Abstract
Chemotherapeutic agents have been used extensively in breast cancer remedy. However, most anticancer drugs cannot differentiate between cancer cells and normal cells, leading to toxic side effects. Also, the resulted drug resistance during chemotherapy reduces treatment efficacy. The development of targeted drug delivery offers great promise in breast cancer treatment both in clinical applications and in pharmaceutical research. Conjugation of nanocarriers with targeting ligands is an effective therapeutic strategy to treat cancer diseases. In this review, we focus on active targeting methods for breast cancer cells through the use of chemical ligands such as antibodies, peptides, aptamers, vitamins, hormones, and carbohydrates. Also, this review covers all information related to these targeting ligands, such as their subtypes, advantages, disadvantages, chemical modification methods with nanoparticles and recent published studies (from 2015 to present). We have discussed 28 different targeting methods utilized for targeted drug delivery to breast cancer cells with different nanocarriers delivering anticancer drugs to the tumors. These different targeting methods give researchers in the field of drug delivery all the information and techniques they need to develop modern drug delivery systems.
Keywords: Breast cancer, drug delivery, tumor targeting methods, anticancer drug, targeted therapy, targeted drug delivery.
Graphical Abstract
[http://dx.doi.org/10.1080/1061186X.2018.1428809] [PMID: 29334266]
[http://dx.doi.org/10.1007/s12551-017-0392-1] [PMID: 29327101]
[http://dx.doi.org/10.1245/s10434-017-6021-1] [PMID: 28755141]
[http://dx.doi.org/10.1186/s12885-016-2587-4] [PMID: 27456970]
[http://dx.doi.org/10.1016/j.jconrel.2017.02.006] [PMID: 28167286]
(b)Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[http://dx.doi.org/10.1016/j.imlet.2017.07.015] [PMID: 28760499]
(b)Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep, 2012, 64(5), 1020-1037.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5] [PMID: 23238461]
[http://dx.doi.org/10.7150/thno.7193] [PMID: 24396516]
(b)Tamarkin, L.I.; Kingston, D.G. Exposing the tumor microenvironment: how gold nanoparticles enhance and refine drug delivery. Ther. Deliv., 2017, 8(6), 363-366.
[http://dx.doi.org/10.4155/tde-2016-0095] [PMID: 28530147]
(c)Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 2016, 1(5), 16014-16014.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00437] [PMID: 27547843]
[http://dx.doi.org/10.2147/IJN.S156616] [PMID: 29563797]
[PMID: 25733832]
[http://dx.doi.org/10.1039/C7ME00050B] [PMID: 30498580]
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024441] [PMID: 27803037]
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.035] [PMID: 29107218]
[http://dx.doi.org/10.1074/jbc.M116.761650] [PMID: 27986809]
(b)Rubina, K.A.; Sysoeva, V.Y.; Zagorujko, E.I.; Tsokolaeva, Z.I.; Kurdina, M.I.; Parfyonova, Y.V.; Tkachuk, V.A. Increased expression of uPA, uPAR, and PAI-1 in psoriatic skin and in basal cell carcinomas. Arch. Dermatol. Res., 2017, 309(6), 433-442.
[http://dx.doi.org/10.1007/s00403-017-1738-z] [PMID: 28429105]
[PMID: 28545187]
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.035] [PMID: 29107218]
[http://dx.doi.org/10.1007/s00280-018-3535-6] [PMID: 29392452]
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.004] [PMID: 26492155]
[http://dx.doi.org/10.2174/1871520617666170918125020] [PMID: 28925879]
[http://dx.doi.org/10.1039/c3tb20613k]
(b)Saw, P.E.; Park, J.; Jon, S.; Farokhzad, O.C. A drug-delivery strategy for overcoming drug resistance in breast cancer through targeting of oncofetal fibronectin. Nanomedicine (Lond.), 2017, 13(2), 713-722.
[http://dx.doi.org/10.1016/j.nano.2016.10.005] [PMID: 27769887]
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.022] [PMID: 24974009]
[http://dx.doi.org/10.1002/adhm.201500190] [PMID: 26097122]
[http://dx.doi.org/10.1038/sigtrans.2017.33] [PMID: 29263923]
[http://dx.doi.org/10.1038/s41388-017-0036-8] [PMID: 29321662]
[http://dx.doi.org/10.1016/j.ejpb.2017.07.003] [PMID: 28694161]
[http://dx.doi.org/10.1021/acs.biomac.7b01487] [PMID: 29350899]
[http://dx.doi.org/10.1016/j.colsurfb.2015.05.030] [PMID: 26070050]
[http://dx.doi.org/10.1038/srep13967] [PMID: 26434765]
(b)Hong, S.H.; Choi, Y. Mesoporous silica-based nanoplatforms for the delivery of photodynamic therapy agents. J. Pharm. Investig., 2018, 48(1), 3-17.
[http://dx.doi.org/10.1007/s40005-017-0356-2] [PMID: 30546918]
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00652] [PMID: 28157321]
[http://dx.doi.org/10.1002/asia.201402141] [PMID: 24895152]
[http://dx.doi.org/10.1016/j.carbpol.2017.07.035] [PMID: 28821028]
(b)Wu, P.H.; Onodera, Y.; Ichikawa, Y.; Rankin, E.B.; Giaccia, A.J.; Watanabe, Y.; Qian, W.; Hashimoto, T.; Shirato, H.; Nam, J.M. Targeting integrins with RGD-conjugated gold nanoparticles in radiotherapy decreases the invasive activity of breast cancer cells. Int. J. Nanomedicine, 2017, 12, 5069-5085.
[http://dx.doi.org/10.2147/IJN.S137833] [PMID: 28860745]
[http://dx.doi.org/10.3390/molecules23020268] [PMID: 29382149]
[http://dx.doi.org/10.1016/j.eurpolymj.2018.04.025]
[http://dx.doi.org/10.18632/oncotarget.13832] [PMID: 27966446]
[http://dx.doi.org/10.1016/j.ejmech.2017.12.037] [PMID: 29291444]
(b)Michalska, M.; Florczak, A.; Dams-Kozlowska, H.; Gapinski, J.; Jurga, S.; Schneider, R. Peptide-functionalized ZCIS QDs as fluorescent nanoprobe for targeted HER2-positive breast cancer cells imaging. Acta Biomater., 2016, 35, 293-304.
[http://dx.doi.org/10.1016/j.actbio.2016.02.002] [PMID: 26850146]
[http://dx.doi.org/10.2174/1381612824666180327152117] [PMID: 29589543]
[http://dx.doi.org/10.1371/journal.pone.0110632] [PMID: 25337703]
(b)Palao-Suay, R.; Rosa Aguilar, M.; Parra-Ruiz, F.J.; Martín-Saldaña, S.; Rohner, N.A.; Thomas, S.N.; San Román, J. Correction to: Multifunctional decoration of alpha-tocopheryl succinate-based NP for cancer treatment: Effect of TPP and LTVSPWY peptide. J. Mater. Sci. Mater. Med., 2017, 28(11)
[http://dx.doi.org/10.1007/s10856-017-5963-y]
[http://dx.doi.org/10.2147/IJN.S113469] [PMID: 27785019]
[http://dx.doi.org/10.3390/pharmaceutics10010002] [PMID: 29271876]
[http://dx.doi.org/10.1080/10717544.2017.1386729] [PMID: 29019267]
[http://dx.doi.org/10.2147/IJN.S129946] [PMID: 28919747]
[http://dx.doi.org/10.1021/acsomega.7b00226] [PMID: 30023665]
(b)Zhao, J.; Chen, H.; Tang, Y.; Chen, H.; Chen, G.; Yin, Y.; Li, G. Research progresses on the functional polypeptides in the detection and imaging of breast cancer. J. Mater. Chem. B Mater. Biol. Med., 2018.
[http://dx.doi.org/10.1039/C7TB02541F]
[http://dx.doi.org/10.1016/j.jconrel.2014.07.039] [PMID: 25058570]
[http://dx.doi.org/10.1166/jbn.2016.2319] [PMID: 29368881]
[http://dx.doi.org/10.1021/acsbiomaterials.7b00326]
[http://dx.doi.org/10.1007/s12013-015-0688-3] [PMID: 27259316]
[http://dx.doi.org/10.1016/j.canlet.2016.01.056] [PMID: 26898980]
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.013] [PMID: 26680317]
(b)Wang, X-P.; Wang, Q-X.; Lin, H-P.; Xu, B.; Zhao, Q.; Chen, K. Recombinant heat shock protein 70 functional peptide and alpha-fetoprotein epitope peptide vaccine elicits specific anti-tumor immunity. Oncotarget, 2016, 7(44), 71274-71284.
[http://dx.doi.org/10.18632/oncotarget.12464] [PMID: 27713135]
[http://dx.doi.org/10.1039/C5NR04867B] [PMID: 26469772]
(b)Yang, Z.; Tang, W.; Luo, X.; Zhang, X.; Zhang, C.; Li, H.; Gao, D.; Luo, H.; Jiang, Q.; Liu, J. Dual-ligand modified polymer-lipid hybrid nanoparticles for docetaxel targeting delivery to Her2/neu overexpressed human breast cancer cells. J. Biomed. Nanotechnol., 2015, 11(8), 1401-1417.
[http://dx.doi.org/10.1166/jbn.2015.2086] [PMID: 26295141]
[http://dx.doi.org/10.1016/j.ejps.2016.03.009] [PMID: 26972276]
[http://dx.doi.org/10.1021/acs.nanolett.7b02225] [PMID: 28853896]
[http://dx.doi.org/10.1021/mp500386y] [PMID: 26035464]
(b)Wei, L.; Guo, X.Y.; Yang, T.; Yu, M.Z.; Chen, D.W.; Wang, J.C. Brain tumor-targeted therapy by systemic delivery of siRNA with Transferrin receptor-mediated core-shell nanoparticles. Int. J. Pharm., 2016, 510(1), 394-405.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.127] [PMID: 27374198]
[http://dx.doi.org/10.2147/IJN.S115215] [PMID: 28223798]
[http://dx.doi.org/10.1021/acsami.6b10175] [PMID: 27808492]
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.019] [PMID: 23867728]
[http://dx.doi.org/10.1016/j.ejps.2016.06.020] [PMID: 27355138]
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.033] [PMID: 27794222]
(b)Fu, X.; Lu, Y.; Guo, J.; Liu, H.; Deng, A.; Kuang, C.; Xie, X. K237-modified thermosensitive liposome enhanced the delivery efficiency and cytotoxicity of paclitaxel in vitro. J. Liposome Res., 2018, 1-8.
[PMID: 29671386]
[http://dx.doi.org/10.2478/s11658-014-0210-8] [PMID: 25182240]
[http://dx.doi.org/10.1016/j.colsurfa.2018.12.026]
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.051] [PMID: 26004003]
[http://dx.doi.org/10.1016/j.nano.2016.10.005] [PMID: 27769887]
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.018] [PMID: 26117805]
[http://dx.doi.org/10.2147/IJN.S113469] [PMID: 27785019]
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.041] [PMID: 27267625]
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.040] [PMID: 30699364]
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00761] [PMID: 28282145]
[http://dx.doi.org/10.1016/j.ejps.2016.06.020] [PMID: 27355138]
[http://dx.doi.org/10.3390/cancers10010009] [PMID: 29301363]
[http://dx.doi.org/10.1002/wnan.1438] [PMID: 27800663]
[http://dx.doi.org/10.1038/nprot.2018.023] [PMID: 29700486]
[http://dx.doi.org/10.1517/17425247.3.3.311] [PMID: 16640493]
[http://dx.doi.org/10.1016/j.carbpol.2014.12.025] [PMID: 25659689]
(b)Pascual, L.; Cerqueira-Coutinho, C.; García-Fernández, A.; de Luis, B.; Bernardes, E.S.; Albernaz, M.S.; Missailidis, S.; Martínez-Máñez, R.; Santos-Oliveira, R.; Orzaez, M.; Sancenón, F. MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications. Nanomedicine (Lond.), 2017, 13(8), 2495-2505.
[http://dx.doi.org/10.1016/j.nano.2017.08.006] [PMID: 28842375]
[http://dx.doi.org/10.1080/03639045.2017.1371734] [PMID: 28832225]
[http://dx.doi.org/10.1039/C6IB00092D] [PMID: 27723851]
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.014] [PMID: 28495579]
(b)Nabavinia, M.S.; Gholoobi, A.; Charbgoo, F.; Nabavinia, M.; Ramezani, M.; Abnous, K. Anti-MUC1 aptamer: A potential opportunity for cancer treatment. Med. Res. Rev., 2017, 37(6), 1518-1539.
[http://dx.doi.org/10.1002/med.21462] [PMID: 28759115]
[http://dx.doi.org/10.1002/jcb.26254] [PMID: 28671278]
(b)Moosavian, S.A.; Abnous, K.; Akhtari, J.; Arabi, L.; Gholamzade Dewin, A.; Jafari, M. 5TR1 aptamer-PEGylated liposomal doxorubicin enhances cellular uptake and suppresses tumour growth by targeting MUC1 on the surface of cancer cells. Artif. Cells Nanomed. Biotechnol., 2017, 0(0), 1-12.
[http://dx.doi.org/10.1080/21691401.2017.1408120] [PMID: 29205059]
[http://dx.doi.org/10.1016/j.canlet.2017.12.023] [PMID: 29253524]
[http://dx.doi.org/10.1016/j.nano.2014.08.013] [PMID: 25218928]
(b)Wang, Y.; Chen, X.; Tian, B.; Liu, J.; Yang, L.; Zeng, L.; Chen, T.; Hong, A.; Wang, X. Nucleolin-targeted extracellular vesicles as a versatile platform for biologics delivery to breast cancer. Theranostics, 2017, 7(5), 1360-1372.
[http://dx.doi.org/10.7150/thno.16532] [PMID: 28435471]
[http://dx.doi.org/10.1111/1440-1681.12670] [PMID: 27626786]
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.027] [PMID: 27840158]
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00124] [PMID: 29669200]
[http://dx.doi.org/10.2147/IJN.S143293] [PMID: 28894364]
(b)Macdonald, J.; Henri, J.; Roy, K.; Hays, E.; Bauer, M.; Veedu, R.N.; Pouliot, N.; Shigdar, S. EpCAM immunotherapy versus specific targeted delivery of drugs. Cancers (Basel), 2018, 10(1), 1-13.
[http://dx.doi.org/10.3390/cancers10010019] [PMID: 29329202]
[http://dx.doi.org/10.1186/s12929-014-0108-9] [PMID: 25576037]
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.031] [PMID: 25712164]
[http://dx.doi.org/10.1016/j.actbio.2015.01.002] [PMID: 25596325]
(b)Wu, X.; Shaikh, A.B.; Yu, Y.; Li, Y.; Ni, S.; Lu, A.; Zhang, G. Potential diagnostic and therapeutic applications of oligonucleotide aptamers in breast cancer. Int. J. Mol. Sci., 2017, 18(9), 1851.
[http://dx.doi.org/10.3390/ijms18091851] [PMID: 28841163]
[http://dx.doi.org/10.1021/acsami.8b14009] [PMID: 30207689]
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.129] [PMID: 30802519]
[http://dx.doi.org/10.18632/oncotarget.9431]
[http://dx.doi.org/10.1016/j.ejpb.2016.03.013] [PMID: 26987703]
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.021] [PMID: 26731195]
[http://dx.doi.org/10.1016/j.canlet.2017.04.008] [PMID: 28412238]
[http://dx.doi.org/10.18632/oncotarget.4207] [PMID: 26045302]
[http://dx.doi.org/10.1016/j.talanta.2017.11.034] [PMID: 29310244]
[http://dx.doi.org/10.1016/j.jconrel.2015.01.032] [PMID: 25637705]
[http://dx.doi.org/10.1016/j.xphs.2016.02.021] [PMID: 27039356]
[http://dx.doi.org/10.1016/j.pharmthera.2017.03.004] [PMID: 28315359]
[http://dx.doi.org/10.2174/092986712800784667] [PMID: 22612698]
[http://dx.doi.org/10.1039/C6SC00170J] [PMID: 29997785]
[http://dx.doi.org/10.1002/adfm.201705668]
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.034] [PMID: 28528212]
[http://dx.doi.org/10.1038/s41598-018-24968-x]
[http://dx.doi.org/10.7150/jca.22163] [PMID: 29483955]
[http://dx.doi.org/10.1002/adfm.201704623] [PMID: 29706855]
[PMID: 28826287]
[http://dx.doi.org/10.1016/j.molimm.2018.05.010] [PMID: 29777999]
[http://dx.doi.org/10.1016/j.jconrel.2015.05.271] [PMID: 25998052]
[http://dx.doi.org/10.1080/1061186X.2017.1367005] [PMID: 28805509]
[http://dx.doi.org/10.1016/j.cej.2017.12.114]
[http://dx.doi.org/10.1016/j.apradiso.2018.04.005] [PMID: 29684714]
[http://dx.doi.org/10.7150/thno.12167] [PMID: 26722369]
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.033] [PMID: 26617314]
[http://dx.doi.org/10.1016/j.ejpb.2017.02.020] [PMID: 28257810]
[http://dx.doi.org/10.1186/s12951-019-0457-3] [PMID: 30728015]
[http://dx.doi.org/10.1016/j.biomaterials.2015.06.005] [PMID: 26081868]
[http://dx.doi.org/10.1016/j.colsurfb.2016.06.012] [PMID: 27434152]
[http://dx.doi.org/10.1016/j.actbio.2019.01.025] [PMID: 30660004]
[http://dx.doi.org/10.7150/thno.12167] [PMID: 26722369]
[http://dx.doi.org/10.1016/j.jcis.2018.12.032] [PMID: 30554096]
[http://dx.doi.org/10.1039/C7NJ02754K]
[http://dx.doi.org/10.1039/C6DT03323G] [PMID: 27731450]
[http://dx.doi.org/10.1155/2013/723158] [PMID: 24282819]
[http://dx.doi.org/10.1080/21691401.2017.1337029] [PMID: 28643525]
[http://dx.doi.org/10.1016/j.jiec.2017.08.024]
[http://dx.doi.org/10.1007/s10856-017-5859-x] [PMID: 28210967]
[http://dx.doi.org/10.1080/1061186X.2017.1339194] [PMID: 28581827]
[http://dx.doi.org/10.1080/21691401.2018.1516671] [PMID: 30449179]
[http://dx.doi.org/10.1080/21691401.2018.1453831] [PMID: 29575931]
[http://dx.doi.org/10.1039/C5CC03075G] [PMID: 26021457]
[http://dx.doi.org/10.1016/j.colsurfb.2015.05.052] [PMID: 26093304]
[http://dx.doi.org/10.1039/C7CC05311H] [PMID: 28831477]
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00310] [PMID: 28636400]
[http://dx.doi.org/10.1080/24701556.2018.1453840]
[http://dx.doi.org/10.1021/acsanm.7b00087]
[http://dx.doi.org/10.1166/jnn.2019.16292]
[http://dx.doi.org/10.1080/21691401.2018.1423991] [PMID: 29334247]
[http://dx.doi.org/10.3390/nano8070484] [PMID: 29966355]
[http://dx.doi.org/10.1016/j.carbpol.2017.03.031] [PMID: 28457434]
[http://dx.doi.org/10.1016/j.jcis.2016.10.067] [PMID: 27821343]
[http://dx.doi.org/10.1080/21691401.2018.1543199] [PMID: 30663422]
[http://dx.doi.org/10.1517/17425247.2014.902048] [PMID: 24666000]
[http://dx.doi.org/10.1039/C5CS00092K]
[http://dx.doi.org/10.1016/j.nano.2017.10.010] [PMID: 29129754]
[http://dx.doi.org/10.2217/nnm-2016-0371] [PMID: 28181464]
(b)Ding, J.; Liang, T.; Zhou, Y.; He, Z.; Min, Q.; Jiang, L.; Zhu, J. Hyaluronidase-triggered anticancer drug and siRNA delivery from cascaded targeting nanoparticles for drug-resistant breast cancer therapy. Nano Res., 2017, 10(2), 690-703.
[http://dx.doi.org/10.1007/s12274-016-1328-y]
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00793] [PMID: 29357260]
[http://dx.doi.org/10.1080/10717544.2018.1450910] [PMID: 29536778]
[http://dx.doi.org/10.1016/j.drudis.2017.11.003] [PMID: 29129804]
[http://dx.doi.org/10.1208/s12249-016-0557-4] [PMID: 27287244]
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.027] [PMID: 26142628]
[http://dx.doi.org/10.3109/03639045.2012.662510] [PMID: 22397550]
[http://dx.doi.org/10.1039/C8TB00094H]
[http://dx.doi.org/www.nature.com/articles/aps20189] [PMID: 29849132]
[http://dx.doi.org/10.1016/j.msec.2017.03.121] [PMID: 28482569]
[http://dx.doi.org/10.1039/C8TB00319J]
[http://dx.doi.org/10.1016/j.nano.2017.10.010] [PMID: 29129754]
[http://dx.doi.org/10.1016/j.biopha.2016.12.041] [PMID: 28027535]
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.063] [PMID: 28576551]
[http://dx.doi.org/10.3109/09687688.2010.521200] [PMID: 21028937]
[http://dx.doi.org/10.1038/onc.2015.369] [PMID: 26477316]
[http://dx.doi.org/10.1039/C5RA03302K]
[http://dx.doi.org/10.1016/j.cplett.2016.12.019]
[http://dx.doi.org/10.1016/j.jot.2019.04.001] [PMID: 31194087]
[http://dx.doi.org/10.1016/j.actbio.2015.02.022] [PMID: 25735801]
[http://dx.doi.org/10.1016/j.msec.2018.02.017] [PMID: 29636136]
[http://dx.doi.org/10.2147/IJN.S150512] [PMID: 29520138]
[http://dx.doi.org/10.3390/biomedicines4020011] [PMID: 28536378]
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.025] [PMID: 27693338]
[http://dx.doi.org/10.2147/IJN.S150512] [PMID: 29520138]
[http://dx.doi.org/10.1016/j.msec.2018.02.017] [PMID: 29636136]
[http://dx.doi.org/10.1186/s12929-017-0328-x] [PMID: 28320393]
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[http://dx.doi.org/10.1093/rb/rby023] [PMID: 30740237]
(b)Sharma, C.P. Drug Delivery Nanosystems for Biomedical Applications; Elsevier Science, 2018.
[http://dx.doi.org/10.1201/9781315204918]
[http://dx.doi.org/10.2174/1389557516666161013111155] [PMID: 27739358]
(b)Kesharwani, P. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer; Elsevier Science, 2019.
(c)Pathak, Y.V. Surface Modification of Nanoparticles for Targeted Drug Delivery; Springer International Publishing, 2019.
(d)Gao, H.; Gao, X. Brain Targeted Drug Delivery Systems: A Focus on Nanotechnology and Nanoparticulates; Elsevier Science, 2018.