease clinical and research update for health care practitioners. J. Aging Res., 2013, 2013 207178
[http://dx.doi.org/10.1155/2013/207178] [PMID: 24083026]
[174]
Viña, J.; Lloret, A. Why women have more Alzheimer’s disease than men: gender and mitochondrial toxicity of amyloid-β peptide. J. Alzheimers Dis., 2010, 20(Suppl. 2), S527-S533.
[http://dx.doi.org/10.3233/JAD-2010-100501] [PMID: 20442496]
[175]
Cukierman, T.; Gerstein, H.C.; Williamson, J.D. Cognitive decline and dementia in diabetes--systematic overview of prospective observational studies. Diabetologia, 2005, 48(12), 2460-2469.
[http://dx.doi.org/10.1007/s00125-005-0023-4] [PMID: 16283246]
[176]
Van Erum, J.; Van Dam, D.; De Deyn, P.P. Sleep and Alzheimer’s disease: A pivotal role for the suprachiasmatic nucleus. Sleep Med. Rev., 2018, 40, 17-27.
[http://dx.doi.org/10.1016/j.smrv.2017.07.005] [PMID: 29102282]
[177]
Ho, F.M.; Liao, Y.H.; Yang, A.J.; Lee, Chao P.D.; Hou, Y.C.; Huang, C.T.; Lin, S.R.; Lee, K.R.; Huang, K.C.; Lin, W.W. Anti-atherosclerotic action of Ger-Gen-Chyn-Lian-Tang and AMPK-dependent lipid lowering effect in hepatocytes. J. Ethnopharmacol., 2012, 142(1), 175-187.
[http://dx.doi.org/10.1016/j.jep.2012.04.034] [PMID: 22543166]
[178]
Huang, Z.; Meng, S.; Wang, L.; Wang, Y.; Chen, T.; Wang, C. Suppression of oxLDL-induced MMP-9 and EMMPRIN expression by berberine via inhibition of NF-κB activation in human THP-1 macrophages. Anat. Rec. (Hoboken), 2012, 295(1), 78-86.
[http://dx.doi.org/10.1002/ar.21489] [PMID: 22140092]
[179]
Wu, M.; Wang, J.; Liu, L.T. Advance of studies on anti-atherosclerosis mechanism of berberine. Chin. J. Integr. Med., 2010, 16(2), 188-192.
[http://dx.doi.org/10.1007/s11655-010-0188-7] [PMID: 20473748]
[180]
Wang, Y.; Jia, X.; Ghanam, K.; Beaurepaire, C.; Zidichouski, J.; Miller, L. Berberine and plant stanols synergistically inhibit cholesterol absorption in hamsters. Atherosclerosis, 2010, 209(1), 111-117.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.08.050] [PMID: 19782362]
[181]
Sarna, L.K.; Wu, N.; Hwang, S.Y.; Siow, Y.L. O, K. Berberine inhibits NADPH oxidase mediated superoxide anion production in macrophages. Can. J. Physiol. Pharmacol., 2010, 88(3), 369-378.
[http://dx.doi.org/10.1139/Y09-136] [PMID: 20393601]
[182]
Ma, Y.G.; Zhang, Y.B.; Bai, Y.G.; Dai, Z.J.; Liang, L.; Liu, M.; Xie, M.J.; Guan, H.T. Berberine alleviates the cerebrovascular contractility in streptozotocin-induced diabetic rats through modulation of intracellular Ca2+ handling in smooth muscle cells. Cardiovasc. Diabetol., 2016, 15, 63.
[http://dx.doi.org/10.1186/s12933-016-0382-9] [PMID: 27067643]
[183]
Tvrdik, P.; Kalani, M.Y.S. In vivo imaging of microglial calcium signaling in brain inflammation and injury. Int. J. Mol. Sci., 2017, 18(11), 2366.
[http://dx.doi.org/10.3390/ijms18112366] [PMID: 29117112]
[184]
Wang, Q.; Zhang, M.; Liang, B.; Shirwany, N.; Zhu, Y.; Zou, M.H. Activation of AMP-activated protein kinase is required for berberine-induced reduction of atherosclerosis in mice: The role of uncoupling protein 2. PLoS One, 2011, 6(9) e25436
[http://dx.doi.org/10.1371/journal.pone.0025436] [PMID: 21980456]
[185]
Gong, L.L.; Fang, L.H.; Wang, S.B.; Sun, J.L.; Qin, H.L.; Li, X.X.; Wang, S.B.; Du, G.H. Coptisine exert cardioprotective effect through anti-oxidative and inhibition of RhoA/Rho kinase pathway on isoproterenol-induced myocardial infarction in rats. Atherosclerosis, 2012, 222(1), 50-58.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.01.046] [PMID: 22387061]
[186]
Huang, Z.; Cai, X.; Li, S.; Zhou, H.; Chu, M.; Shan, P.; Huang, W. Berberine-attenuated monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein via inhibition of adhesion molecule expression. Mol. Med. Rep., 2013, 7(2), 461-465.
[http://dx.doi.org/10.3892/mmr.2012.1236] [PMID: 23241897]
[187]
Zimetti, F.; Adorni, M.P.; Ronda, N.; Gatti, R.; Bernini, F.; Favari, E. The natural compound berberine positively affects macrophage functions involved in atherogenesis. Nutr. Metab. Cardiovasc. Dis., 2015, 25(2), 195-201.
[http://dx.doi.org/10.1016/j.numecd.2014.08.004] [PMID: 25240689]
[188]
Lee, S.; Lim, H.J.; Park, H.Y.; Lee, K.S.; Park, J.H.; Jang, Y. Berberine inhibits rat vascular smooth muscle cell proliferation and migration in vitro and improves neointima formation after balloon injury in vivo. Berberine improves neointima formation in a rat model. Atherosclerosis, 2006, 186(1), 29-37.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.06.048] [PMID: 16098530]
[189]
Cho, B.J.; Im, E.K.; Kwon, J.H.; Lee, K.H.; Shin, H.J.; Oh, J.; Kang, S.M.; Chung, J.H.; Jang, Y. Berberine inhibits the production of lysophosphatidylcholine-induced reactive oxygen species and the ERK1/2 pathway in vascular smooth muscle cells. Mol. Cells, 2005, 20(3), 429-434.
[PMID: 16404160]
[190]
Chi, L.; Peng, L.; Pan, N.; Hu, X.; Zhang, Y. The anti-atherogenic effects of berberine on foam cell formation are mediated through the upregulation of sirtuin 1. Int. J. Mol. Med., 2014, 34(4), 1087-1093.
[http://dx.doi.org/10.3892/ijmm.2014.1868] [PMID: 25069720]
[191]
Fan, X.; Wang, J.; Hou, J.; Lin, C.; Bensoussan, A.; Chang, D.; Liu, J.; Wang, B. Berberine alleviates ox-LDL induced inflammatory factors by up-regulation of autophagy via AMPK/mTOR signaling pathway. J. Transl. Med., 2015, 13, 92.
[http://dx.doi.org/10.1186/s12967-015-0450-z] [PMID: 25884210]
[192]
Singh, D.P.; Chopra, K. Verapamil augments the neuroprotectant action of berberine in rat model of transient global cerebral ischemia. Eur. J. Pharmacol., 2013, 720(1-3), 98-106.
[http://dx.doi.org/10.1016/j.ejphar.2013.10.043] [PMID: 24177287]
[193]
Zhang, X.; Zhang, X.; Wang, C.; Li, Y.; Dong, L.; Cui, L.; Wang, L.; Liu, Z.; Qiao, H.; Zhu, C.; Xing, Y.; Cao, X.; Ji, Y.; Zhao, K. Neuroprotection of early and short-time applying berberine in the acute phase of cerebral ischemia: Up-regulated pAkt, pGSK and pCREB, down-regulated NF-κB expression, ameliorated BBB permeability. Brain Res., 2012, 1459, 61-70.
[http://dx.doi.org/10.1016/j.brainres.2012.03.065] [PMID: 22560097]
[194]
McCarty, M.F.; O’Keefe, J.H.; DiNicolantonio, J.J. Red yeast rice plus berberine: practical strategy for promoting vascular and metabolic health. Altern. Ther. Health Med., 2015, 21(Suppl. 2), 40-45.
[PMID: 26308759]

© 2024 Bentham Science Publishers | Privacy Policy