Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

A Review on Targeting Nanoparticles for Breast Cancer

Author(s): Hasanain Gomhor J. Alqaraghuli, Soheila Kashanian* and Ronak Rafipour

Volume 20, Issue 13, 2019

Page: [1087 - 1107] Pages: 21

DOI: 10.2174/1389201020666190731130001

Price: $65

Abstract

Chemotherapeutic agents have been used extensively in breast cancer remedy. However, most anticancer drugs cannot differentiate between cancer cells and normal cells, leading to toxic side effects. Also, the resulted drug resistance during chemotherapy reduces treatment efficacy. The development of targeted drug delivery offers great promise in breast cancer treatment both in clinical applications and in pharmaceutical research. Conjugation of nanocarriers with targeting ligands is an effective therapeutic strategy to treat cancer diseases. In this review, we focus on active targeting methods for breast cancer cells through the use of chemical ligands such as antibodies, peptides, aptamers, vitamins, hormones, and carbohydrates. Also, this review covers all information related to these targeting ligands, such as their subtypes, advantages, disadvantages, chemical modification methods with nanoparticles and recent published studies (from 2015 to present). We have discussed 28 different targeting methods utilized for targeted drug delivery to breast cancer cells with different nanocarriers delivering anticancer drugs to the tumors. These different targeting methods give researchers in the field of drug delivery all the information and techniques they need to develop modern drug delivery systems.

Keywords: Breast cancer, drug delivery, tumor targeting methods, anticancer drug, targeted therapy, targeted drug delivery.

Graphical Abstract

[1]
Ju, R.J.; Cheng, L.; Qiu, X.; Liu, S.; Song, X.L.; Peng, X.M.; Wang, T.; Li, C.Q.; Li, X.T. Hyaluronic acid modified daunorubicin plus honokiol cationic liposomes for the treatment of breast cancer along with the elimination vasculogenic mimicry channels. J. Drug Target., 2018, 26(9), 793-805.
[http://dx.doi.org/10.1080/1061186X.2018.1428809] [PMID: 29334266]
[2]
Ahmadzada, T.; Reid, G.; McKenzie, D.R. Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys. Rev., 2018, 10(1), 69-86.
[http://dx.doi.org/10.1007/s12551-017-0392-1] [PMID: 29327101]
[3]
McGuire, A.; Lowery, A.J.; Kell, M.R.; Kerin, M.J.; Sweeney, K.J. Locoregional recurrence following breast cancer surgery in the trastuzumab era: A systematic review by subtype. Ann. Surg. Oncol., 2017, 24(11), 3124-3132.
[http://dx.doi.org/10.1245/s10434-017-6021-1] [PMID: 28755141]
[4]
Aktas, B.; Kasimir-Bauer, S.; Müller, V.; Janni, W.; Fehm, T.; Wallwiener, D.; Pantel, K.; Tewes, M. Comparison of the HER2, estrogen and progesterone receptor expression profile of primary tumor, metastases and circulating tumor cells in metastatic breast cancer patients. BMC Cancer, 2016, 16(1), 522.
[http://dx.doi.org/10.1186/s12885-016-2587-4] [PMID: 27456970]
[5]
(a)Dissanayake, S.; Denny, W.A.; Gamage, S.; Sarojini, V. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J. Control. Release, 2017, 250, 62-76.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.006] [PMID: 28167286]
(b)Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[6]
Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 2017, 190, 64-83.
[http://dx.doi.org/10.1016/j.imlet.2017.07.015] [PMID: 28760499]
(b)Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep, 2012, 64(5), 1020-1037.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5] [PMID: 23238461]
[7]
(a)Kobayashi, H.; Watanabe, R.; Choyke, P.L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics, 2013, 4(1), 81-89.
[http://dx.doi.org/10.7150/thno.7193] [PMID: 24396516]
(b)Tamarkin, L.I.; Kingston, D.G. Exposing the tumor microenvironment: how gold nanoparticles enhance and refine drug delivery. Ther. Deliv., 2017, 8(6), 363-366.
[http://dx.doi.org/10.4155/tde-2016-0095] [PMID: 28530147]
(c)Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 2016, 1(5), 16014-16014.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[8]
Nakamura, Y.; Mochida, A.; Choyke, P.L.; Kobayashi, H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem., 2016, 27(10), 2225-2238.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00437] [PMID: 27547843]
[9]
Kebebe, D.; Liu, Y.; Wu, Y.; Vilakhamxay, M.; Liu, Z.; Li, J. Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers. Int. J. Nanomedicine, 2018, 13, 1425-1442.
[http://dx.doi.org/10.2147/IJN.S156616] [PMID: 29563797]
[10]
Toporkiewicz, M.; Meissner, J.; Matusewicz, L.; Czogalla, A.; Sikorski, A.F. Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: Principles, hopes, and challenges. Int. J. Nanomedicine, 2015, 10, 1399-1414.
[PMID: 25733832]
[11]
Liu, X.; Jiang, J.; Ji, Y.; Lu, J.; Chan, R.; Meng, H. Targeted drug delivery using iRGD peptide for solid cancer treatment. Mol. Syst. Des. Eng., 2017, 2(4), 370-379.
[http://dx.doi.org/10.1039/C7ME00050B] [PMID: 30498580]
[12]
Wo, D.; Peng, J.; Ren, D.N.; Qiu, L.; Chen, J.; Zhu, Y.; Yan, Y.; Yan, H.; Wu, J.; Ma, E.; Zhong, T.P.; Chen, Y.; Liu, Z.; Liu, S.; Ao, L.; Liu, Z.; Jiang, C.; Peng, J.; Zou, Y.; Qian, Q.; Zhu, W. opposing roles of Wnt inhibitors IGFBP-4 and Dkk1 in cardiac ischemia by differential targeting of LRP5/6 and β-catenin. Circulation, 2016, 134(24), 1991-2007.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024441] [PMID: 27803037]
[13]
Miller-Kleinhenz, J.; Guo, X.; Qian, W.; Zhou, H.; Bozeman, E.N.; Zhu, L.; Ji, X.; Wang, Y.A.; Styblo, T.; O’Regan, R.; Mao, H.; Yang, L. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials, 2018, 152, 47-62.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.035] [PMID: 29107218]
[14]
(a)Merino, P.; Diaz, A.; Jeanneret, V.; Wu, F.; Torre, E.; Cheng, L.; Yepes, M. Urokinase-type plasminogen activator (uPA) binding to the uPA receptor (uPAR) promotes axonal regeneration in the central nervous system. J. Biol. Chem., 2017, 292(7), 2741-2753.
[http://dx.doi.org/10.1074/jbc.M116.761650] [PMID: 27986809]
(b)Rubina, K.A.; Sysoeva, V.Y.; Zagorujko, E.I.; Tsokolaeva, Z.I.; Kurdina, M.I.; Parfyonova, Y.V.; Tkachuk, V.A. Increased expression of uPA, uPAR, and PAI-1 in psoriatic skin and in basal cell carcinomas. Arch. Dermatol. Res., 2017, 309(6), 433-442.
[http://dx.doi.org/10.1007/s00403-017-1738-z] [PMID: 28429105]
[15]
Mali, A.V.; Joshi, A.A.; Hegde, M.V.; Kadam, ShS. Enterolactone suppresses proliferation, migration and metastasis of MDA-MB-231 breast cancer cells through inhibition of uPA induced plasmin activation and MMPs-Mediated ECM remodeling. Asian Pac. J. Cancer Prev., 2017, 18(4), 905-915.
[PMID: 28545187]
[16]
Miller-Kleinhenz, J.; Guo, X.; Qian, W.; Zhou, H.; Bozeman, E.N.; Zhu, L.; Ji, X.; Wang, Y.A.; Styblo, T.; O’Regan, R.; Mao, H.; Yang, L. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials, 2018, 152, 47-62.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.035] [PMID: 29107218]
[17]
Liu, Z.; Tao, Z.; Zhang, Q.; Wan, S.; Zhang, F.; Zhang, Y.; Wu, G.; Wang, J. YSA-conjugated mesoporous silica nanoparticles effectively target EphA2-overexpressing breast cancer cells. Cancer Chemother. Pharmacol., 2018, 81(4), 687-695.
[http://dx.doi.org/10.1007/s00280-018-3535-6] [PMID: 29392452]
[18]
Xie, X.; Yang, Y.; Lin, W.; Liu, H.; Liu, H.; Yang, Y.; Chen, Y.; Fu, X.; Deng, J. Cell-penetrating peptide-siRNA conjugate loaded YSA-modified nanobubbles for ultrasound triggered siRNA delivery. Colloids Surf. B Biointerfaces, 2015, 136, 641-650.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.004] [PMID: 26492155]
[19]
Singh, D.R.; Pasquale, E.B.; Hristova, K. A small peptide promotes EphA2 kinase-dependent signaling by stabilizing EphA2 dimers. Biochim et. Acta – Gen. Subjects, 1860, 1860(9), 1922-1928.
[20]
Mohammadgholi, M.; Sadeghzadeh, N.; Erfani, M.; Abediankenari, S.; Abedi, S.M.; Emrarian, I.; Jafari, N.; Behzadi, R. Human Fibronectin Extra-Domain, B. (EDB)-Specific Aptide (APTEDB) radiolabelling with technetium-99m as a potent targeted tumour-imaging agent. Anticancer. Agents Med. Chem., 2018, 18(2), 277-285.
[http://dx.doi.org/10.2174/1871520617666170918125020] [PMID: 28925879]
[21]
(a)Park, J.; Park, S.; Kim, S.; Lee, I-H.; Saw, P.E.; Lee, K.; Kim, Y-C.; Kim, Y-J.; Farokhzad, O.C.; Jeong, Y.Y.; Jon, S. HER2-specific aptide conjugated magneto-nanoclusters for potential breast cancer imaging and therapy. J. Mater. Chem. B Mater. Biol. Med., 2013, 1, 4576-4576.
[http://dx.doi.org/10.1039/c3tb20613k]
(b)Saw, P.E.; Park, J.; Jon, S.; Farokhzad, O.C. A drug-delivery strategy for overcoming drug resistance in breast cancer through targeting of oncofetal fibronectin. Nanomedicine (Lond.), 2017, 13(2), 713-722.
[http://dx.doi.org/10.1016/j.nano.2016.10.005] [PMID: 27769887]
[22]
Gu, G.; Hu, Q.; Feng, X.; Gao, X.; Menglin, J.; Kang, T.; Jiang, D.; Song, Q.; Chen, H.; Chen, J. PEG-PLA nanoparticles modified with APTEDB peptide for enhanced anti-angiogenic and anti-glioma therapy. Biomaterials, 2014, 35(28), 8215-8226.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.022] [PMID: 24974009]
[23]
Sun, Y.; Kim, H.S.; Saw, P.E.; Jon, S.; Moon, W.K. Targeted therapy for breast cancer stem cells by liposomal delivery of siRNA against fibronectin EDB. Adv. Healthc. Mater., 2015, 4(11), 1675-1680.
[http://dx.doi.org/10.1002/adhm.201500190] [PMID: 26097122]
[24]
Guo, H.; Ge, Y.; Li, X.; Yang, Y.; Meng, J.; Liu, J.; Wang, C.; Xu, H. Targeting the CXCR4/CXCL12 axis with the peptide antagonist E5 to inhibit breast tumor progression. Signal Transduct. Target. Ther., 2017, 2, 17033-17033.
[http://dx.doi.org/10.1038/sigtrans.2017.33] [PMID: 29263923]
[25]
Martinez-Ordoñez, A.; Seoane, S.; Cabezas, P.; Eiro, N.; Sendon-Lago, J.; Macia, M.; Garcia-Caballero, T.; Gonzalez, L.O.; Sanchez, L.; Vizoso, F.; Perez-Fernandez, R. Breast cancer metastasis to liver and lung is facilitated by Pit-1-CXCL12-CXCR4 axis. Oncogene, 2018, 37(11), 1430-1444.
[http://dx.doi.org/10.1038/s41388-017-0036-8] [PMID: 29321662]
[26]
Chittasupho, C.; Anuchapreeda, S.; Sarisuta, N. CXCR4 targeted dendrimer for anti-cancer drug delivery and breast cancer cell migration inhibition. Eur. J. Pharm. Biopharm., 2017, 119, 310-321.
[http://dx.doi.org/10.1016/j.ejpb.2017.07.003] [PMID: 28694161]
[27]
Zhou, Y.; Yu, F.; Zhang, F.; Chen, G.; Wang, K.; Sun, M.; Li, J.; Oupický, D. Cyclam-modified PEI for combined VEGF siRNA silencing and cxcr4 inhibition to treat metastatic breast cancer. Biomacromolecules, 2018, 19(2), 392-401.
[http://dx.doi.org/10.1021/acs.biomac.7b01487] [PMID: 29350899]
[28]
Wang, R.T.; Zhi, X.Y.; Yao, S.Y.; Zhang, Y. LFC131 peptide-conjugated polymeric nanoparticles for the effective delivery of docetaxel in CXCR4 overexpressed lung cancer cells. Colloids Surf. B Biointerfaces, 2015, 133, 43-50.
[http://dx.doi.org/10.1016/j.colsurfb.2015.05.030] [PMID: 26070050]
[29]
(a)Etayash, H.; Jiang, K.; Azmi, S.; Thundat, T.; Kaur, K. Real-time detection of breast cancer cells using peptide-functionalized microcantilever arrays. Sci. Rep., 2015, 5(October), 13967.
[http://dx.doi.org/10.1038/srep13967] [PMID: 26434765]
(b)Hong, S.H.; Choi, Y. Mesoporous silica-based nanoplatforms for the delivery of photodynamic therapy agents. J. Pharm. Investig., 2018, 48(1), 3-17.
[http://dx.doi.org/10.1007/s40005-017-0356-2] [PMID: 30546918]
[30]
Soudy, R.; Etayash, H.; Bahadorani, K.; Lavasanifar, A.; Kaur, K. Breast cancer targeting peptide binds keratin 1: A new molecular marker for targeted drug delivery to breast cancer. Mol. Pharm., 2017, 14(3), 593-604.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00652] [PMID: 28157321]
[31]
Yang, Y.; Wang, A.; Jia, Y.; Brezesinski, G.; Dai, L.; Zhao, J.; Li, J. Peptide p160-coated silica nanoparticles applied in photodynamic therapy. Chem. Asian J., 2014, 9(8), 2126-2131.
[http://dx.doi.org/10.1002/asia.201402141] [PMID: 24895152]
[32]
(a)Kim, Y.M.; Park, S.C.; Jang, M.K. Targeted gene delivery of polyethyleneimine-grafted chitosan with RGD dendrimer peptide in αvβ3 integrin-overexpressing tumor cells. Carbohydr. Polym., 2017, 174, 1059-1068.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.035] [PMID: 28821028]
(b)Wu, P.H.; Onodera, Y.; Ichikawa, Y.; Rankin, E.B.; Giaccia, A.J.; Watanabe, Y.; Qian, W.; Hashimoto, T.; Shirato, H.; Nam, J.M. Targeting integrins with RGD-conjugated gold nanoparticles in radiotherapy decreases the invasive activity of breast cancer cells. Int. J. Nanomedicine, 2017, 12, 5069-5085.
[http://dx.doi.org/10.2147/IJN.S137833] [PMID: 28860745]
[33]
Wen, X.; Li, J.; Cai, D.; Yue, L.; Wang, Q.; Zhou, L.; Fan, L.; Sun, J.; Wu, Y. Anticancer efficacy of targeted shikonin liposomes modified with rgd in breast cancer cells. Molecules, 2018, 23(2), 1-15.
[http://dx.doi.org/10.3390/molecules23020268] [PMID: 29382149]
[34]
Thankappan, H.; Zelcak, A.; Taykoz, D.; Bulmus, V. Efficient synthesis of cRGD functionalized polymers as building blocks of targeted drug delivery systems. Eur. Polym. J., 2018, 103, 421-432.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.04.025]
[35]
Bartolomé, R.A.; Torres, S.; Isern de Val, S.; Escudero-Paniagua, B.; Calviño, E.; Teixidó, J.; Casal, J.I. VE-cadherin RGD motifs promote metastasis and constitute a potential therapeutic target in melanoma and breast cancers. Oncotarget, 2017, 8(1), 215-227.
[http://dx.doi.org/10.18632/oncotarget.13832] [PMID: 27966446]
[36]
(a)Khodadust, F.; Ahmadpour, S.; Aligholikhamseh, N.; Abedi, S.M.; Hosseinimehr, S.J. An improved 99mTc-HYNIC-(Ser)3-LTVSPWY peptide with EDDA/tricine as co-ligands for targeting and imaging of HER2 overexpression tumor. Eur. J. Med. Chem., 2018, 144(144), 767-773.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.037] [PMID: 29291444]
(b)Michalska, M.; Florczak, A.; Dams-Kozlowska, H.; Gapinski, J.; Jurga, S.; Schneider, R. Peptide-functionalized ZCIS QDs as fluorescent nanoprobe for targeted HER2-positive breast cancer cells imaging. Acta Biomater., 2016, 35, 293-304.
[http://dx.doi.org/10.1016/j.actbio.2016.02.002] [PMID: 26850146]
[37]
Arab, A.; Robati, R.Y.; Nicastro, J.; Slavcev, R.; Behravan, J. Phage-based nanomedicines as new immune therapeutic agents for breast cancer. Curr. Pharm. Des., 2018, 24(11), 1195-1203.
[http://dx.doi.org/10.2174/1381612824666180327152117] [PMID: 29589543]
[38]
(a)Gong, C.; Pan, D.; Qiu, F.; Sun, P.; Zhang, Y.H. Selective DNA delivery to tumor cells using an oligoarginine-LTVSPWY peptide. PLoS One, 2014, 9(10)e110632
[http://dx.doi.org/10.1371/journal.pone.0110632] [PMID: 25337703]
(b)Palao-Suay, R.; Rosa Aguilar, M.; Parra-Ruiz, F.J.; Martín-Saldaña, S.; Rohner, N.A.; Thomas, S.N.; San Román, J. Correction to: Multifunctional decoration of alpha-tocopheryl succinate-based NP for cancer treatment: Effect of TPP and LTVSPWY peptide. J. Mater. Sci. Mater. Med., 2017, 28(11)
[http://dx.doi.org/10.1007/s10856-017-5963-y]
[39]
Hu, D.; Mezghrani, O.; Zhang, L.; Chen, Y.; Ke, X.; Ci, T. GE11 peptide modified and reduction-responsive hyaluronic acid-based nanoparticles induced higher efficacy of doxorubicin for breast carcinoma therapy. Int. J. Nanomedicine, 2016, 11, 5125-5147.
[http://dx.doi.org/10.2147/IJN.S113469] [PMID: 27785019]
[40]
Genta, I.; Chiesa, E.; Colzani, B.; Modena, T.; Conti, B.; Dorati, R. GE11 peptide as an active targeting agent in antitumor therapy: A minireview. Pharmaceutics, 2017, 10(1)E2
[http://dx.doi.org/10.3390/pharmaceutics10010002] [PMID: 29271876]
[41]
Pi, J.; Jiang, J.; Cai, H.; Yang, F.; Jin, H.; Yang, P.; Cai, J.; Chen, Z.W. GE11 peptide conjugated selenium nanoparticles for EGFR targeted oridonin delivery to achieve enhanced anticancer efficacy by inhibiting EGFR-mediated PI3K/AKT and Ras/Raf/MEK/ERK pathways. Drug Deliv., 2017, 24(1), 1549-1564.
[http://dx.doi.org/10.1080/10717544.2017.1386729] [PMID: 29019267]
[42]
Xu, W.W.; Liu, D.Y.; Cao, Y.C.; Wang, X.Y. GE11 peptide-conjugated nanoliposomes to enhance the combinational therapeutic efficacy of docetaxel and siRNA in laryngeal cancers. Int. J. Nanomedicine, 2017, 12, 6461-6470.
[http://dx.doi.org/10.2147/IJN.S129946] [PMID: 28919747]
[43]
(a)Ye, X-X.; Zhao, Y-Y.; Wang, Q.; Xiao, W.; Zhao, J.; Peng, Y-J.; Cao, D-H.; Lin, W-J.; Si-Tu, M-Y.; Li, M-Z.; Zhang, X.; Zhang, W-G.; Xia, Y-F.; Yang, X.; Feng, G-K.; Zeng, M-S. EDB Fibronectin-Specific SPECT Probe 99mTc-HYNIC-ZD2 for breast cancer detection. ACS Omega, 2017, 2(6), 2459-2468.
[http://dx.doi.org/10.1021/acsomega.7b00226] [PMID: 30023665]
(b)Zhao, J.; Chen, H.; Tang, Y.; Chen, H.; Chen, G.; Yin, Y.; Li, G. Research progresses on the functional polypeptides in the detection and imaging of breast cancer. J. Mater. Chem. B Mater. Biol. Med., 2018.
[http://dx.doi.org/10.1039/C7TB02541F]
[44]
Feng, G.K.; Liu, R.B.; Zhang, M.Q.; Ye, X.X.; Zhong, Q.; Xia, Y.F.; Li, M.Z.; Wang, J.; Song, E.W.; Zhang, X.; Wu, Z.Z.; Zeng, M.S. SPECT and near-infrared fluorescence imaging of breast cancer with a neuropilin-1-targeting peptide. J. Control. Release, 2014, 192, 236-242.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.039] [PMID: 25058570]
[45]
Wang, Y.; Zhao, H.; Peng, J.; Chen, L.; Tan, L.; Huang, Y.; Qian, Z. Targeting therapy of neuropilin-1 receptors overexpressed breast cancer by paclitaxel-loaded CK3-conjugated polymeric micelles. J. Biomed. Nanotechnol., 2016, 12(12), 2097-2011.
[http://dx.doi.org/10.1166/jbn.2016.2319] [PMID: 29368881]
[46]
Wang, S.; Li, C.; Meng, Y.; Qian, M.; Jiang, H.; Du, Y.; Huang, R.; Wang, Y. MemHsp70 receptor-mediated multifunctional ordered mesoporous carbon nanospheres for photoacoustic imaging-guided synergistic targeting trimodal therapy. ACS Biomater. Sci. Eng., 2017, 3(8), 1702-1709.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00326]
[47]
Yang, H.; Tang, R.; Li, J.; Liu, Y.; Ye, L.; Shao, D.; Jin, M.; Huang, Q.; Shi, J. A new ex vivo method for effective expansion and activation of human natural killer cells for anti-tumor immunotherapy. Cell Biochem. Biophys., 2015, 73(3), 723-729.
[http://dx.doi.org/10.1007/s12013-015-0688-3] [PMID: 27259316]
[48]
Kumar, S., Jr; Stokes, J., III; Singh, U.P.; Scissum Gunn, K.; Acharya, A.; Manne, U.; Mishra, M. Targeting Hsp70: A possible therapy for cancer. Cancer Lett., 2016, 374(1), 156-166.
[http://dx.doi.org/10.1016/j.canlet.2016.01.056] [PMID: 26898980]
[49]
(a)Meng, Y.; Wang, S.; Li, C.; Qian, M.; Zheng, Y.; Yan, X.; Huang, R. TKD peptide as a ligand targeting drug delivery systems to memHsp70-positive breast cancer. Int. J. Pharm., 2016, 498(1-2), 40-48.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.013] [PMID: 26680317]
(b)Wang, X-P.; Wang, Q-X.; Lin, H-P.; Xu, B.; Zhao, Q.; Chen, K. Recombinant heat shock protein 70 functional peptide and alpha-fetoprotein epitope peptide vaccine elicits specific anti-tumor immunity. Oncotarget, 2016, 7(44), 71274-71284.
[http://dx.doi.org/10.18632/oncotarget.12464] [PMID: 27713135]
[50]
(a)Mu, Q.; Kievit, F.M.; Kant, R.J.; Lin, G.; Jeon, M.; Zhang, M. Anti-HER2/neu peptide-conjugated iron oxide nanoparticles for targeted delivery of paclitaxel to breast cancer cells. Nanoscale, 2015, 7(43), 18010-18014.
[http://dx.doi.org/10.1039/C5NR04867B] [PMID: 26469772]
(b)Yang, Z.; Tang, W.; Luo, X.; Zhang, X.; Zhang, C.; Li, H.; Gao, D.; Luo, H.; Jiang, Q.; Liu, J. Dual-ligand modified polymer-lipid hybrid nanoparticles for docetaxel targeting delivery to Her2/neu overexpressed human breast cancer cells. J. Biomed. Nanotechnol., 2015, 11(8), 1401-1417.
[http://dx.doi.org/10.1166/jbn.2015.2086] [PMID: 26295141]
[51]
Zahmatkeshan, M.; Gheybi, F.; Rezayat, S.M.; Jaafari, M.R. Improved drug delivery and therapeutic efficacy of PEgylated liposomal doxorubicin by targeting anti-HER2 peptide in murine breast tumor model. Eur. J. Pharm. Sci., 2016, 86, 125-135.
[http://dx.doi.org/10.1016/j.ejps.2016.03.009] [PMID: 26972276]
[52]
Wang, J.; Dzuricky, M.; Chilkoti, A. The weak link: Optimization of the ligand-nanoparticle interface to enhance cancer cell targeting by polymer micelles. Nano Lett., 2017, 17(10), 5995-6005.
[http://dx.doi.org/10.1021/acs.nanolett.7b02225] [PMID: 28853896]
[53]
(a)Sheng, Y.; Xu, J.; You, Y.; Xu, F.; Chen, Y. Acid-sensitive peptide-conjugated doxorubicin mediates the lysosomal pathway of apoptosis and reverses drug resistance in breast cancer. Mol. Pharm., 2015, 12(7), 2217-2228.
[http://dx.doi.org/10.1021/mp500386y] [PMID: 26035464]
(b)Wei, L.; Guo, X.Y.; Yang, T.; Yu, M.Z.; Chen, D.W.; Wang, J.C. Brain tumor-targeted therapy by systemic delivery of siRNA with Transferrin receptor-mediated core-shell nanoparticles. Int. J. Pharm., 2016, 510(1), 394-405.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.127] [PMID: 27374198]
[54]
Gao, W.; Ye, G.; Duan, X.; Yang, X.; Yang, V.C. Transferrin receptor-targeted pH-sensitive micellar system for diminution of drug resistance and targetable delivery in multidrug-resistant breast cancer. Int. J. Nanomedicine, 2017, 12, 1047-1064.
[http://dx.doi.org/10.2147/IJN.S115215] [PMID: 28223798]
[55]
Cui, Y.; Zhang, M.; Zeng, F.; Jin, H.; Xu, Q.; Huang, Y. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl. Mater. Interfaces, 2016, 8(47), 32159-32169.
[http://dx.doi.org/10.1021/acsami.6b10175] [PMID: 27808492]
[56]
Kuang, Y.; An, S.; Guo, Y.; Huang, S.; Shao, K.; Liu, Y.; Li, J.; Ma, H.; Jiang, C. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. Int. J. Pharm., 2013, 454(1), 11-20.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.019] [PMID: 23867728]
[57]
Yu, M-Z.; Pang, W-H.; Yang, T.; Wang, J-C.; Wei, L.; Qiu, C.; Wu, Y-F.; Liu, W-Z.; Wei, W.; Guo, X-Y.; Zhang, Q. Systemic delivery of siRNA by T7 peptide modified core-shell nanoparticles for targeted therapy of breast cancer. Eur. J. Pharm. Sci., 2016, 92, 39-48.
[http://dx.doi.org/10.1016/j.ejps.2016.06.020] [PMID: 27355138]
[58]
(a)Yao, J.; Feng, J.; Gao, X.; Wei, D.; Kang, T.; Zhu, Q.; Jiang, T.; Wei, X.; Chen, J. Neovasculature and circulating tumor cells dual-targeting nanoparticles for the treatment of the highly-invasive breast cancer. Biomaterials, 2017, 113, 1-17.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.033] [PMID: 27794222]
(b)Fu, X.; Lu, Y.; Guo, J.; Liu, H.; Deng, A.; Kuang, C.; Xie, X. K237-modified thermosensitive liposome enhanced the delivery efficiency and cytotoxicity of paclitaxel in vitro. J. Liposome Res., 2018, 1-8.
[PMID: 29671386]
[59]
Zhang, X.; Ge, Y-L.; Zhang, S-P.; Yan, P.; Tian, R-H. Downregulation of KDR expression induces apoptosis in breast cancer cells. Cell. Mol. Biol. Lett., 2014, 19(4), 527-541.
[http://dx.doi.org/10.2478/s11658-014-0210-8] [PMID: 25182240]
[60]
Qian, Q.; Niu, S.; Williams, G.R.; Wu, J.; Zhang, X.; Zhu, L-M. Peptide functionalized dual-responsive chitosan nanoparticles for controlled drug delivery to breast cancer cells. Colloids Surf. A Physicochem. Eng. Asp., 2019, 564, 122-130.
[http://dx.doi.org/10.1016/j.colsurfa.2018.12.026]
[61]
Guo, Z.; He, B.; Yuan, L.; Dai, W.; Zhang, H.; Wang, X.; Wang, J.; Zhang, X.; Zhang, Q. Dual targeting for metastatic breast cancer and tumor neovasculature by EphA2-mediated nanocarriers. Int. J. Pharm., 2015, 493(1-2), 380-389.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.051] [PMID: 26004003]
[62]
Saw, P.E.; Park, J.; Jon, S.; Farokhzad, O.C. A drug-delivery strategy for overcoming drug resistance in breast cancer through targeting of oncofetal fibronectin. Nanomedicine (Lond.), 2017, 13(2), 713-722.
[http://dx.doi.org/10.1016/j.nano.2016.10.005] [PMID: 27769887]
[63]
Nam, J.P.; Lee, K.J.; Choi, J.W.; Yun, C.O.; Nah, J.W. Targeting delivery of tocopherol and doxorubicin grafted-chitosan polymeric micelles for cancer therapy: In vitro and in vivo evaluation. Colloids Surf. B Biointerfaces, 2015, 133, 254-262.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.018] [PMID: 26117805]
[64]
Hu, D.; Mezghrani, O.; Zhang, L.; Chen, Y.; Ke, X.; Ci, T. GE11 peptide modified and reduction-responsive hyaluronic acid-based nanoparticles induced higher efficacy of doxorubicin for breast carcinoma therapy. Int. J. Nanomedicine, 2016, 11, 5125-5147.
[http://dx.doi.org/10.2147/IJN.S113469] [PMID: 27785019]
[65]
Brinkman, A.M.; Chen, G.; Wang, Y.; Hedman, C.J.; Sherer, N.M.; Havighurst, T.C.; Gong, S.; Xu, W. Aminoflavone-loaded EGFR-targeted unimolecular micelle nanoparticles exhibit anti-cancer effects in triple negative breast cancer. Biomaterials, 2016, 101, 20-31.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.041] [PMID: 27267625]
[66]
Chen, J.; He, H.; Deng, C.; Yin, L.; Zhong, Z. Saporin-loaded CD44 and EGFR dual-targeted nanogels for potent inhibition of metastatic breast cancer in vivo. Int. J. Pharm., 2019, 560, 57-64.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.040] [PMID: 30699364]
[67]
Gao, D.; Gao, J.; Xu, M.; Cao, Z.; Zhou, L.; Li, Y.; Xie, X.; Jiang, Q.; Wang, W.; Liu, J. Targeted ultrasound-triggered phase transition nanodroplets for Her2-overexpressing breast cancer diagnosis and gene transfection. Mol. Pharm., 2017, 14(4), 984-998.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00761] [PMID: 28282145]
[68]
Yu, M.Z.; Pang, W.H.; Yang, T.; Wang, J.C.; Wei, L.; Qiu, C.; Wu, Y.F.; Liu, W.Z.; Wei, W.; Guo, X.Y.; Zhang, Q. Systemic delivery of siRNA by T7 peptide modified core-shell nanoparticles for targeted therapy of breast cancer. Eur. J. Pharm. Sci., 2016, 92, 39-48.
[http://dx.doi.org/10.1016/j.ejps.2016.06.020] [PMID: 27355138]
[69]
Hori, S.I.; Herrera, A.; Rossi, J.J.; Zhou, J. Current advances in aptamers for cancer diagnosis and therapy. Cancers (Basel), 2018, 10(1), 9-9.
[http://dx.doi.org/10.3390/cancers10010009] [PMID: 29301363]
[70]
Chen, K.; Liu, B.; Yu, B.; Zhong, W.; Lu, Y.; Zhang, J.; Liao, J.; Liu, J.; Pu, Y.; Qiu, L.; Zhang, L.; Liu, H.; Tan, W. Advances in the development of aptamer drug conjugates for targeted drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(3)e1438
[http://dx.doi.org/10.1002/wnan.1438] [PMID: 27800663]
[71]
Pfeiffer, F.; Tolle, F.; Rosenthal, M.; Brändle, G.M.; Ewers, J.; Mayer, G. Identification and characterization of nucleobase-modified aptamers by click-SELEX. Nat. Protoc., 2018, 13(5), 1153-1180.
[http://dx.doi.org/10.1038/nprot.2018.023] [PMID: 29700486]
[72]
Farokhzad, O.C.; Karp, J.M.; Langer, R. Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin. Drug Deliv., 2006, 3(3), 311-324.
[http://dx.doi.org/10.1517/17425247.3.3.311] [PMID: 16640493]
[73]
(a)Ghasemi, Z.; Dinarvand, R.; Mottaghitalab, F.; Esfandyari-Manesh, M.; Sayari, E.; Atyabi, F. Aptamer decorated hyaluronan/chitosan nanoparticles for targeted delivery of 5-fluorouracil to MUC1 overexpressing adenocarcinomas. Carbohydr. Polym., 2015, 121, 190-198.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.025] [PMID: 25659689]
(b)Pascual, L.; Cerqueira-Coutinho, C.; García-Fernández, A.; de Luis, B.; Bernardes, E.S.; Albernaz, M.S.; Missailidis, S.; Martínez-Máñez, R.; Santos-Oliveira, R.; Orzaez, M.; Sancenón, F. MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications. Nanomedicine (Lond.), 2017, 13(8), 2495-2505.
[http://dx.doi.org/10.1016/j.nano.2017.08.006] [PMID: 28842375]
[74]
Hanafi-Bojd, M.Y.; Moosavian Kalat, S.A.; Taghdisi, S.M.; Ansari, L.; Abnous, K.; Malaekeh-Nikouei, B. MUC1 aptamer-conjugated mesoporous silica nanoparticles effectively target breast cancer cells. Drug Dev. Ind. Pharm., 2018, 44(1), 13-18.
[http://dx.doi.org/10.1080/03639045.2017.1371734] [PMID: 28832225]
[75]
Singh, S.; Jha, P.; Singh, V.; Sinha, K.; Hussain, S.; Singh, M.K.; Das, P. A quantum dot-MUC1 aptamer conjugate for targeted delivery of protoporphyrin IX and specific photokilling of cancer cells through ROS generation. Integr. Biol., 2016, 8(10), 1040-1048.
[http://dx.doi.org/10.1039/C6IB00092D] [PMID: 27723851]
[76]
(a)Bahreyni, A.; Yazdian-Robati, R.; Hashemitabar, S.; Ramezani, M.; Ramezani, P.; Abnous, K.; Taghdisi, S.M. A new chemotherapy agent-free theranostic system composed of graphene oxide nano-complex and aptamers for treatment of cancer cells. Int. J. Pharm., 2017, 526(1-2), 391-399.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.014] [PMID: 28495579]
(b)Nabavinia, M.S.; Gholoobi, A.; Charbgoo, F.; Nabavinia, M.; Ramezani, M.; Abnous, K. Anti-MUC1 aptamer: A potential opportunity for cancer treatment. Med. Res. Rev., 2017, 37(6), 1518-1539.
[http://dx.doi.org/10.1002/med.21462] [PMID: 28759115]
[77]
(a)Luo, S.; Wang, S.; Luo, N.; Chen, F.; Hu, C.; Zhang, K. The application of aptamer 5TR1 in triple negative breast cancer target therapy. J. Cell. Biochem., 2018, 119(1), 896-908.
[http://dx.doi.org/10.1002/jcb.26254] [PMID: 28671278]
(b)Moosavian, S.A.; Abnous, K.; Akhtari, J.; Arabi, L.; Gholamzade Dewin, A.; Jafari, M. 5TR1 aptamer-PEGylated liposomal doxorubicin enhances cellular uptake and suppresses tumour growth by targeting MUC1 on the surface of cancer cells. Artif. Cells Nanomed. Biotechnol., 2017, 0(0), 1-12.
[http://dx.doi.org/10.1080/21691401.2017.1408120] [PMID: 29205059]
[78]
Jalalian, S.H.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Lett., 2018, 416, 87-93.
[http://dx.doi.org/10.1016/j.canlet.2017.12.023] [PMID: 29253524]
[79]
(a)Li, X.; Yu, Y.; Ji, Q.; Qiu, L. Targeted delivery of anticancer drugs by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles. Nanomedicine (Lond.), 2015, 11(1), 175-184.
[http://dx.doi.org/10.1016/j.nano.2014.08.013] [PMID: 25218928]
(b)Wang, Y.; Chen, X.; Tian, B.; Liu, J.; Yang, L.; Zeng, L.; Chen, T.; Hong, A.; Wang, X. Nucleolin-targeted extracellular vesicles as a versatile platform for biologics delivery to breast cancer. Theranostics, 2017, 7(5), 1360-1372.
[http://dx.doi.org/10.7150/thno.16532] [PMID: 28435471]
[80]
Barzegar Behrooz, A.; Nabavizadeh, F.; Adiban, J.; Shafiee Ardestani, M.; Vahabpour, R.; Aghasadeghi, M.R.; Sohanaki, H. Smart bomb AS1411 aptamer-functionalized/PAMAM dendrimer nanocarriers for targeted drug delivery in the treatment of gastric cancer. Clin. Exp. Pharmacol. Physiol., 2017, 44(1), 41-51.
[http://dx.doi.org/10.1111/1440-1681.12670] [PMID: 27626786]
[81]
Taghavi, S.; Nia, A.H.; Abnous, K.; Ramezani, M. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int. J. Pharm., 2017, 516(1-2), 301-312.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.027] [PMID: 27840158]
[82]
Taghdisi, S.M.; Danesh, N.M.; Ramezani, M.; Yazdian-Robati, R.; Abnous, K. A novel AS1411 aptamer-based three-way junction pocket DNA nanostructure loaded with doxorubicin for targeting cancer cells in vitro and in vivo. Mol. Pharm., 2018, 15(5), 1972-1978.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00124] [PMID: 29669200]
[83]
(a)Li, Y.; Duo, Y.; Bao, S.; He, L.; Ling, K.; Luo, J.; Zhang, Y.; Huang, H.; Zhang, H.; Yu, X. EpCAM aptamer-functionalized polydopamine-coated mesoporous silica nanoparticles loaded with DM1 for targeted therapy in colorectal cancer. Int. J. Nanomedicine, 2017, 12, 6239-6257.
[http://dx.doi.org/10.2147/IJN.S143293] [PMID: 28894364]
(b)Macdonald, J.; Henri, J.; Roy, K.; Hays, E.; Bauer, M.; Veedu, R.N.; Pouliot, N.; Shigdar, S. EpCAM immunotherapy versus specific targeted delivery of drugs. Cancers (Basel), 2018, 10(1), 1-13.
[http://dx.doi.org/10.3390/cancers10010019] [PMID: 29329202]
[84]
Subramanian, N.; Kanwar, J.R.; Athalya, P.K.; Janakiraman, N.; Khetan, V.; Kanwar, R.K.; Eluchuri, S.; Krishnakumar, S. EpCAM aptamer mediated cancer cell specific delivery of EpCAM siRNA using polymeric nanocomplex. J. Biomed. Sci., 2015, 22(1), 4.
[http://dx.doi.org/10.1186/s12929-014-0108-9] [PMID: 25576037]
[85]
Jenkins, S.V.; Nima, Z.A.; Vang, K.B.; Kannarpady, G.; Nedosekin, D.A.; Zharov, V.P.; Griffin, R.J.; Biris, A.S.; Dings, R.P.M. Triple-negative breast cancer targeting and killing by EpCAM-directed, plasmonically active nanodrug systems. NPJ Precision Oncol., 2017, 1(1), 27-27.
[86]
Mohammadi, M.; Salmasi, Z.; Hashemi, M.; Mosaffa, F.; Abnous, K.; Ramezani, M. Single-walled carbon nanotubes functionalized with aptamer and piperazine-polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int. J. Pharm., 2015, 485(1-2), 50-60.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.031] [PMID: 25712164]
[87]
(a)Wang, K.; Yao, H.; Meng, Y.; Wang, Y.; Yan, X.; Huang, R. Specific aptamer-conjugated mesoporous silica-carbon nanoparticles for HER2-targeted chemo-photothermal combined therapy. Acta Biomater., 2015, 16, 196-205.
[http://dx.doi.org/10.1016/j.actbio.2015.01.002] [PMID: 25596325]
(b)Wu, X.; Shaikh, A.B.; Yu, Y.; Li, Y.; Ni, S.; Lu, A.; Zhang, G. Potential diagnostic and therapeutic applications of oligonucleotide aptamers in breast cancer. Int. J. Mol. Sci., 2017, 18(9), 1851.
[http://dx.doi.org/10.3390/ijms18091851] [PMID: 28841163]
[88]
Liang, T.; Yao, Z.; Ding, J.; Min, Q.; Jiang, L.; Zhu, J-J. Cascaded aptamers-governed multistage drug-delivery system based on biodegradable envelope-type nanovehicle for targeted therapy of HER2-overexpressing breast cancer. ACS Appl. Mater. Interfaces, 2018, 10(40), 34050-34059.
[http://dx.doi.org/10.1021/acsami.8b14009] [PMID: 30207689]
[89]
Saleh, T.; Soudi, T.; Shojaosadati, S.A. Aptamer functionalized curcumin-loaded human serum albumin (HSA) nanoparticles for targeted delivery to HER-2 positive breast cancer cells. Int. J. Biol. Macromol., 2019, 130, 109-116.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.129] [PMID: 30802519]
[90]
Dai, B.; Hu, Y.; Duan, J.; Yang, X-d. Aptamer-guided DNA tetrahedron as a novel targeted drug delivery system for MUC1-expressing breast cancer cells in vitro. Oncotarget, 2016, 7(25), 38257-38269.
[http://dx.doi.org/10.18632/oncotarget.9431]
[91]
Taghdisi, S.M.; Danesh, N.M.; Ramezani, M.; Lavaee, P.; Jalalian, S.H.; Robati, R.Y.; Abnous, K. Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. Eur. J. Pharm. Biopharm., 2016, 102, 152-158.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.013] [PMID: 26987703]
[92]
Yousefi, M.; Jadidi-niaragh, F.; Aghebati-maleki, L.; Shanehbandi, D. Anti-mucin1 aptamer-conjugated chitosan nanoparticles for targeted co-delivery of docetaxel and IGF-1R siRNA to skbr3 metastatic breast cancer cells. Iran. Biomed. J., 2019, 23(1), 21-33.
[93]
Taghavi, S. HashemNia, A.; Mosaffa, F.; Askarian, S.; Abnous, K.; Ramezani, M. Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells. Colloids Surf. B Biointerfaces, 2016, 140, 28-39.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.021] [PMID: 26731195]
[94]
Taghavi, S.; Ramezani, M.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M. Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Lett., 2017, 400, 1-8.
[http://dx.doi.org/10.1016/j.canlet.2017.04.008] [PMID: 28412238]
[95]
Malik, M.T.; O’Toole, M.G.; Casson, L.K.; Thomas, S.D.; Bardi, G.T.; Reyes-Reyes, E.M.; Ng, C.K.; Kang, K.A.; Bates, P.J. AS1411-conjugated gold nanospheres and their potential for breast cancer therapy. Oncotarget, 2015, 6(26), 22270-22281.
[http://dx.doi.org/10.18632/oncotarget.4207] [PMID: 26045302]
[96]
Liu, X.; Wu, L.; Wang, L.; Jiang, W. A dual-targeting DNA tetrahedron nanocarrier for breast cancer cell imaging and drug delivery. Talanta, 2018, 179, 356-363.
[http://dx.doi.org/10.1016/j.talanta.2017.11.034] [PMID: 29310244]
[97]
Liao, Z.X.; Chuang, E.Y.; Lin, C.C.; Ho, Y.C.; Lin, K.J.; Cheng, P.Y.; Chen, K.J.; Wei, H.J.; Sung, H.W. An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance. J. Control. Release, 2015, 208, 42-51.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.032] [PMID: 25637705]
[98]
Alibolandi, M.; Ramezani, M.; Abnous, K.; Hadizadeh, F. AS1411 Aptamer-decorated biodegradable polyethylene glycol-poly(lactic-co-glycolic acid) nanopolymersomes for the targeted delivery of gemcitabine to non-small cell lung cancer in vitro. J. Pharm. Sci., 2016, 105(5), 1741-1750.
[http://dx.doi.org/10.1016/j.xphs.2016.02.021] [PMID: 27039356]
[99]
Kennedy, P.J.; Oliveira, C.; Granja, P.L.; Sarmento, B. Antibodies and associates: Partners in targeted drug delivery. Pharmacol. Ther., 2017, 177, 129-145.
[http://dx.doi.org/10.1016/j.pharmthera.2017.03.004] [PMID: 28315359]
[100]
Cardoso, M.M.; Peça, I.N.; Roque, A.C. Antibody-conjugated nanoparticles for therapeutic applications. Curr. Med. Chem., 2012, 19(19), 3103-3127.
[http://dx.doi.org/10.2174/092986712800784667] [PMID: 22612698]
[101]
Akkapeddi, P.; Azizi, S-A.; Freedy, A.M.; Cal, P.M.S.D.; Gois, P.M.P.; Bernardes, G.J.L. Construction of homogeneous antibody-drug conjugates using site-selective protein chemistry. Chem. Sci. (Camb.), 2016, 7(5), 2954-2963.
[http://dx.doi.org/10.1039/C6SC00170J] [PMID: 29997785]
[102]
He, C.; Li, J.; Cai, P.; Ahmed, T.; Henderson, J.T.; Foltz, W.D.; Bendayan, R.; Rauth, A.M.; Wu, X.Y. Two-step targeted hybrid nanoconstructs increase brain penetration and efficacy of the therapeutic antibody trastuzumab against brain metastasis of HER2-positive breast cancer. Adv. Funct. Mater., 2018, 28(9), 1-13.
[http://dx.doi.org/10.1002/adfm.201705668]
[103]
Nguyen, H.T.; Tran, T.H.; Thapa, R.K.; Phung, C.D.; Shin, B.S.; Jeong, J.H.; Choi, H.G.; Yong, C.S.; Kim, J.O. Targeted co-delivery of polypyrrole and rapamycin by trastuzumab-conjugated liposomes for combined chemo-photothermal therapy. Int. J. Pharm., 2017, 527(1-2), 61-71.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.034] [PMID: 28528212]
[104]
Truffi, M.; Colombo, M.; Sorrentino, L.; Pando, L.; Mazzucchelli, S.; Pappalardo, F.; Pacini, C.; Allevi, R.; Bonizzi, A.; Corsi, F.; Prosperi, D. Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Sci. Rep., 2018, 8(1), 6563.
[http://dx.doi.org/10.1038/s41598-018-24968-x]
[105]
Ding, S.; Xiong, J.; Lei, D.; Zhu, X.L.; Zhang, H.J. Recombinant nanocomposites by the clinical drugs of Abraxane® and Herceptin® as sequentially dual-targeting therapeutics for breast cancer. J. Cancer, 2018, 9(3), 502-511.
[http://dx.doi.org/10.7150/jca.22163] [PMID: 29483955]
[106]
Li, L.; Lu, Y.; Jiang, C.; Zhu, Y.; Yang, X.; Hu, X.; Lin, Z.; Zhang, Y.; Peng, M.; Xia, H.; Mao, C. Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded X-Ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles. Adv. Funct. Mater., 2018, 28(5), 1-13.
[http://dx.doi.org/10.1002/adfm.201704623] [PMID: 29706855]
[107]
Varshosaz, J.; Davoudi, M.A.; Rasoul-Amini, S. Docetaxel-loaded nanostructured lipid carriers functionalized with trastuzumab (Herceptin) for HER2-positive breast cancer cells. J. Liposome Res., 2017, 0(0), 1-11.
[PMID: 28826287]
[108]
Fu, W.; Sun, H.; Zhao, Y.; Chen, M.; Yang, L.; Yang, X.; Jin, W. Targeted delivery of CD44s-siRNA by ScFv overcomes de novo resistance to cetuximab in triple negative breast cancer. Mol. Immunol., 2018, 99(February), 124-133.
[http://dx.doi.org/10.1016/j.molimm.2018.05.010] [PMID: 29777999]
[109]
Zalba, S.; Contreras, A.M.; Haeri, A.; Ten Hagen, T.L.M.; Navarro, I.; Koning, G.; Garrido, M.J. Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J. Control. Release, 2015, 210, 26-38.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.271] [PMID: 25998052]
[110]
Narihira, K.; Watanabe, A.; Sheng, H.; Endo, H.; Feril, L.B.; Irie, Y.; Ogawa, K.; Moosavi-Nejad, S.; Kondo, S.; Kikuta, T.; Tachibana, K. Enhanced cell killing and apoptosis of oral squamous cell carcinoma cells with ultrasound in combination with cetuximab coated albumin microbubbles. J. Drug Target., 2018, 26(3), 278-288.
[http://dx.doi.org/10.1080/1061186X.2017.1367005] [PMID: 28805509]
[111]
Rafael, D.; Martínez, F.; Andrade, F.; Seras-Franzoso, J.; Garcia-Aranda, N.; Gener, P.; Sayós, J.; Arango, D.; Abasolo, I.; Schwartz, S. Efficient EFGR mediated siRNA delivery to breast cancer cells by Cetuximab functionalized Pluronic® F127/Gelatin. Chem. Eng. J., 2018, 340, 81-93.
[http://dx.doi.org/10.1016/j.cej.2017.12.114]
[112]
You, L.; Wang, X.; Guo, Z.; Zhang, D.; Zhang, P.; Li, J.; Su, X.; Pan, W.; Zhang, X. MicroSPECT imaging of triple negative breast cancer cell tumor xenografted in athymic mice with radioiodinated anti-ICAM-1 monoclonal antibody. Appl. Radiat. Isot., 2018, 139, 20-25.
[http://dx.doi.org/10.1016/j.apradiso.2018.04.005] [PMID: 29684714]
[113]
Guo, P.; Yang, J.; Jia, D.; Moses, M.A.; Auguste, D.T. ICAM-1-targeted, Lcn2 siRNA-encapsulating liposomes are potent anti-angiogenic agents for triple negative breast cancer. Theranostics, 2016, 6(1), 1-13.
[http://dx.doi.org/10.7150/thno.12167] [PMID: 26722369]
[114]
Yu, K.; Zhao, J.; Zhang, Z.; Gao, Y.; Zhou, Y.; Teng, L.; Li, Y. Enhanced delivery of Paclitaxel using electrostatically-conjugated Herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells. Int. J. Pharm., 2016, 497(1-2), 78-87.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.033] [PMID: 26617314]
[115]
Eloy, J.O.; Petrilli, R.; Chesca, D.L.; Saggioro, F.P.; Lee, R.J.; Marchetti, J.M. Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. Eur. J. Pharm. Biopharm., 2017, 115, 159-167.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.020] [PMID: 28257810]
[116]
Lin, Y-L.; Tsai, N-M.; Chen, C-H.; Liu, Y-K.; Lee, C-J.; Chan, Y-L.; Wang, Y-S.; Chang, Y-C.; Lin, C-H.; Huang, T-H.; Wang, C.C.; Chi, K.H.; Liao, K.W. Specific drug delivery efficiently induced human breast tumor regression using a lipoplex by non-covalent association with anti-tumor antibodies. J. Nanobiotechnology, 2019, 17(1), 25.
[http://dx.doi.org/10.1186/s12951-019-0457-3] [PMID: 30728015]
[117]
Kutty, R.V.; Chia, S.L.; Setyawati, M.I.; Muthu, M.S.; Feng, S.S.; Leong, D.T. In vivo and ex vivo proofs of concept that cetuximab conjugated vitamin E TPGS micelles increases efficacy of delivered docetaxel against triple negative breast cancer. Biomaterials, 2015, 63, 58-69.
[http://dx.doi.org/10.1016/j.biomaterials.2015.06.005] [PMID: 26081868]
[118]
Haeri, A.; Zalba, S.; Ten Hagen, T.L.M.; Dadashzadeh, S.; Koning, G.A. EGFR targeted thermosensitive liposomes: A novel multifunctional platform for simultaneous tumor targeted and stimulus responsive drug delivery. Colloids Surf. B Biointerfaces, 2016, 146, 657-669.
[http://dx.doi.org/10.1016/j.colsurfb.2016.06.012] [PMID: 27434152]
[119]
Liao, W-S.; Ho, Y.; Lin, Y-W.; Naveen Raj, E.; Liu, K-K.; Chen, C.; Zhou, X-Z.; Lu, K-P.; Chao, J-I. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite. Acta Biomater., 2019, 86, 395-405.
[http://dx.doi.org/10.1016/j.actbio.2019.01.025] [PMID: 30660004]
[120]
Guo, P.; Yang, J.; Jia, D.; Moses, M.A.; Auguste, D.T. ICAM-1-targeted, Lcn2 siRNA-encapsulating liposomes are potent anti-angiogenic agents for triple negative breast cancer. Theranostics, 2016, 6(1), 1-13.
[http://dx.doi.org/10.7150/thno.12167] [PMID: 26722369]
[121]
Wang, M.; Liu, W.; Zhang, Y.; Dang, M.; Zhang, Y.; Tao, J.; Chen, K.; Peng, X.; Teng, Z. Intercellular adhesion molecule 1 antibody-mediated mesoporous drug delivery system for targeted treatment of triple-negative breast cancer. J. Colloid Interface Sci., 2019, 538, 630-637.
[http://dx.doi.org/10.1016/j.jcis.2018.12.032] [PMID: 30554096]
[122]
Tripodo, G.; Mandracchia, D.; Collina, S.; Rui, M.; Rossi, D. New perspectives in cancer therapy: The biotin-antitumor molecule conjugates. Med. Chem, 2014.S1, 004. doi: 10.4172/2161-0444.S1-004.
[123]
Thepphankulngarm, N.; Wonganan, P.; Sapcharoenkun, C.; Tuntulani, T.; Leeladee, P. Combining vitamin B 12 and cisplatin-loaded porous silica nanoparticles via coordination: A facile approach to prepare a targeted drug delivery system. New J. Chem., 2017, 41(22), 13823-13829.
[http://dx.doi.org/10.1039/C7NJ02754K]
[124]
Rana, S.; Shetake, N.G.; Barick, K.C.; Pandey, B.N.; Salunke, H.G.; Hassan, P.A. Folic acid conjugated Fe3O4 magnetic nanoparticles for targeted delivery of doxorubicin. Dalton Trans., 2016, 45(43), 17401-17408.
[http://dx.doi.org/10.1039/C6DT03323G] [PMID: 27731450]
[125]
Song, H.; Su, C.; Cui, W.; Zhu, B.; Liu, L.; Chen, Z.; Zhao, L. Folic acid-chitosan conjugated nanoparticles for improving tumor-targeted drug delivery. BioMed Res. Int., 2013, 2013, 723158-723158.
[http://dx.doi.org/10.1155/2013/723158] [PMID: 24282819]
[126]
Chiani, M.; Norouzian, D.; Shokrgozar, M.A.; Azadmanesh, K.; Najmafshar, A.; Mehrabi, M.R.; Akbarzadeh, A. Folic acid conjugated nanoliposomes as promising carriers for targeted delivery of bleomycin. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 757-763.
[http://dx.doi.org/10.1080/21691401.2017.1337029] [PMID: 28643525]
[127]
Anirudhan, T.; Christa, J. pH and magnetic field sensitive folic acid conjugated protein–polyelectrolyte complex for the controlled and targeted delivery of 5-fluorouracil. J. Ind. Eng. Chem., 2018, 57, 199-207.
[http://dx.doi.org/10.1016/j.jiec.2017.08.024]
[128]
Islam, M.S.; Haque, P.; Rashid, T.U.; Khan, M.N.; Mallik, A.K.; Khan, M.N.I.; Khan, M.; Rahman, M.M. Core-shell drug carrier from folate conjugated chitosan obtained from prawn shell for targeted doxorubicin delivery. J. Mater. Sci. Mater. Med., 2017, 28(4), 55.
[http://dx.doi.org/10.1007/s10856-017-5859-x] [PMID: 28210967]
[129]
Erdoğar, N.; Esendağlı, G.; Nielsen, T.T.; Esendağlı-Yılmaz, G.; Yöyen-Ermiş, D.; Erdoğdu, B.; Sargon, M.F.; Eroğlu, H.; Bilensoy, E. Therapeutic efficacy of folate receptor-targeted amphiphilic cyclodextrin nanoparticles as a novel vehicle for paclitaxel delivery in breast cancer. J. Drug Target., 2018, 26(1), 66-74.
[http://dx.doi.org/10.1080/1061186X.2017.1339194] [PMID: 28581827]
[130]
Gomhor, J.; Alqaraghuli, H.; Kashanian, S.; Rafipour, R.; Mahdavian, E.; Mansouri, K.; Mansouri, K. Development and characterization of folic acid-functionalized apoferritin as a delivery vehicle for epirubicin against MCF-7 breast cancer cells. Artif. Cells Nanomed. Biotechnol., 2018, 46(Suppl. 3), S847-S854.
[http://dx.doi.org/10.1080/21691401.2018.1516671] [PMID: 30449179]
[131]
Poudel, I.; Ahiwale, R.; Pawar, A.; Mahadik, K.; Bothiraja, C. Development of novel biotinylated chitosan-decorated docetaxel-loaded nanocochleates for breast cancer targeting. Artif. Cells Nanomed. Biotechnol., 2018, 46(Suppl. 2), 229-240.
[http://dx.doi.org/10.1080/21691401.2018.1453831] [PMID: 29575931]
[132]
Ren, W.X.; Han, J.; Uhm, S.; Jang, Y.J.; Kang, C.; Kim, J.H.; Kim, J.S. Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chem. Commun. (Camb.), 2015, 51(52), 10403-10418.
[http://dx.doi.org/10.1039/C5CC03075G] [PMID: 26021457]
[133]
Patra, P.; Mitra, S.; Das Gupta, A.; Pradhan, S.; Bhattacharya, S.; Ahir, M.; Mukherjee, S.; Sarkar, S.; Roy, S.; Chattopadhyay, S.; Adhikary, A.; Goswami, A.; Chattopadhyay, D. Simple synthesis of biocompatible biotinylated porous hexagonal ZnO nanodisc for targeted doxorubicin delivery against breast cancer cell: In vitro and in vivo cytotoxic potential. Colloids Surf. B Biointerfaces, 2015, 133, 88-98.
[http://dx.doi.org/10.1016/j.colsurfb.2015.05.052] [PMID: 26093304]
[134]
aLv, L.; Liu, C.; Chen, C.; Yu, X.; Chen, G.; Shi, Y.; Qin, F.; Ou, J.; Qiu, K.; Li, G. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer. Oncotarget, 2016, 7(22), 32184-32199. [http://dx.doi.org/10.18632/oncotarget.8607] [PMID: 27058756] (b) Muhammad, N.; Sadia, N.; Zhu, C.; Luo, C.; Guo, Z.; Wang, X. Biotin-tagged platinum(iv) complexes as targeted cytostatic agents against breast cancer cells. Chem. Commun. (Camb.), 2017, 53(72), 9971-9974.
[http://dx.doi.org/10.1039/C7CC05311H] [PMID: 28831477]
[135]
Singh, Y.; Durga Rao Viswanadham, K.K.; Kumar Jajoriya, A.; Meher, J.G.; Raval, K.; Jaiswal, S.; Dewangan, J.; Bora, H.K.; Rath, S.K.; Lal, J.; Mishra, D.P.; Chourasia, M.K. Click biotinylation of plga template for biotin receptor oriented delivery of doxorubicin hydrochloride in 4T1 cell-induced breast cancer. Mol. Pharm., 2017, 14(8), 2749-2765.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00310] [PMID: 28636400]
[136]
Akinyelu, J.; Singh, M. Folic Acid-Conjugated Chitosan Functionalized Gold Nanoparticles for Targeted Delivery of 5-Fluorouracil in Breast Cancer. Proc. 3rd World Congress Rec. Adv. Nanotechnol., 2018. Paper No. NDDTE 103.
[137]
Keskin, T.; Yalcin, S.; Gunduz, U. Folic acid functionalized PEG coated magnetic nanoparticles for targeting anti-cancer drug delivery: Preparation, characterization and cytotoxicity on Doxorubicin, Zoledronic acid and Paclitaxel resistant MCF-7 breast cancer cell lines. Inorgan. Nano-Metal Chem., 2018, 0(0), 1-10.
[http://dx.doi.org/10.1080/24701556.2018.1453840]
[138]
Wu, Y-P.; Yang, J.; Gao, H-Y.; Shen, Y.; Jiang, L.; Zhou, C.; Li, Y-F.; He, R-R.; Liu, M. Folate-conjugated halloysite nanotubes, an efficient drug carrier, deliver doxorubicin for targeted therapy of breast cancer. ACS Appl. Nano Mats., 2018, 1(2), 595-608.
[http://dx.doi.org/10.1021/acsanm.7b00087]
[139]
Pal, K. Laha, D.; Parida, P.K.; Roy, S.; Bardhan, S.; Dutta, A.; Jana, K.; Karmakar, P. An in vivo study for targeted delivery of curcumin in human triple negative breast carcinoma cells conjugated with folic acid. J. Nanosci. Nanotechnol., 2019, 19(7), 3720-3733.
[http://dx.doi.org/10.1166/jnn.2019.16292]
[140]
Pawar, A.; Singh, S.; Rajalakshmi, S.; Shaikh, K.; Bothiraja, C. Development of fisetin-loaded folate functionalized pluronic micelles for breast cancer targeting. Artif. Cells Nanomed. Biotechnol., 2018, 46(Suppl. 1), 347-361.
[http://dx.doi.org/10.1080/21691401.2018.1423991] [PMID: 29334247]
[141]
Diaz-Diestra, D.; Thapa, B.; Badillo-Diaz, D.; Beltran-Huarac, J.; Morell, G.; Weiner, B.R. Graphene oxide/ZnS: Mn nanocomposite functionalized with folic acid as a nontoxic and effective theranostic platform for breast cancer treatment. Nanomaterials (Basel), 2018, 8(7), 1-18.
[http://dx.doi.org/10.3390/nano8070484] [PMID: 29966355]
[142]
Esfandiarpour-Boroujeni, S.; Bagheri-Khoulenjani, S.; Mirzadeh, H.; Amanpour, S. Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application. Carbohydr. Polym., 2017, 168, 14-21.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.031] [PMID: 28457434]
[143]
Vimala, K.; Shanthi, K.; Sundarraj, S.; Kannan, S. Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet. J. Colloid Interface Sci., 2017, 488, 92-108.
[http://dx.doi.org/10.1016/j.jcis.2016.10.067] [PMID: 27821343]
[144]
Nosrati, H.; Barzegari, P.; Danafar, H.; Kheiri Manjili, H. Biotin-functionalized copolymeric PEG-PCL micelles for in vivo tumour-targeted delivery of artemisinin. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 104-114.
[http://dx.doi.org/10.1080/21691401.2018.1543199] [PMID: 30663422]
[145]
Sunasee, R.; Adokoh, C.K.; Darkwa, J.; Narain, R. Therapeutic potential of carbohydrate-based polymeric and nanoparticle systems. Expert Opin. Drug Deliv., 2014, 11(6), 867-884.
[http://dx.doi.org/10.1517/17425247.2014.902048] [PMID: 24666000]
[146]
Kang, B.; Opatz, T.; Wurm, F.R. Carbohydrate nanocarriers in biomedical applications: Functionalization and construction. Chem. Soc. Rev., 2015, 44, 8301-8325.
[http://dx.doi.org/10.1039/C5CS00092K]
[147]
Agrawal, S.; Dwivedi, M.; Ahmad, H.; Chadchan, S.B.; Arya, A.; Sikandar, R.; Kaushik, S.; Mitra, K.; Jha, R.K.; Dwivedi, A.K. CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster the efficacy against triple-negative breast cancer. Nanomedicine (Lond.), 2018, 14(2), 327-337.
[http://dx.doi.org/10.1016/j.nano.2017.10.010] [PMID: 29129754]
[148]
(a)Campos, J.; Varas-Godoy, M.; Haidar, Z.S. Physicochemical characterization of chitosan-hyaluronan-coated solid lipid nanoparticles for the targeted delivery of paclitaxel: A proof-of-concept study in breast cancer cells. Nanomedicine (Lond.), 2017, 12(5), 473-490.
[http://dx.doi.org/10.2217/nnm-2016-0371] [PMID: 28181464]
(b)Ding, J.; Liang, T.; Zhou, Y.; He, Z.; Min, Q.; Jiang, L.; Zhu, J. Hyaluronidase-triggered anticancer drug and siRNA delivery from cascaded targeting nanoparticles for drug-resistant breast cancer therapy. Nano Res., 2017, 10(2), 690-703.
[http://dx.doi.org/10.1007/s12274-016-1328-y]
[149]
Liu, H.N.; Guo, N.N.; Wang, T.T.; Guo, W.W.; Lin, M.T.; Huang-Fu, M.Y.; Vakili, M.R.; Xu, W.H.; Chen, J.J.; Wei, Q.C.; Han, M.; Lavasanifar, A.; Gao, J.Q. Mitochondrial targeted doxorubicin-triphenylphosphonium delivered by hyaluronic acid modified and pH responsive nanocarriers to breast tumor: In vitro and in vivo studies. Mol. Pharm., 2018, 15(3), 882-891.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00793] [PMID: 29357260]
[150]
Huang, G.; Huang, H. Application of hyaluronic acid as carriers in drug delivery. Drug Deliv., 2018, 25(1), 766-772.
[http://dx.doi.org/10.1080/10717544.2018.1450910] [PMID: 29536778]
[151]
Jain, A.; Jain, A.; Parajuli, P.; Mishra, V.; Ghoshal, G.; Singh, B.; Shivhare, U.S.; Katare, O.P.; Kesharwani, P. Recent advances in galactose-engineered nanocarriers for the site-specific delivery of siRNA and anticancer drugs. Drug Discov. Today, 2018, 23(5), 960-973.
[http://dx.doi.org/10.1016/j.drudis.2017.11.003] [PMID: 29129804]
[152]
Sun, Y.; Zhang, J.; Han, J.; Tian, B.; Shi, Y.; Ding, Y.; Wang, L.; Han, J. Galactose-containing polymer-DOX conjugates for targeting drug delivery. AAPS PharmSciTech, 2017, 18(3), 749-758.
[http://dx.doi.org/10.1208/s12249-016-0557-4] [PMID: 27287244]
[153]
Jain, A.; Kesharwani, P.; Garg, N.K.; Jain, A.; Jain, S.A.; Jain, A.K.; Nirbhavane, P.; Ghanghoria, R.; Tyagi, R.K.; Katare, O.P. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf. B Biointerfaces, 2015, 134, 47-58.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.027] [PMID: 26142628]
[154]
Gupta, S.; Agarwal, A.; Gupta, N.K.; Saraogi, G.; Agrawal, H.; Agrawal, G.P. Galactose decorated PLGA nanoparticles for hepatic delivery of acyclovir. Drug Dev. Ind. Pharm., 2013, 39(12), 1866-1873.
[http://dx.doi.org/10.3109/03639045.2012.662510] [PMID: 22397550]
[155]
Zhu, Y.; Zhang, J.; Meng, F.; Cheng, L.; Feijen, J.; Zhong, Z. Reduction-responsive core-crosslinked hyaluronic acid-b-poly(trimethylene carbonate- co -dithiolane trimethylene carbonate) micelles: Synthesis and CD44-mediated potent delivery of docetaxel to triple negative breast tumor in vivo. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(19), 3040-3047.
[http://dx.doi.org/10.1039/C8TB00094H]
[156]
Liu, H.N.; Guo, N.N.; Guo, W.W.; Vakili, M.R.; Chen, J.J.; Xu, W.H.; Wei, Q.C.; Han, M.; Lavasanifar, A.; Gao, J.Q. Delivery of mitochondriotropic doxorubicin derivatives using self-assembling hyaluronic acid nanocarriers in doxorubicin-resistant breast cancer. Acta Pharmacol. Sin., 2018, 39(10), 1681-1692.
[http://dx.doi.org/www.nature.com/articles/aps20189] [PMID: 29849132]
[157]
Cerqueira, B.B.S.; Lasham, A.; Shelling, A.N.; Al-Kassas, R. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Mater. Sci. Eng. C, 2017, 76, 593-600.
[http://dx.doi.org/10.1016/j.msec.2017.03.121] [PMID: 28482569]
[158]
Deng, C.; Xu, X.; Tashi, D.; Wu, Y.; Su, B.; Zhang, Q. Co-administration of biocompatible self-assembled polylactic acid-hyaluronic acid block copolymer nanoparticles with tumor-penetrating peptide-iRGD for metastatic breast cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(19), 3163-3180.
[http://dx.doi.org/10.1039/C8TB00319J]
[159]
Agrawal, S.; Dwivedi, M.; Ahmad, H.; Chadchan, S.B.; Arya, A.; Sikandar, R.; Kaushik, S.; Mitra, K.; Jha, R.K.; Dwivedi, A.K. CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster the efficacy against triple-negative breast cancer. Nanomedicine (Lond.), 2018, 14(2), 327-337.
[http://dx.doi.org/10.1016/j.nano.2017.10.010] [PMID: 29129754]
[160]
Wang, F.; Li, L.; Liu, B.; Chen, Z.; Li, C. Hyaluronic acid decorated pluronic P85 solid lipid nanoparticles as a potential carrier to overcome multidrug resistance in cervical and breast cancer. Biomed. Pharmacother., 2017, 86, 595-604.
[http://dx.doi.org/10.1016/j.biopha.2016.12.041] [PMID: 28027535]
[161]
Han, X.; Dong, X.; Li, J.; Wang, M.; Luo, L.; Li, Z.; Lu, X.; He, R.; Xu, R.; Gong, M. Free paclitaxel-loaded E-selectin binding peptide modified micelle self-assembled from hyaluronic acid-paclitaxel conjugate inhibit breast cancer metastasis in a murine model. Int. J. Pharm., 2017, 528(1-2), 33-46.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.063] [PMID: 28576551]
[162]
Yu, B.; Tai, H.C.; Xue, W.; Lee, L.J.; Lee, R.J. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol. Membr. Biol., 2010, 27(7), 286-298.
[http://dx.doi.org/10.3109/09687688.2010.521200] [PMID: 21028937]
[163]
Borcherding, D.C.; Tong, W.; Hugo, E.R.; Barnard, D.F.; Fox, S.; LaSance, K.; Shaughnessy, E.; Ben-Jonathan, N. Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer. Oncogene, 2016, 35(24), 3103-3113.
[http://dx.doi.org/10.1038/onc.2015.369] [PMID: 26477316]
[164]
Das, P.; Jana, N.R. RSC Advances for targeted drug delivery †. RSC Advances, 2015, 5, 33586-33594.
[http://dx.doi.org/10.1039/C5RA03302K]
[165]
Masoudipour, E.; Kashanian, S.; Maleki, N. A targeted drug delivery system based on dopamine functionalized nano graphene oxide. Chem. Phys. Lett., 2017, 668, 56-63.
[http://dx.doi.org/10.1016/j.cplett.2016.12.019]
[166]
Jia, L.; Han, F.; Wang, H.; Zhu, C.; Guo, Q.; Li, J.; Zhao, Z.; Zhang, Q.; Zhu, X.; Li, B. Polydopamine-assisted surface modification for orthopaedic implants. J. Orthop. Translat., 2019, 17, 82-95.
[http://dx.doi.org/10.1016/j.jot.2019.04.001] [PMID: 31194087]
[167]
Li, M.; Tang, Z.; Zhang, Y.; Lv, S.; Li, Q.; Chen, X. Acta biomaterialia targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis. Acta Biomater., 2015, 18, 132-143.
[http://dx.doi.org/10.1016/j.actbio.2015.02.022] [PMID: 25735801]
[168]
Hu, J.; Obayemi, J.D.; Malatesta, K.; Košmrlj, A.; Soboyejo, W.O. Enhanced cellular uptake of LHRH-conjugated PEG-coated magnetite nanoparticles for specific targeting of triple negative breast cancer cells. Mater. Sci. Eng. C, 2018, 88(88), 32-45.
[http://dx.doi.org/10.1016/j.msec.2018.02.017] [PMID: 29636136]
[169]
Zhang, L.; Ren, Y.; Wang, Y.; He, Y.; Feng, W.; Song, C. Pharmacokinetics, distribution and anti-tumor efficacy of liposomal mitoxantrone modified with a luteinizing hormone-releasing hormone receptor-specific peptide. Int. J. Nanomedicine, 2018, 13, 1097-1105.
[http://dx.doi.org/10.2147/IJN.S150512] [PMID: 29520138]
[170]
Gilad, Y.; Firer, M.; Gellerman, G. Recent innovations in peptide based targeted drug delivery to cancer cells. Biomedicines, 2016, 4(2), 11.
[http://dx.doi.org/10.3390/biomedicines4020011] [PMID: 28536378]
[171]
Alqaraghuli, J.; Gomhor, H.; Kashanian, S.; Rafipour, R.; Mansouri, K. Dopamine-conjugated apoferritin protein nanocage for the dual-targeting delivery of epirubicin. Nanomed. J, 2019.http://nmj.mums.ac.ir/article_13245.html
[172]
Varshosaz, J.; Hassanzadeh, F.; Aliabadi, H.S.; Khoraskani, F.R.; Mirian, M.; Behdadfar, B. Targeted delivery of doxorubicin to breast cancer cells by magnetic LHRH chitosan bioconjugated nanoparticles. Int. J. Biol. Macromol, 2016.93(Pt A), 1192-1205.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.025] [PMID: 27693338]
[173]
Zhang, L.; Ren, Y.; Wang, Y.; He, Y.; Feng, W.; Song, C. Pharmacokinetics, distribution and anti-tumor efficacy of liposomal mitoxantrone modified with a luteinizing hormone-releasing hormone receptor-specific peptide. Int. J. Nanomedicine, 2018, 13, 1097-1105.
[http://dx.doi.org/10.2147/IJN.S150512] [PMID: 29520138]
[174]
Hu, J.; Obayemi, J.D.; Malatesta, K.; Košmrlj, A.; Soboyejo, W.O. Enhanced cellular uptake of LHRH-conjugated PEG-coated magnetite nanoparticles for specific targeting of triple negative breast cancer cells. Mater. Sci. Eng. C, 2018, 88, 32-45.
[http://dx.doi.org/10.1016/j.msec.2018.02.017] [PMID: 29636136]
[175]
Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci., 2017, 24(1), 21.
[http://dx.doi.org/10.1186/s12929-017-0328-x] [PMID: 28320393]
[176]
Gregoriadis, G.; McCormack, B. Targeting of Drugs 6: Strategies for Stealth Therapeutic Systems; Springer US:. , 2013.
[177]
Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov., 2017, 16(3), 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[178]
Donglu, S.; Qing, L. Donglu, S.; Qing, L., Tissue Engineering and Nanotheranostics; World Scientific Publishing Company, 2017.
[179]
(a)Oldenkamp, H.F.; Vela Ramirez, J.E.; Peppas, N.A. Re-evaluating the importance of carbohydrates as regenerative biomaterials. Regen. Biomater., 2019, 6(1), 1-12.
[http://dx.doi.org/10.1093/rb/rby023] [PMID: 30740237]
(b)Sharma, C.P. Drug Delivery Nanosystems for Biomedical Applications; Elsevier Science, 2018.
[http://dx.doi.org/10.1201/9781315204918]
[180]
(a)Li, X.; Taratula, O.; Taratula, O.; Schumann, C.; Minko, T. LHRH-targeted drug delivery systems for cancer therapy. Mini Rev. Med. Chem., 2017, 17(3), 258-267.
[http://dx.doi.org/10.2174/1389557516666161013111155] [PMID: 27739358]
(b)Kesharwani, P. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer; Elsevier Science, 2019.
(c)Pathak, Y.V. Surface Modification of Nanoparticles for Targeted Drug Delivery; Springer International Publishing, 2019.
(d)Gao, H.; Gao, X. Brain Targeted Drug Delivery Systems: A Focus on Nanotechnology and Nanoparticulates; Elsevier Science, 2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy