Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Endocannabinoid System May Modulate Sleep Disorders in Aging

Author(s): Eric Murillo-Rodríguez*, Henning Budde, André Barciela Veras, Nuno Barbosa Rocha, Diogo Telles-Correia, Diogo Monteiro, Luis Cid, Tetsuya Yamamoto, Sérgio Machado and Pablo Torterolo

Volume 18, Issue 2, 2020

Page: [97 - 108] Pages: 12

DOI: 10.2174/1570159X17666190801155922

Price: $65

Abstract

Aging is an inevitable process that involves changes across life in multiple neurochemical, neuroanatomical, hormonal systems, and many others. In addition, these biological modifications lead to an increase in age-related sickness such as cardiovascular diseases, osteoporosis, neurodegenerative disorders, and sleep disturbances, among others that affect activities of daily life. Demographic projections have demonstrated that aging will increase its worldwide rate in the coming years. The research on chronic diseases of the elderly is important to gain insights into this growing global burden. Novel therapeutic approaches aimed for treatment of age-related pathologies have included the endocannabinoid system as an effective tool since this biological system shows beneficial effects in preclinical models. However, and despite these advances, little has been addressed in the arena of the endocannabinoid system as an option for treating sleep disorders in aging since experimental evidence suggests that some elements of the endocannabinoid system modulate the sleep-wake cycle. This article addresses this less-studied field, focusing on the likely perspective of the implication of the endocannabinoid system in the regulation of sleep problems reported in the aged. We conclude that beneficial effects regarding the putative efficacy of the endocannabinoid system as therapeutic tools in aging is either inconclusive or still missing.

Keywords: Cannabidiol, childhood, pharmacology, sleep, rapid eye movement sleep, Aging.

Graphical Abstract

[1]
World Health Organization. Global Health and Aging. National Institute on Aging National Institutes of Health U.S. Department of Health and Human Services. USA. NIH. Publication no. 11-7737. 2011.
[2]
Beard, J.R.; Officer, A.; de Carvalho, I.A.; Sadana, R.; Pot, A.M.; Michel, J.P.; Lloyd-Sherlock, P.; Epping-Jordan, J.E.; Peeters, G.M.E.E.G.; Mahanani, W.R.; Thiyagarajan, J.A.; Chatterji, S. The World report on ageing and health: a policy framework for healthy ageing. Lancet, 2016, 387(10033), 2145-2154.
[http://dx.doi.org/10.1016/S0140-6736(15)00516-4] [PMID: 26520231]
[3]
Götmark, F.; Cafaro, P.; O’Sullivan, J. Aging human populations: good for us, good for the earth. Trends Ecol. Evol. (Amst.), 2018, 33(11), 851-862.
[http://dx.doi.org/10.1016/j.tree.2018.08.015] [PMID: 30340868]
[4]
Ferrucci, L.; Giallauria, F.; Guralnik, J.M. Epidemiology of aging. Radiol. Clin. North Am., 2008, 46(4), 643-652. v.
[http://dx.doi.org/10.1016/j.rcl.2008.07.005] [PMID: 18922285]
[5]
Rohde, J.E. Far more than 7 billion. Lancet Infect. Dis., 2012, 12(1), 12.
[http://dx.doi.org/10.1016/S1473-3099(11)70338-3] [PMID: 22192129]
[6]
Beard, J.R.; Officer, A.; de Carvalho, I.A.; Sadana, R.; Pot, A.M.; Michel, J.P.; Lloyd-Sherlock, P.; Epping-Jordan, J.E.; Peeters, G.M.E.E.G.; Mahanani, W.R.; Thiyagarajan, J.A.; Chatterji, S. The World report on ageing and health: a policy framework for healthy ageing. Lancet, 2016, 387(10033), 2145-2154.
[http://dx.doi.org/10.1016/S0140-6736(15)00516-4] [PMID: 26520231]
[7]
Tugwell, P.; Knottnerus, J.A. Multimorbidity and Comorbidity are now separate MESH headings. J. Clin. Epidemiol., 2019, 105, vi-viii.
[http://dx.doi.org/10.1016/j.jclinepi.2018.11.019] [PMID: 30522770]
[8]
Mayor, S. Commonly used approach for multimorbidity fails to improve quality of life. BMJ, 2018, 361, k287.
[http://dx.doi.org/10.1136/bmj.k2875]
[9]
Vetrano, D.L.; Palmer, K.; Marengoni, A.; Marzetti, E.; Lattanzio, F.; Roller-Wirnsberger, R.; Lopez Samaniego, L.; Rodríguez-Mañas, L.; Bernabei, R.; Onder, G. Joint action advantage WP4 group. Frailty and multimorbidity: a systematic review and meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci., 2019, 74(5), 659-666.
[10]
Tisminetzky, M.; Gurwitz, J.H.; Fan, D.; Reynolds, K.; Smith, D.H.; Magid, D.J.; Sung, S.H.; Murphy, T.E.; Goldberg, R.J.; Go, A.S. Multimorbidity burden and adverse outcomes in a community-based cohort of adults with heart failure. J. Am. Geriatr. Soc., 2018, 66(12), 2305-2313.
[http://dx.doi.org/10.1111/jgs.15590] [PMID: 30246862]
[11]
Calderón-Larrañaga, A.; Fratiglioni, L. Multimorbidity research at the crossroads: developing the scientific evidence for clinical practice and health policy. J. Intern. Med., 2019, 285(3), 251-254.
[http://dx.doi.org/10.1111/joim.12872] [PMID: 30625511]
[12]
Nicholson, K.; Makovski, T.T.; Griffith, L.E.; Raina, P.; Stranges, S.; van den Akker, M. Multimorbidity and comorbidity revisited: refining the concepts for international health research. J. Clin. Epidemiol., 2019, 105, 142-146.
[http://dx.doi.org/10.1016/j.jclinepi.2018.09.008] [PMID: 30253215]
[13]
Childs, B.G.; Durik, M.; Baker, D.J.; van Deursen, J.M. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med., 2015, 21(12), 1424-1435.
[http://dx.doi.org/10.1038/nm.4000] [PMID: 26646499]
[14]
Fung, C.H.; Vitiello, M.V.; Alessi, C.A.; Kuchel, G.A. AGS/NIA sleep conference planning Committee and faculty. Report and research agenda of the American geriatrics society and national institute on aging bedside-to-bench conference on sleep, Circadian rhythms, and aging: New avenues for Improving brain health, physical health, and functioning. J. Am. Geriatr. Soc., 2016, 64(12), e238-e247.
[http://dx.doi.org/10.1111/jgs.14493] [PMID: 27858974]
[15]
Miner, B.; Kryger, M.H. Sleep in the aging population. Sleep Med. Clin., 2017, 12(1), 31-38.
[http://dx.doi.org/10.1016/j.jsmc.2016.10.008] [PMID: 28159095]
[16]
Mander, B.A.; Winer, J.R.; Walker, M.P. Sleep and human aging. Neuron, 2017, 94(1), 19-36.
[http://dx.doi.org/10.1016/j.neuron.2017.02.004] [PMID: 28384471]
[17]
Musiek, E.S.; Bhimasani, M.; Zangrilli, M.A.; Morris, J.C.; Holtzman, D.M.; Ju, Y.S. Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. JAMA Neurol., 2018, 75(5), 582-590.
[http://dx.doi.org/10.1001/jamaneurol.2017.4719] [PMID: 29379963]
[18]
Dong, X.; Milholland, B.; Vijg, J. Evidence for a limit to human lifespan. Nature, 2016, 538(7624), 257-259.
[http://dx.doi.org/10.1038/nature19793] [PMID: 27706136]
[19]
Murillo-Rodriguez, E.; Arias-Carrion, O.; Zavala-Garcia, A.; Sarro-Ramirez, A.; Huitron-Resendiz, S.; Arankowsky-Sandoval, G. Basic sleep mechanisms: an integrative review. Cent. Nerv. Syst. Agents Med. Chem., 2012, 12(1), 38-54.
[http://dx.doi.org/10.2174/187152412800229107] [PMID: 22524274]
[20]
Spiegelhalder, K.; Riemann, D. Losing sleep. Lancet Neurol., 2015, 14(6), 571.
[http://dx.doi.org/10.1016/S1474-4422(15)00065-4] [PMID: 25987277]
[21]
Arnulf, I. Sleep: what the day owes the night. Lancet Neurol., 2015, 14(1), 19-20.
[http://dx.doi.org/10.1016/S1474-4422(14)70234-0] [PMID: 25496888]
[22]
Siclari, F.; Baird, B.; Perogamvros, L.; Bernardi, G.; LaRocque, J.J.; Riedner, B.; Boly, M.; Postle, B.R.; Tononi, G. The neural correlates of dreaming. Nat. Neurosci., 2017, 20(6), 872-878.
[http://dx.doi.org/10.1038/nn.4545] [PMID: 28394322]
[23]
Hill, V.M.; O’Connor, R.M.; Shirasu-Hiza, M. Tired and stressed: Examining the need for sleep. Eur. J. Neurosci., 2018.
[http://dx.doi.org/10.1111/ejn.14197] [PMID: 30295966]
[24]
Gent, T.C.; Bandarabadi, M.; Herrera, C.G.; Adamantidis, A.R. Thalamic dual control of sleep and wakefulness. Nat. Neurosci., 2018, 21(7), 974-984.
[http://dx.doi.org/10.1038/s41593-018-0164-7] [PMID: 29892048]
[25]
Sateia, M.J. International classification of sleep disorders-third edition: highlights and modifications. Chest, 2014, 146(5), 1387-1394.
[http://dx.doi.org/10.1378/chest.14-0970] [PMID: 25367475]
[26]
Morin, C.M.; Drake, C.L.; Harvey, A.G.; Krystal, A.D.; Manber, R.; Riemann, D.; Spiegelhalder, K. Insomnia disorder. Nat. Rev. Dis. Primers, 2015, 1, 15026.
[http://dx.doi.org/10.1038/nrdp.2015.26] [PMID: 27189779]
[27]
Ruoff, C.; Rye, D. The ICSD-3 and DSM-5 guidelines for diagnosing narcolepsy: clinical relevance and practicality. Curr. Med. Res. Opin., 2016, 32(10), 1611-1622.
[http://dx.doi.org/10.1080/03007995.2016.1208643] [PMID: 27359185]
[28]
Mahoney, C.E.; Cogswell, A.; Koralnik, I.J.; Scammell, T.E. The neurobiological basis of narcolepsy. Nat. Rev. Neurosci., 2019, 20(2), 83-93.
[http://dx.doi.org/10.1038/s41583-018-0097-x] [PMID: 30546103]
[29]
Dauvilliers, Y.; Schenck, C.H.; Postuma, R.B.; Iranzo, A.; Luppi, P.H.; Plazzi, G.; Montplaisir, J.; Boeve, B. REM sleep behaviour disorder. Nat. Rev. Dis. Primers, 2018, 4(1), 19.
[http://dx.doi.org/10.1038/s41572-018-0016-5] [PMID: 30166532]
[30]
Jaussent, I.; Bouyer, J.; Ancelin, M.L.; Akbaraly, T.; Pérès, K.; Ritchie, K.; Besset, A.; Dauvilliers, Y. Insomnia and daytime sleepiness are risk factors for depressive symptoms in the elderly. Sleep (Basel), 2011, 34(8), 1103-1110.
[http://dx.doi.org/10.5665/SLEEP.1170] [PMID: 21804672]
[31]
Wennberg, A.M.; Canham, S.L.; Smith, M.T.; Spira, A.P. Optimizing sleep in older adults: treating insomnia. Maturitas, 2013, 76(3), 247-252.
[http://dx.doi.org/10.1016/j.maturitas.2013.05.007] [PMID: 23746664]
[32]
Akbaraly, T.N.; Jaussent, I.; Besset, A.; Bertrand, M.; Barberger-Gateau, P.; Ritchie, K.; Ferrie, J.E.; Kivimaki, M.; Dauvilliers, Y. Sleep complaints and metabolic syndrome in an elderly population: the Three-City Study. Am. J. Geriatr. Psychiatry, 2015, 23(8), 818-828.
[http://dx.doi.org/10.1016/j.jagp.2014.10.001] [PMID: 25499672]
[33]
Mattis, J.; Sehgal, A. Circadian Rhythms, Sleep, and Disorders of Aging. Trends Endocrinol. Metab., 2016, 27(4), 192-203.
[http://dx.doi.org/10.1016/j.tem.2016.02.003] [PMID: 26947521]
[34]
Gabelle, A.; Gutierrez, L.A.; Jaussent, I.; Navucet, S.; Grasselli, C.; Bennys, K.; Marelli, C.; David, R.; Andrieu, S.; Berr, C.; Vellas, B.; Dauvilliers, Y. Excessive sleepiness and longer nighttime in bed increase the risk of cognitive decline in frail elderly subjects: The MAPT-sleep study. Front. Aging Neurosci., 2017, 9, 312.
[http://dx.doi.org/10.3389/fnagi.2017.00312] [PMID: 29033827]
[35]
Incze, M.; Redberg, R.F.; Gupta, A. I have insomnia-what should I do? JAMA Intern. Med., 2018, 178(11), 1572.
[http://dx.doi.org/10.1001/jamainternmed.2018.2626] [PMID: 30208397]
[36]
Patel, D.; Steinberg, J.; Patel, P. Insomnia in the elderly: A Review. J. Clin. Sleep Med., 2018, 14(6), 1017-1024.
[http://dx.doi.org/10.5664/jcsm.7172] [PMID: 29852897]
[37]
Sindi, S.; Kåreholt, I.; Johansson, L.; Skoog, J.; Sjöberg, L.; Wang, H.X.; Johansson, B.; Fratiglioni, L.; Soininen, H.; Solomon, A.; Skoog, I.; Kivipelto, M. Sleep disturbances and dementia risk: A multicenter study. Alzheimers Dement., 2018, 14(10), 1235-1242.
[http://dx.doi.org/10.1016/j.jalz.2018.05.012] [PMID: 30030112]
[38]
Desaulniers, J.; Desjardins, S.; Lapierre, S.; Desgagné, A. Sleep environment and insomnia in elderly persons living at home. J. Aging Res., 2018, 20188053696
[http://dx.doi.org/10.1155/2018/8053696] [PMID: 30363712]
[39]
Abad, V.C.; Guilleminault, C. Insomnia in elderly patients: Recommendations for pharmacological management. Drugs Aging, 2018, 35(9), 791-817.
[http://dx.doi.org/10.1007/s40266-018-0569-8] [PMID: 30058034]
[40]
Brandão, G.S.; Camelier, F.W.R.; Sampaio, A.A.C.; Brandão, G.S.; Silva, A.S.; Gomes, G.S.B.F.; Donner, C.F.; Oliveira, L.V.F.; Camelier, A.A. Association of sleep quality with excessive daytime somnolence and quality of life of elderlies of community. Multidiscip. Respir. Med., 2018, 13, 8.
[http://dx.doi.org/10.1186/s40248-018-0120-0] [PMID: 29568522]
[41]
Garbarino, S.; Scoditti, E.; Lanteri, P.; Conte, L.; Magnavita, N.; Toraldo, D.M. Obstructive sleep apnea with or without excessive daytime sleepiness: Clinical and experimental data-driven phenotyping. Front. Neurol., 2018, 9, 505.
[http://dx.doi.org/10.3389/fneur.2018.00505] [PMID: 29997573]
[42]
Kim, J.W.; Kim, T.; Shin, J.; Choe, G.; Lim, H.J.; Rhee, C.S.; Lee, K.; Cho, S.W. Prediction of obstructive sleep apnea based on respiratory sounds recorded between sleep onset and sleep offset. Clin. Exp. Otorhinolaryngol., 2019, 12(1), 72-78.
[http://dx.doi.org/10.21053/ceo.2018.00388] [PMID: 30189718]
[43]
Carneiro-Barrera, A.; Díaz-Román, A.; Guillén-Riquelme, A.; Buela-Casal, G. Weight loss and lifestyle interventions for obstructive sleep apnoea in adults: Systematic review and meta-analysis. Obes. Rev., 2019, 20(5), 750-762.
[http://dx.doi.org/10.1111/obr.12824] [PMID: 30609450]
[44]
Zalai, D.; Bingeliene, A.; Shapiro, C. Sleepiness in the elderly. Sleep Med. Clin., 2017, 12(3), 429-441.
[http://dx.doi.org/10.1016/j.jsmc.2017.03.015] [PMID: 28778240]
[45]
Junho, B.T.; Kummer, A.; Cardoso, F.; Teixeira, A.L.; Rocha, N.P. Clinical predictors of excessive daytime sleepiness in patients with Parkinson’s disease. J. Clin. Neurol., 2018, 14(4), 530-536.
[http://dx.doi.org/10.3988/jcn.2018.14.4.530] [PMID: 30198233]
[46]
Maugeri, A.; Medina-Inojosa, J.R.; Kunzova, S.; Agodi, A.; Barchitta, M.; Sochor, O.; Lopez-Jimenez, F.; Geda, Y.E.; Vinciguerra, M. Sleep duration and excessive daytime sleepiness are associated with obesity independent of diet and physical activity. Nutrients, 2018, 10(9)E1219
[http://dx.doi.org/10.3390/nu10091219] [PMID: 30177634]
[47]
Hombali, A.; Seow, E.; Yuan, Q.; Chang, S.H.S.; Satghare, P.; Kumar, S.; Verma, S.K.; Mok, Y.M.; Chong, S.A.; Subramaniam, M. Prevalence and correlates of sleep disorder symptoms in psychiatric disorders. Psychiatry Res, 2018, S0165-1781(18), 30268-3.
[http://dx.doi.org/10.1016/j.psychres.2018.07.009] [PMID: 30072039]
[48]
K, Pavlova, M.; Latreille, V. Sleep disorders Am. J. Med., 2018, S0002-9343(18), 30944-6.
[49]
Gulia, K.K.; Kumar, V.M. Sleep disorders in the elderly: a growing challenge. Psychogeriatrics, 2018, 18(3), 155-165.
[http://dx.doi.org/10.1111/psyg.12319] [PMID: 29878472]
[50]
Iranzo, A. Parasomnias and sleep-related movement disorders in older adults. Sleep Med. Clin., 2018, 13(1), 51-61.
[http://dx.doi.org/10.1016/j.jsmc.2017.09.005] [PMID: 29412983]
[51]
Miner, B.; Kryger, M.H. Sleep in the aging population. Sleep Med. Clin., 2017, 12(1), 31-38.
[http://dx.doi.org/10.1016/j.jsmc.2016.10.008] [PMID: 28159095]
[52]
Grandner, M.A.; Winkelman, J.W. Nocturnal leg cramps: Prevalence and associations with demographics, sleep disturbance symptoms, medical conditions, and cardiometabolic risk factors. PLoS One, 2017, 12(6) e0178465
[http://dx.doi.org/10.1371/journal.pone.0178465] [PMID: 28586374]
[53]
Yaremchuk, K. Sleep disorders in the elderly. Clin. Geriatr. Med., 2018, 34(2), 205-216.
[http://dx.doi.org/10.1016/j.cger.2018.01.008] [PMID: 29661333]
[54]
Wang, C.; Wang, Q.; Ji, B.; Pan, Y.; Xu, C.; Cheng, B.; Bai, B.; Chen, J. The orexin/Receptor dystem: Molecular mechanism and therapeutic potential for neurological diseases. Front. Mol. Neurosci., 2018, 11, 220.
[http://dx.doi.org/10.3389/fnmol.2018.00220] [PMID: 30002617]
[55]
Bonvalet, M.; Ollila, H.M.; Ambati, A.; Mignot, E. Autoimmunity in narcolepsy. Curr. Opin. Pulm. Med., 2017, 23(6), 522-529.
[http://dx.doi.org/10.1097/MCP.0000000000000426] [PMID: 28991006]
[56]
Takenoshita, S.; Sakai, N.; Chiba, Y.; Matsumura, M.; Yamaguchi, M.; Nishino, S. An overview of hypocretin based therapy in narcolepsy. Expert Opin. Investig. Drugs, 2018, 27(4), 389-406.
[http://dx.doi.org/10.1080/13543784.2018.1459561] [PMID: 29623725]
[57]
Fronczek, R.; van Geest, S.; Frölich, M.; Overeem, S.; Roelandse, F.W.; Lammers, G.J.; Swaab, D.F. Hypocretin (orexin) loss in Alzheimer’s disease. Neurobiol. Aging, 2012, 33(8), 1642-1650.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.03.014] [PMID: 21546124]
[58]
Roh, J.H.; Jiang, H.; Finn, M.B.; Stewart, F.R.; Mahan, T.E.; Cirrito, J.R.; Heda, A.; Snider, B.J.; Li, M.; Yanagisawa, M.; de Lecea, L.; Holtzman, D.M. Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer’s disease. J. Exp. Med., 2014, 211(13), 2487-2496.
[http://dx.doi.org/10.1084/jem.20141788] [PMID: 25422493]
[59]
Nixon, J.P.; Mavanji, V.; Butterick, T.A.; Billington, C.J.; Kotz, C.M.; Teske, J.A. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res. Rev., 2015, 20, 63-73.
[http://dx.doi.org/10.1016/j.arr.2014.11.001] [PMID: 25462194]
[60]
Kovalská, P.; Kemlink, D.; Nevšímalová, S.; Maurovich Horvat, E.; Jarolímová, E.; Topinková, E.; Šonka, K. Narcolepsy with cataplexy in patients aged over 60 years: a case-control study. Sleep Med., 2016, 26, 79-84.
[http://dx.doi.org/10.1016/j.sleep.2016.05.011] [PMID: 27665501]
[61]
Gabelle, A.; Jaussent, I.; Hirtz, C.; Vialaret, J.; Navucet, S.; Grasselli, C.; Robert, P.; Lehmann, S.; Dauvilliers, Y. Cerebrospinal fluid levels of orexin-A and histamine, and sleep profile within the Alzheimer process. Neurobiol. Aging, 2017, 53, 59-66.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.01.011] [PMID: 28235679]
[62]
Suzuki, K.; Miyamoto, M.; Hirata, K. Sleep disorders in the elderly: Diagnosis and management. J. Gen. Fam. Med., 2017, 18(2), 61-71.
[http://dx.doi.org/10.1002/jgf2.27] [PMID: 29263993]
[63]
Salas-Crisostomo, M.; Torterolo, P.; Veras, A.B.; Rocha, N.B.; Machado, S.; Murillo-Rodríguez, E. Therapeutic approaches for the management of sleep disorders in geriatric population. Curr. Med. Chem., 2019, 26(25), 4775-4785.
[http://dx.doi.org/10.2174/0929867325666180904113115] [PMID: 30182852]
[64]
Augustin, S.M.; Lovinger, D.M. Functional relevance of endocannabinoid-dependent synaptic plasticity in the central nervous system. ACS Chem. Neurosci., 2018, 9(9), 2146-2161.
[http://dx.doi.org/10.1021/acschemneuro.7b00508] [PMID: 29400439]
[65]
Aymerich, M.S.; Aso, E.; Abellanas, M.A.; Tolon, R.M.; Ramos, J.A.; Ferrer, I.; Romero, J.; Fernández-Ruiz, J. Cannabinoid pharmacology/therapeutics in chronic degenerative disorders affecting the central nervous system. Biochem. Pharmacol., 2018, 157, 67-84.
[http://dx.doi.org/10.1016/j.bcp.2018.08.016] [PMID: 30121249]
[66]
Ibarra-Lecue, I.; Pilar-Cuéllar, F.; Muguruza, C.; Florensa-Zanuy, E.; Díaz, Á.; Urigüen, L.; Castro, E.; Pazos, A.; Callado, L.F. The endocannabinoid system in mental disorders: Evidence from human brain studies. Biochem. Pharmacol., 2018, 157, 97-107.
[http://dx.doi.org/10.1016/j.bcp.2018.07.009] [PMID: 30026022]
[67]
Jordan, CJ.; Xi, Z.X. Progress in brain cannabinoid CB2 receptor research: From genes to behavior. Neurosci. Biobehav. Rev., 2019, S0149-7634(18), 30829-7.
[68]
Hu, S.S.; Mackie, K. Distribution of the endocannabinoid system in the central nervous system. Handb. Exp. Pharmacol., 2015, 231, 59-93.
[http://dx.doi.org/10.1007/978-3-319-20825-1_3] [PMID: 26408158]
[69]
Kendall, D.A.; Yudowski, G.A. Cannabinoid receptors in the central nervous system: Their signaling and roles in disease. Front. Cell. Neurosci., 2017, 10, 294.
[http://dx.doi.org/10.3389/fncel.2016.00294] [PMID: 28101004]
[70]
Navarro, G.; Morales, P.; Rodríguez-Cueto, C.; Fernández-Ruiz, J.; Jagerovic, N.; Franco, R. Targeting cannabinoid CB2 receptors in the central nervous system. Medicinal chemistry approaches with Focus on neurodegenerative disorders. Front. Neurosci., 2016, 10, 406.
[http://dx.doi.org/10.3389/fnins.2016.00406] [PMID: 27679556]
[71]
Bloomfield, MAP; Hindocha, C; Green, SF; Wall, MB; Lees, R; Petrilli, K; Costello, H; Ogunbiyi, MO; Bossong, MG; Freeman, TP The neuropsychopharmacology of cannabis: A review of human imaging studies. Pharmacol Ther., 2018, S0163-7258(18), 30190-6.
[72]
Maccarrone, M.; Bab, I.; Bíró, T.; Cabral, G.A.; Dey, S.K.; Di Marzo, V.; Konje, J.C.; Kunos, G.; Mechoulam, R.; Pacher, P.; Sharkey, K.A.; Zimmer, A. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol. Sci., 2015, 36(5), 277-296.
[http://dx.doi.org/10.1016/j.tips.2015.02.008] [PMID: 25796370]
[73]
Deshmukh, R.R.; Sharma, P.L. Stimulation of accumbens shell cannabinoid CB(1) receptors by noladin ether, a putative endocannabinoid, modulates food intake and dietary selection in rats. Pharmacol. Res., 2012, 66(3), 276-282.
[http://dx.doi.org/10.1016/j.phrs.2012.06.004] [PMID: 22728691]
[74]
Pertwee, R.G. Endocannabinoids and their pharmacological actions. Handb. Exp. Pharmacol., 2015, 231, 1-37.
[http://dx.doi.org/10.1007/978-3-319-20825-1_1] [PMID: 26408156]
[75]
Redmond, W.J.; Cawston, E.E.; Grimsey, N.L.; Stuart, J.; Edington, A.R.; Glass, M.; Connor, M. Identification of N-arachidonoyl dopamine as a highly biased ligand at cannabinoid CB1 receptors. Br. J. Pharmacol., 2016, 173(1), 115-127.
[http://dx.doi.org/10.1111/bph.13341] [PMID: 26398720]
[76]
Lawton, S.K.; Xu, F.; Tran, A.; Wong, E.; Prakash, A.; Schumacher, M.; Hellman, J.; Wilhelmsen, K. N-Arachidonoyl dopamine modulates acute systemic inflammation via nonhematopoietic TRPV1. J. Immunol., 2017, 199(4), 1465-1475.
[http://dx.doi.org/10.4049/jimmunol.1602151] [PMID: 28701511]
[77]
Pandey, P.; Chaurasiya, N.D.; Tekwani, B.L.; Doerksen, R.J. Interactions of endocannabinoid virodhamine and related analogs with human monoamine oxidase-A and -B. Biochem. Pharmacol., 2018, 155, 82-91.
[http://dx.doi.org/10.1016/j.bcp.2018.06.024] [PMID: 29958841]
[78]
Chanda, D.; Neumann, D.; Glatz, J.F.C. The endocannabinoid system: Overview of an emerging multi-faceted therapeutic target. Prostaglandins Leukot. Essent. Fatty Acids, 2019, 140, 51-56.
[http://dx.doi.org/10.1016/j.plefa.2018.11.016] [PMID: 30553404]
[79]
Maccarrone, M. Metabolism of the endocannabinoid anandamide: open questions after 25 years. Front. Mol. Neurosci., 2017, 10, 166.
[http://dx.doi.org/10.3389/fnmol.2017.00166] [PMID: 28611591]
[80]
Nazıroğlu, M.; Taner, A.N.; Balbay, E.; Çiğ, B. Inhibitions of anandamide transport and FAAH synthesis decrease apoptosis and oxidative stress through inhibition of TRPV1 channel in an in vitro seizure model. Mol. Cell. Biochem., 2019, 453(1-2), 143-155.
[http://dx.doi.org/10.1007/s11010-018-3439-0] [PMID: 30159798]
[81]
Storozhuk, M.V.; Zholos, A.V. TRP Channels as Novel Targets for Endogenous Ligands: Focus on Endocannabinoids and Nociceptive Signalling. Curr. Neuropharmacol., 2018, 16(2), 137-150.
[http://dx.doi.org/10.2174/1570159X15666170424120802] [PMID: 28440188]
[82]
Toczek, M.; Malinowska, B. Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sci., 2018, 204, 20-45.
[http://dx.doi.org/10.1016/j.lfs.2018.04.054] [PMID: 29729263]
[83]
Patel, S; Hill, MN; Cheer, JF; Wotjak, CT; Holmes, A The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci. Biobehav. Rev., 2017, 76(Pt A), 56-66.
[http://dx.doi.org/10.1016/j.neubiorev.2016.12.033]
[84]
Burstein, S.H. N-Acyl amino acids (Elmiric Acids): Endogenous signaling molecules with therapeutic potential. Mol. Pharmacol., 2018, 93(3), 228-238.
[http://dx.doi.org/10.1124/mol.117.110841] [PMID: 29138268]
[85]
Morena, M.; Aukema, R.J.; Leitl, K.D.; Rashid, A.J.; Vecchiarelli, H.A.; Josselyn, S.A.; Hill, M.N. Upregulation of anandamide hydrolysis in the basolateral complex of amygdala reduces fear memory expression and indices of stress and anxiety. J. Neurosci., 2018, 2251-22518.
[PMID: 30573646]
[86]
Jumpertz, R.; Wiesner, T.; Blüher, M.; Engeli, S.; Bátkai, S.; Wirtz, H.; Bosse-Henck, A.; Stumvoll, M. Circulating endocannabinoids and N-acyl-ethanolamides in patients with sleep apnea--specific role of oleoylethanolamide. Exp. Clin. Endocrinol. Diabetes, 2010, 118(9), 591-595.
[http://dx.doi.org/10.1055/s-0030-1253344] [PMID: 20429051]
[87]
Murillo-Rodríguez, E.; Poot-Ake, A.; Arias-Carrion, O.; Pacheco-Pantoja, E. Fuente-Ortegon, A de L.; Arankowsky-Sandoval, G. The emerging role of the endocannabinoid system in the sleep-wake cycle modulation. Cent. Nerv. Syst. Agents Med. Chem., 2011, 11(3), 189-196.
[http://dx.doi.org/10.2174/187152411798047780] [PMID: 21919868]
[88]
Engeli, S.; Blüher, M.; Jumpertz, R.; Wiesner, T.; Wirtz, H.; Bosse-Henck, A.; Stumvoll, M.; Batkai, S.; Pacher, P.; Harvey-White, J.; Kunos, G.; Jordan, J. Circulating anandamide and blood pressure in patients with obstructive sleep apnea. J. Hypertens., 2012, 30(12), 2345-2351.
[http://dx.doi.org/10.1097/HJH.0b013e3283591595] [PMID: 23032139]
[89]
Murillo-Rodríguez, E.; Palomero-Rivero, M.; Millán-Aldaco, D.; Di Marzo, V. The administration of endocannabinoid uptake inhibitors OMDM-2 or VDM-11 promotes sleep and decreases extracellular levels of dopamine in rats. Physiol. Behav., 2013, 109, 88-95.
[http://dx.doi.org/10.1016/j.physbeh.2012.11.007] [PMID: 23238438]
[90]
Murillo-Rodríguez, E.; Machado, S.; Rocha, N.B.; Budde, H.; Yuan, T.F.; Arias-Carrión, O. Revealing the role of the endocannabinoid system modulators, SR141716A, URB597 and VDM-11, in sleep homeostasis. Neuroscience, 2016, 339, 433-449.
[http://dx.doi.org/10.1016/j.neuroscience.2016.10.011] [PMID: 27746343]
[91]
Hanlon, E.C.; Tasali, E.; Leproult, R.; Stuhr, K.L.; Doncheck, E.; de Wit, H.; Hillard, C.J.; Van Cauter, E. Sleep restriction enhances the daily rhythm of circulating levels of endocannabinoid 2-Arachidonoylglycerol. Sleep (Basel), 2016, 39(3), 653-664.
[http://dx.doi.org/10.5665/sleep.5546] [PMID: 26612385]
[92]
Prospéro-García, O.; Amancio-Belmont, O.; Becerril Meléndez, A.L.; Ruiz-Contreras, A.E.; Méndez-Díaz, M. Endocannabinoids and sleep. Neurosci. Biobehav. Rev., 2016, 71, 671-679.
[http://dx.doi.org/10.1016/j.neubiorev.2016.10.005] [PMID: 27756691]
[93]
Soni, N.; Prabhala, B.K.; Mehta, V.; Mirza, O.; Kohlmeier, K.A. Anandamide and 2-AG are endogenously present within the laterodorsal tegmental nucleus: Functional implications for a role of eCBs in arousal. Brain Res., 2017, 1665, 74-79.
[http://dx.doi.org/10.1016/j.brainres.2017.04.003] [PMID: 28404451]
[94]
Muguruza, C.; Lehtonen, M.; Aaltonen, N.; Morentin, B.; Meana, J.J.; Callado, L.F. Quantification of endocannabinoids in postmortem brain of schizophrenic subjects. Schizophr. Res., 2013, 148(1-3), 145-150.
[http://dx.doi.org/10.1016/j.schres.2013.06.013] [PMID: 23800614]
[95]
Rodríguez-Cueto, C.; Hernández-Gálvez, M.; Hillard, C.J.; Maciel, P.; Valdeolivas, S.; Ramos, J.A.; Gómez-Ruiz, M.; Fernández-Ruiz, J. Altered striatal endocannabinoid signaling in a transgenic mouse model of spinocerebellar ataxia type-3. PLoS One, 2017, 12(4) e0176521
[http://dx.doi.org/10.1371/journal.pone.0176521] [PMID: 28448548]
[96]
Micale, V.; Drago, F. Endocannabinoid system, stress and HPA axis. Eur. J. Pharmacol., 2018, 834, 230-239.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.039] [PMID: 30036537]
[97]
Aso, E.; Andrés-Benito, P.; Ferrer, I. Genetic deletion of CB1 cannabinoid receptors exacerbates the Alzheimer-like symptoms in a transgenic animal model. Biochem. Pharmacol., 2018, 157, 210-216.
[http://dx.doi.org/10.1016/j.bcp.2018.08.007] [PMID: 30096288]
[98]
Choi, S.H.; Arai, A.L.; Mou, Y.; Kang, B.; Yen, C.C.; Hallenbeck, J.; Silva, A.C. Neuroprotective effects of MAGL (Monoacylglycerol Lipase) inhibitors in experimental ischemic stroke. Stroke, 2018, 49(3), 718-726.
[http://dx.doi.org/10.1161/STROKEAHA.117.019664] [PMID: 29440474]
[99]
Ilyasov, A.A.; Milligan, C.E.; Pharr, E.P.; Howlett, A.C. The endocannabinoid system and oligodendrocytes in health and disease. Front. Neurosci., 2018, 12, 733.
[http://dx.doi.org/10.3389/fnins.2018.00733] [PMID: 30416422]
[100]
Iannotti, F.A.; Pagano, E.; Guardiola, O.; Adinolfi, S.; Saccone, V.; Consalvi, S.; Piscitelli, F.; Gazzerro, E.; Busetto, G.; Carrella, D.; Capasso, R.; Puri, P.L.; Minchiotti, G.; Di Marzo, V. Genetic and pharmacological regulation of the endocannabinoid CB1 receptor in Duchenne muscular dystrophy. Nat. Commun., 2018, 9(1), 3950.
[http://dx.doi.org/10.1038/s41467-018-06267-1] [PMID: 30262909]
[101]
Marchioni, C.; de Souza, I.D.; Acquaro, V.R.; de Souza Crippa, J.A.; Tumas, V.; Queiroz, M.E.C. Recent advances in LC-MS/MS methods to determine endocannabinoids in biological samples: Application in neurodegenerative diseases. Anal. Chim. Acta, 2018, 1044, 12-28.
[http://dx.doi.org/10.1016/j.aca.2018.06.016] [PMID: 30442393]
[102]
Mounsey, R.B.; Mustafa, S.; Robinson, L.; Ross, R.A.; Riedel, G.; Pertwee, R.G.; Teismann, P. Increasing levels of the endocannabinoid 2-AG is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Exp. Neurol., 2015, 273, 36-44.
[http://dx.doi.org/10.1016/j.expneurol.2015.07.024] [PMID: 26244281]
[103]
Basavarajappa, B.S.; Shivakumar, M.; Joshi, V.; Subbanna, S. Endocannabinoid system in neurodegenerative disorders. J. Neurochem., 2017, 142(5), 624-648.
[http://dx.doi.org/10.1111/jnc.14098] [PMID: 28608560]
[104]
D’Addario, C.; Di Francesco, A.; Arosio, B.; Gussago, C.; Dell’Osso, B.; Bari, M.; Galimberti, D.; Scarpini, E.; Altamura, A.C.; Mari, D.; Maccarrone, M. Epigenetic regulation of fatty acid amide hydrolase in Alzheimer disease. PLoS One, 2012, 7(6)e39186
[http://dx.doi.org/10.1371/journal.pone.0039186] [PMID: 22720070]
[105]
Pascual, A.C.; Martín-Moreno, A.M.; Giusto, N.M.; de Ceballos, M.L.; Pasquaré, S.J. Normal aging in rats and pathological aging in human Alzheimer’s disease decrease FAAH activity: modulation by cannabinoid agonists. Exp. Gerontol., 2014, 60, 92-99.
[http://dx.doi.org/10.1016/j.exger.2014.10.011] [PMID: 25456842]
[106]
Bedse, G.; Romano, A.; Lavecchia, A.M.; Cassano, T.; Gaetani, S. The role of endocannabinoid signaling in the molecular mechanisms of neurodegeneration in Alzheimer’s disease. J. Alzheimers Dis., 2015, 43(4), 1115-1136.
[http://dx.doi.org/10.3233/JAD-141635] [PMID: 25147120]
[107]
Szűcs, E.; Dvorácskó, S.; Tömböly, C.; Büki, A.; Kékesi, G.; Horváth, G.; Benyhe, S. Decreased CB receptor binding and cannabinoid signaling in three brain regions of a rat model of schizophrenia. Neurosci. Lett., 2016, 633, 87-93.
[http://dx.doi.org/10.1016/j.neulet.2016.09.020] [PMID: 27639959]
[108]
Fakhoury, M. Role of the endocannabinoid system in the pathophysiology of Schizophrenia. Mol. Neurobiol., 2017, 54(1), 768-778.
[http://dx.doi.org/10.1007/s12035-016-9697-5] [PMID: 26768595]
[109]
Ibarra-Lecue, I.; Pilar-Cuéllar, F.; Muguruza, C.; Florensa-Zanuy, E.; Díaz, Á.; Urigüen, L.; Castro, E.; Pazos, A.; Callado, L.F. The endocannabinoid system in mental disorders: Evidence from human brain studies. Biochem. Pharmacol., 2018, 157, 97-107.
[http://dx.doi.org/10.1016/j.bcp.2018.07.009] [PMID: 30026022]
[110]
Bioque, M.; García-Bueno, B.; Macdowell, K.S.; Meseguer, A.; Saiz, P.A.; Parellada, M.; Gonzalez-Pinto, A.; Rodriguez-Jimenez, R.; Lobo, A.; Leza, J.C.; Bernardo, M. FLAMM-PEPs study—Centro de Investigacio’n Biome’dica en Red de Salud mental. Peripheral endocannabinoid system dysregulation in first-episode psychosis. Neuropsychopharmacology, 2013, 38(13), 2568-2577.
[http://dx.doi.org/10.1038/npp.2013.165]
[111]
Santucci, V.; Storme, J.J.; Soubrié, P.; Le Fur, G. Arousal-enhancing properties of the CB1 cannabinoid receptor antagonist SR 141716A in rats as assessed by electroencephalographic spectral and sleep-waking cycle analysis. Life Sci., 1996, 58(6), PL103-PL110.
[http://dx.doi.org/10.1016/0024-3205(95)02319-4] [PMID: 8569415]
[112]
Murillo-Rodríguez, E.; Sánchez-Alavez, M.; Navarro, L.; Martínez-González, D.; Drucker-Colín, R.; Prospéro-García, O. Anandamide modulates sleep and memory in rats. Brain Res., 1998, 812(1-2), 270-274.
[http://dx.doi.org/10.1016/S0006-8993(98)00969-X] [PMID: 9813364]
[113]
Murillo-Rodríguez, E.; Cabeza, R.; Méndez-Díaz, M.; Navarro, L.; Prospéro-García, O. Anandamide-induced sleep is blocked by SR141716A, a CB1 receptor antagonist and by U73122, a phospholipase C inhibitor. Neuroreport, 2001, 12(10), 2131-2136.
[http://dx.doi.org/10.1097/00001756-200107200-00018] [PMID: 11447321]
[114]
Murillo-Rodríguez, E.; Vázquez, E.; Millán-Aldaco, D.; Palomero-Rivero, M.; Drucker-Colin, R. Effects of the fatty acid amide hydrolase inhibitor URB597 on the sleep-wake cycle, c-Fos expression and dopamine levels of the rat. Eur. J. Pharmacol., 2007, 562(1-2), 82-91.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.076] [PMID: 17336288]
[115]
Murillo-Rodríguez, E.; Palomero-Rivero, M.; Millán-Aldaco, D.; Arias-Carrión, O.; Drucker-Colín, R. Administration of URB597, oleoylethanolamide or palmitoylethanolamide increases waking and dopamine in rats. PLoS One, 2011, 6(7)e20766
[http://dx.doi.org/10.1371/journal.pone.0020766] [PMID: 21779318]
[116]
Tutunchi, H.; Ostadrahimi, A.; Saghafi-Asl, M.; Maleki, V. The effects of oleoylethanolamide, an endogenous PPAR-α agonist, on risk factors for NAFLD: A systematic review. Obes. Rev., 2019, 20(7), 1057-1069.
[http://dx.doi.org/10.1111/obr.12853] [PMID: 31111657]
[117]
Mijangos-Moreno, S.; Poot-Aké, A.; Guzmán, K.; Arankowsky-Sandoval, G.; Arias-Carrión, O.; Zaldívar-Rae, J.; Sarro-Ramírez, A.; Murillo-Rodríguez, E. Sleep and neurochemical modulation by the nuclear peroxisome proliferator-activated receptor α (PPAR-α) in rat. Neurosci. Res., 2016, 105, 65-69.
[http://dx.doi.org/10.1016/j.neures.2015.09.005] [PMID: 26450400]
[118]
Murillo-Rodriguez, E. The Role of Nuclear Receptor PPARα in the Sleep-wake Cycle Modulation. A Tentative Approach for Treatment of Sleep Disorders. Curr. Drug Deliv., 2017, 14(4), 473-482.
[http://dx.doi.org/10.2174/1567201814666161109123803] [PMID: 27834148]
[119]
Murillo-Rodríguez, E.; Millán-Aldaco, D.; Di Marzo, V.; Drucker-Colín, R. The anandamide membrane transporter inhibitor, VDM-11, modulates sleep and c-Fos expression in the rat brain. Neuroscience, 2008, 157(1), 1-11.
[http://dx.doi.org/10.1016/j.neuroscience.2008.08.056] [PMID: 18822353]
[120]
Murillo-Rodríguez, E.; Palomero-Rivero, M.; Millán-Aldaco, D.; Di Marzo, V. The administration of endocannabinoid uptake inhibitors OMDM-2 or VDM-11 promotes sleep and decreases extracellular levels of dopamine in rats. Physiol. Behav., 2013, 109, 88-95.
[http://dx.doi.org/10.1016/j.physbeh.2012.11.007] [PMID: 23238438]
[121]
Murillo-Rodríguez, E.; Machado, S.; Rocha, N.B.; Budde, H.; Yuan, T.F.; Arias-Carrión, O. Revealing the role of the endocannabinoid system modulators, SR141716A, URB597 and VDM-11, in sleep homeostasis. Neuroscience, 2016, 339, 433-449.
[http://dx.doi.org/10.1016/j.neuroscience.2016.10.011] [PMID: 27746343]
[122]
Engeli, S.; Blüher, M.; Jumpertz, R.; Wiesner, T.; Wirtz, H.; Bosse-Henck, A.; Stumvoll, M.; Batkai, S.; Pacher, P.; Harvey-White, J.; Kunos, G.; Jordan, J. Circulating anandamide and blood pressure in patients with obstructive sleep apnea. J. Hypertens., 2012, 30(12), 2345-2351.
[http://dx.doi.org/10.1097/HJH.0b013e3283591595] [PMID: 23032139]
[123]
Wang, X.; Yu, Q.; Yue, H.; Zhang, J.; Zeng, S.; Cui, F. Circulating endocannabinoids and insulin resistance in patients with obstructive Sleep Apnea. BioMed Res. Int., 2016, 20169782031
[http://dx.doi.org/10.1155/2016/9782031] [PMID: 26904688]
[124]
Maple, K.E.; McDaniel, K.A.; Shollenbarger, S.G.; Lisdahl, K.M. Dose-dependent cannabis use, depressive symptoms, and FAAH genotype predict sleep quality in emerging adults: a pilot study. Am. J. Drug Alcohol Abuse, 2016, 42(4), 431-440.
[http://dx.doi.org/10.3109/00952990.2016.1141913] [PMID: 27074158]
[125]
Bilkei-Gorzo, A. The endocannabinoid system in normal and pathological brain ageing. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1607), 3326-3341.
[http://dx.doi.org/10.1098/rstb.2011.0388] [PMID: 23108550]
[126]
Piyanova, A.; Lomazzo, E.; Bindila, L.; Lerner, R.; Albayram, O.; Ruhl, T.; Lutz, B.; Zimmer, A.; Bilkei-Gorzo, A. Age-related changes in the endocannabinoid system in the mouse hippocampus. Mech. Ageing Dev., 2015, 150, 55-64.
[http://dx.doi.org/10.1016/j.mad.2015.08.005] [PMID: 26278494]
[127]
Bonnet, A.E.; Marchalant, Y. Potential therapeutical contributions of the endocannabinoid system towards aging and alzheimer’s Disease. Aging Dis., 2015, 6(5), 400-405.
[http://dx.doi.org/10.14336/AD.2015.0617] [PMID: 26425394]
[128]
Vázquez, C.; Tolón, R.M.; Grande, M.T.; Caraza, M.; Moreno, M.; Koester, E.C.; Villaescusa, B.; Ruiz-Valdepeñas, L.; Fernández-Sánchez, F.J.; Cravatt, B.F.; Hillard, C.J.; Romero, J. Endocannabinoid regulation of amyloid-induced neuroinflammation. Neurobiol. Aging, 2015, 36(11), 3008-3019.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.08.003] [PMID: 26362942]
[129]
Sophocleous, A.; Marino, S.; Kabir, D.; Ralston, S.H.; Idris, A.I. Combined deficiency of the Cnr1 and Cnr2 receptors protects against age-related bone loss by osteoclast inhibition. Aging Cell, 2017, 16(5), 1051-1061.
[http://dx.doi.org/10.1111/acel.12638] [PMID: 28752643]
[130]
Cassano, T.; Calcagnini, S.; Pace, L.; De Marco, F.; Romano, A.; Gaetani, S. Cannabinoid receptor 2 signaling in neurodegenerative Disorders: From pathogenesis to a promising therapeutic target. Front. Neurosci., 2017, 11, 30.
[http://dx.doi.org/10.3389/fnins.2017.00030] [PMID: 28210207]
[131]
Bilkei-Gorzo, A.; Albayram, O.; Draffehn, A.; Michel, K.; Piyanova, A.; Oppenheimer, H.; Dvir-Ginzberg, M.; Rácz, I.; Ulas, T.; Imbeault, S.; Bab, I.; Schultze, J.L.; Zimmer, A. A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice. Nat. Med., 2017, 23(6), 782-787.
[http://dx.doi.org/10.1038/nm.4311] [PMID: 28481360]
[132]
Canseco-Alba, A.; Schanz, N.; Sanabria, B.; Zhao, J.; Lin, Z.; Liu, Q.R.; Onaivi, E.S. Behavioral effects of psychostimulants in mutant mice with cell-type specific deletion of CB2 cannabinoid receptors in dopamine neurons. Behav. Brain Res., 2019, 360, 286-297.
[http://dx.doi.org/10.1016/j.bbr.2018.11.043] [PMID: 30508607]
[133]
Berrendero, F.; Romero, J.; García-Gil, L.; Suarez, I.; De la Cruz, P.; Ramos, J.A.; Fernández-Ruiz, J.J. Changes in cannabinoid receptor binding and mRNA levels in several brain regions of aged rats. Biochim. Biophys. Acta, 1998, 1407(3), 205-214.
[http://dx.doi.org/10.1016/S0925-4439(98)00042-8] [PMID: 9748581]
[134]
Valenti, M.; Viganò, D.; Casico, M.G.; Rubino, T.; Steardo, L.; Parolaro, D.; Di Marzo, V. Differential diurnal variations of anandamide and 2-arachidonoyl-glycerol levels in rat brain. Cell. Mol. Life Sci., 2004, 61(7-8), 945-950.
[http://dx.doi.org/10.1007/s00018-003-3453-5] [PMID: 15095014]
[135]
Murillo-Rodriguez, E.; Désarnaud, F.; Prospéro-García, O. Diurnal variation of arachidonoylethanolamine, palmitoylethanolamide and oleoylethanolamide in the brain of the rat. Life Sci., 2006, 79(1), 30-37.
[http://dx.doi.org/10.1016/j.lfs.2005.12.028] [PMID: 16434061]
[136]
Maroof, N.; Ravipati, S.; Pardon, M.C.; Barrett, D.A.; Kendall, D.A. Reductions in endocannabinoid levels and enhanced coupling of cannabinoid receptors in the striatum are accompanied by cognitive impairments in the AβPPswe/PS1ΔE9 mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2014, 42(1), 227-245.
[http://dx.doi.org/10.3233/JAD-131961] [PMID: 24844690]
[137]
Schaich, C.L.; Shaltout, H.A.; Grabenauer, M.; Thomas, B.F.; Gallagher, P.E.; Howlett, A.C.; Diz, D.I. Alterations in the medullary endocannabinoid system contribute to age-related impairment of baroreflex sensitivity. J. Cardiovasc. Pharmacol., 2015, 65(5), 473-479.
[http://dx.doi.org/10.1097/FJC.0000000000000216] [PMID: 25636077]
[138]
Tuo, W.; Leleu-Chavain, N.; Spencer, J.; Sansook, S.; Millet, R.; Chavatte, P. Therapeutic potential of fatty acid amide hydrolase, monoacylglycerol lipase, and N-Acylethanolamine acid amidase Inhibitors. J. Med. Chem., 2017, 60(1), 4-46.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00538] [PMID: 27766867]
[139]
Pascual, A.C.; Martín-Moreno, A.M.; Giusto, N.M.; de Ceballos, M.L.; Pasquaré, S.J. Normal aging in rats and pathological aging in human Alzheimer’s disease decrease FAAH activity: modulation by cannabinoid agonists. Exp. Gerontol., 2014, 60, 92-99.
[http://dx.doi.org/10.1016/j.exger.2014.10.011] [PMID: 25456842]
[140]
Pascual, A.C.; Gaveglio, V.L.; Giusto, N.M.; Pasquaré, S.J. Aging modifies the enzymatic activities involved in 2-arachidonoylglycerol metabolism. Biofactors, 2013, 39(2), 209-220.
[http://dx.doi.org/10.1002/biof.1055] [PMID: 23281018]
[141]
Pascual, A.C.; Gaveglio, V.L.; Giusto, N.M.; Pasquaré, S.J. Cannabinoid receptor-dependent metabolism of 2-arachidonoylglycerol during aging. Exp. Gerontol., 2014, 55, 134-142.
[http://dx.doi.org/10.1016/j.exger.2014.04.008] [PMID: 24768821]
[142]
Maccarrone, M.; Attinà, M.; Bari, M.; Cartoni, A.; Ledent, C.; Finazzi-Agrò, A. Anandamide degradation and N-acylethanolamines level in wild-type and CB1 cannabinoid receptor knockout mice of different ages. J. Neurochem., 2001, 78(2), 339-348.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00413.x] [PMID: 11461969]
[143]
Piyanova, A.; Lomazzo, E.; Bindila, L.; Lerner, R.; Albayram, O.; Ruhl, T.; Lutz, B.; Zimmer, A.; Bilkei-Gorzo, A. Age-related changes in the endocannabinoid system in the mouse hippocampus. Mech. Ageing Dev., 2015, 150, 55-64.
[http://dx.doi.org/10.1016/j.mad.2015.08.005] [PMID: 26278494]
[144]
Lu, H.C.; Mackie, K. An Introduction to the endogenous cannabinoid system. Biol. Psychiatry, 2016, 79(7), 516-525.
[http://dx.doi.org/10.1016/j.biopsych.2015.07.028] [PMID: 26698193]
[145]
Boggs, D.L.; Nguyen, J.D.; Morgenson, D.; Taffe, M.A.; Ranganathan, M. Clinical and preclinical evidence for functional interactions of cannabidiol and Δ9-Tetrahydrocannabinol. Neuropsychopharmacology, 2018, 43(1), 142-154.
[http://dx.doi.org/10.1038/npp.2017.209] [PMID: 28875990]
[146]
Russo, E.B. Cannabis therapeutics and the future of neurology. Front. Integr. Nuerosci., 2018, 12, 51.
[http://dx.doi.org/10.3389/fnint.2018.00051] [PMID: 30405366]
[147]
Schrot, R.J.; Hubbard, J.R. Cannabinoids: Medical implications. Ann. Med., 2016, 48(3), 128-141.
[http://dx.doi.org/10.3109/07853890.2016.1145794] [PMID: 26912385]
[148]
World Health Organization 2018. Cannabidiol(CBD) Critical Review Report.. https://www.who.int/medicines/access/controlled-substances/CannabidiolCriticalReview.pdf
[149]
Ibeas Bih, C.; Chen, T.; Nunn, A.V.; Bazelot, M.; Dallas, M.; Whalley, B.J. Molecular targets of cannabidiol in neurological Disorders. Neurotherapeutics, 2015, 12(4), 699-730.
[http://dx.doi.org/10.1007/s13311-015-0377-3] [PMID: 26264914]
[150]
National Academies of Sciences, engineering, and medicine., 2017. The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research. Washington, DC: The National Academies Press..
[http://dx.doi.org/10.17226/24625]
[151]
Chagas, M.H.; Eckeli, A.L.; Zuardi, A.W.; Pena-Pereira, M.A.; Sobreira-Neto, M.A.; Sobreira, E.T.; Camilo, M.R.; Bergamaschi, M.M.; Schenck, C.H.; Hallak, J.E.; Tumas, V.; Crippa, J.A. Cannabidiol can improve complex sleep-related behaviours associated with rapid eye movement sleep behaviour disorder in Parkinson’s disease patients: a case series. J. Clin. Pharm. Ther., 2014, 39(5), 564-566.
[http://dx.doi.org/10.1111/jcpt.12179] [PMID: 24845114]
[152]
Shannon, S.; Opila-Lehman, J. Effectiveness of cannabidiol oil for pediatric anxiety and insomnia as part of posttraumatic stress disorder: A case report. Perm. J., 2016, 20(4), 16-005.
[http://dx.doi.org/10.7812/TPP/16-005] [PMID: 27768570]
[153]
Shannon, S.; Lewis, N.; Lee, H.; Hughes, S. Cannabidiol in anxiety and sleep: A large case series. Perm. J., 2019, 23, 18-041.
[http://dx.doi.org/10.7812/TPP/18-041] [PMID: 30624194]
[154]
Pertwee, R.G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br. J. Pharmacol., 2008, 153(2), 199-215.
[http://dx.doi.org/10.1038/sj.bjp.0707442] [PMID: 17828291]
[155]
Morales, P.; Goya, P.; Jagerovic, N.; Hernandez-Folgado, L. Allosteric modulators of the CB1 cannabinoid receptor: A structural Update Review. Cannabis Cannabinoid Res., 2016, 1(1), 22-30.
[http://dx.doi.org/10.1089/can.2015.0005] [PMID: 28861476]
[156]
Navarro, G.; Reyes-Resina, I.; Rivas-Santisteban, R.; Sánchez de Medina, V.; Morales, P.; Casano, S.; Ferreiro-Vera, C.; Lillo, A.; Aguinaga, D.; Jagerovic, N.; Nadal, X.; Franco, R. Cannabidiol skews biased agonism at cannabinoid CB1 and CB2 receptors with smaller effect in CB1-CB2 heteroreceptor complexes. Biochem. Pharmacol., 2018, 157, 148-158.
[http://dx.doi.org/10.1016/j.bcp.2018.08.046] [PMID: 30194918]
[157]
Tham, M.; Yilmaz, O.; Alaverdashvili, M.; Kelly, M.E.M.; Denovan-Wright, E.M.; Laprairie, R.B. Allosteric and orthosteric pharmacology of cannabidiol and cannabidiol-dimethylheptyl at the type 1 and type 2 cannabinoid receptors. Br. J. Pharmacol., 2019, 176(10), 1455-1469.
[http://dx.doi.org/10.1111/bph.14440] [PMID: 29981240]
[158]
Fogaça, M.V.; Campos, A.C.; Coelho, L.D.; Duman, R.S.; Guimarães, F.S. The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: Role of neurogenesis and dendritic remodeling. Neuropharmacology, 2018, 135, 22-33.
[http://dx.doi.org/10.1016/j.neuropharm.2018.03.001] [PMID: 29510186]
[159]
Mijangos-Moreno, S.; Poot-Aké, A.; Arankowsky-Sandoval, G.; Murillo-Rodríguez, E. Intrahypothalamic injection of cannabidiol increases the extracellular levels of adenosine in nucleus accumbens in rats. Neurosci. Res., 2014, 84, 60-63.
[http://dx.doi.org/10.1016/j.neures.2014.04.006] [PMID: 24800644]
[160]
Murillo-Rodríguez, E.; Di Marzo, V.; Machado, S.; Rocha, N.B.; Veras, A.B.; Neto, G.A.M.; Budde, H.; Arias-Carrión, O.; Arankowsky-Sandoval, G. Role of N-arachidonoyl-serotonin (AA-5-HT) in sleep-wake cycle architecture, sleep homeostasis, and neurotransmitters Regulation. Front. Mol. Neurosci., 2017, 10, 152.
[http://dx.doi.org/10.3389/fnmol.2017.00152] [PMID: 28611585]
[161]
Murillo-Rodríguez, E.; Arankowsky-Sandoval, G.; Rocha, N.B.; Peniche-Amante, R.; Veras, A.B.; Machado, S.; Budde, H. Systemic injections of vannabidiol rnhance scetylcholine levels from basal forebrain in rats. Neurochem. Res., 2018, 43(8), 1511-1518.
[http://dx.doi.org/10.1007/s11064-018-2565-0] [PMID: 29876791]
[162]
Slomski, A. Fewer seizures with cannabidiol in vatastrophic Epilepsy. JAMA, 2017, 318(4), 323.
[http://dx.doi.org/10.1001/jama.2017.8846] [PMID: 28742905]
[163]
Devinsky, O.; Patel, A.D.; Cross, J.H.; Villanueva, V.; Wirrell, E.C.; Privitera, M.; Greenwood, S.M.; Roberts, C.; Checketts, D.; VanLandingham, K.E.; Zuberi, S.M. GWPCARE3 Study Group. Effect of cannabidiol on drop seizures in the Lennox-gastaut Syndrome. N. Engl. J. Med., 2018, 378(20), 1888-1897.
[http://dx.doi.org/10.1056/NEJMoa1714631] [PMID: 29768152]
[164]
Rubin, R. The path to the first FDA-approved cannabis-derived treatment and what comes next. JAMA, 2018, 320(12), 1227-1229.
[http://dx.doi.org/10.1001/jama.2018.11914] [PMID: 30193358]
[165]
Ebbert, J.O.; Scharf, E.L.; Hurt, R.T. Medical cannabis. Mayo Clin. Proc., 2018, 93(12), 1842-1847.
[http://dx.doi.org/10.1016/j.mayocp.2018.09.005] [PMID: 30522595]
[166]
Freedman, D.A.; Patel, A.D. Inadequate regulation contributes to mislabeled online cannabidiol products. Pediatr. Neurol. Briefs, 2018, 32, 3.
[http://dx.doi.org/10.15844/pedneurbriefs-32-3] [PMID: 30008541]
[167]
Keshavan, M.S.; Giedd, J.; Lau, J.Y.; Lewis, D.A.; Paus, T. Changes in the adolescent brain and the pathophysiology of psychotic disorders. Lancet Psychiatry, 2014, 1(7), 549-558.
[http://dx.doi.org/10.1016/S2215-0366(14)00081-9] [PMID: 26361314]
[168]
Luján, M.Á.; Castro-Zavala, A.; Alegre-Zurano, L.; Valverde, O. repeated cannabidiol treatment reduces cocaine intake and modulates neural proliferation and CB1R expression in the mouse hippocampus. Neuropharmacology, 2018, 143, 163-175.
[http://dx.doi.org/10.1016/j.neuropharm.2018.09.043] [PMID: 30273593]
[169]
Schiavon, A.P.; Bonato, J.M.; Milani, H.; Guimarães, F.S.; Weffort de Oliveira, R.M. Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 27-34.
[http://dx.doi.org/10.1016/j.pnpbp.2015.06.017] [PMID: 26187374]
[170]
Carvalho, R.K.; Souza, M.R.; Santos, M.L.; Guimarães, F.S.; Pobbe, R.L.H.; Andersen, M.L.; Mazaro-Costa, R. Chronic cannabidiol exposure promotes functional impairment in sexual behavior and fertility of male mice. Reprod. Toxicol., 2018, 81, 34-40.
[http://dx.doi.org/10.1016/j.reprotox.2018.06.013] [PMID: 29936126]
[171]
Iffland, K.; Grotenhermen, F. An Update on safety and side effects of cannabidiol: A review of clinical data and relevant animal studies. Cannabis Cannabinoid Res., 2017, 2(1), 139-154.
[http://dx.doi.org/10.1089/can.2016.0034] [PMID: 28861514]
[172]
Sands, T.T.; Rahdari, S.; Oldham, M.S.; Caminha, N.E.; Tilton, N.; Cilio, M.R. Long-Term Safety, Tolerability, and Efficacy of cannabidiol in children with refractory Epilepsy: Results from an expanded access program in the US. CNS Drugs, 2019, 33(1), 47-60.
[http://dx.doi.org/10.1007/s40263-018-0589-2] [PMID: 30460546]
[173]
Deutsch, D.G.; Ueda, N.; Yamamoto, S. The fatty acid amide hydrolase (FAAH). Prostaglandins Leukot. Essent. Fatty Acids, 2002, 66(2-3), 201-210.
[http://dx.doi.org/10.1054/plef.2001.0358] [PMID: 12052036]
[174]
Hu, S.S.; Mackie, K. Distribution of the rndocannabinoid dystem in the central nervous system. Handb. Exp. Pharmacol., 2015, 231, 59-93.
[http://dx.doi.org/10.1007/978-3-319-20825-1_3] [PMID: 26408158]
[175]
Shin, M.; Ware, T.B.; Lee, H.C.; Hsu, K.L. Lipid-metabolizing serine hydrolases in the mammalian central nervous system: endocannabinoids and beyond. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2019, 1864(6), 907-921.
[http://dx.doi.org/10.1016/j.bbalip.2018.08.007] [PMID: 30905349]
[176]
Donvito, G.; Nass, S.R.; Wilkerson, J.L.; Curry, Z.A.; Schurman, L.D.; Kinsey, S.G.; Lichtman, A.H. The endogenous cannabinoid system: A budding source of targets for treating inflammatory and neuropathic Pain. Neuropsychopharmacology, 2018, 43(1), 52-79.
[http://dx.doi.org/10.1038/npp.2017.204] [PMID: 28857069]
[177]
Stampanoni Bassi, M.; Gilio, L.; Maffei, P.; Dolcetti, E.; Bruno, A.; Buttari, F.; Centonze, D.; Iezzi, E. Exploiting the multifaceted effects of cannabinoids on mood to boost their therapeutic Use Against Anxiety and Depression. Front. Mol. Neurosci., 2018, 11, 424.
[http://dx.doi.org/10.3389/fnmol.2018.00424] [PMID: 30515077]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy