Abstract
Background: Urease enzyme catalyzes the hydrolysis of urea into ammonia and CO2, excess ammonia causes global warming and crop reduction. Ureases are also responsible for certain human diseases such as stomach cancer, peptic ulceration, pyelonephritis, and kidney stones. New urease inhibitors are developed to get rid of such problems.
Objective: This article describes the synthesis of a series of novel 1-aroyl-3-(2-oxo-2H-chromen-4- yl)thiourea derivatives (5a-j) as Jack bean urease inhibitors.
Methods: Freshly prepared aryl isothiocyanates were reacted with 4-aminocoumarin in the same pot in an anhydrous medium of acetone. The structures of the title thioureas (5a-j) were ascertained by their spectroscopic data. The inhibitory effects against jack bean urease were determined.
Results: It was found that compounds 5i and 5j showed excellent activity with IC50 values 0.0065 and 0.0293, µM respectively. Compound 5i bearing 4-methyl substituted phenyl ring plays a vital role in enzyme inhibitory activity. The kinetic mechanism analyzed by Lineweavere-Burk plots revealed that compound 5i inhibits the enzyme non-competitively. The Michaelis-Menten constant Km and inhibition constants Ki calculated from Lineweavere-Burk plots for compound 5i are 4.155mM and 0.00032µM, respectively. The antioxidant activity results displayed that compound 5j showed excellent radical scavenging activity. The cytotoxic effects determined against brine shrimp assay showed that all of the synthesized compounds are non-toxic to shrimp larvae. Molecular docking studies were performed against target protein (PDBID 4H9M) and it was determined that most of the synthesized compounds exhibited good binding affinity with the target protein. Molecular dynamics simulation (MDS) results revealed that compound 5i forms a stable complex with target protein showing little fluctuation.
Conclusions: Based upon our investigations, it is proposed that 5i derivative may serve as a lead structure for devising more potent urease inhibitors.
Keywords: Ammonia, aroylthioureas, urease inhibitors, synthesis, enzyme inhibitory kinetics, docking studies.
Graphical Abstract
[http://dx.doi.org/10.1016/S0378-8741(01)00309-9] [PMID: 11585684]
[http://dx.doi.org/10.1016/j.phytochem.2006.03.016] [PMID: 16684545]
[http://dx.doi.org/10.1016/j.jep.2005.06.037] [PMID: 16084046]
[http://dx.doi.org/10.5560/znb.2013-3102]
(b)Heide, L. The aminocoumarins: biosynthesis and biology. Nat. Prod. Rep., 2009, 26(10), 1241-1250.
[http://dx.doi.org/10.1039/b808333a] [PMID: 19779639]
(c)Anderle, C.; Li, S-M.; Kammerer, B.; Gust, B.; Heide, L. New aminocoumarin antibiotics derived from 4-hydroxycinnamic acid are formed after heterologous expression of a modified clorobiocin biosynthetic gene cluster. J. Antibiot. (Tokyo), 2007, 60(8), 504-510.
[http://dx.doi.org/10.1038/ja.2007.64] [PMID: 17827661]
[http://dx.doi.org/10.4103/0250-474X.39452]
(b)Faisal, M.; Saeed, A.; Shahzad, D.; Fattah, T.A.; Lal, B.; Channar, P.A.; Mahar, J.; Saeed, S.; Mahesar, P.A.; Larik, F.A. Enzyme inhibitory activities an insight into the structure-Activity relationship of biscoumarin derivatives. Eur. J. Med. Chem., 2017, 141, 386-403.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.009] [PMID: 29032032]
[http://dx.doi.org/10.1073/pnas.0501606102] [PMID: 15800037]
(b)Fattah, T.A.; Saeed, A.; Channar, P.A.; Larik, F.A.; Hassan, M.; Raza, H.; Abbas, Q.; Seo, S-Y. Synthesis and molecular docking studies of (E)-4-(Substituted-benzylideneamino)-2H-Chromen-2-one derivatives: Entry to new carbonic anhydrase class of inhibitors. Drug Res. (Stuttg.), 2018, 68(7), 378-386.
[http://dx.doi.org/10.1055/s-0043-123998] [PMID: 29433141]
[http://dx.doi.org/10.1016/j.ijmm.2013.08.013] [PMID: 24079980]
[http://dx.doi.org/10.1021/jm050598r] [PMID: 16161992]
[http://dx.doi.org/10.1016/j.bmc.2007.01.025] [PMID: 17275315]
[http://dx.doi.org/10.1007/s11164-016-2811-5]
[http://dx.doi.org/10.1016/j.ejmech.2013.04.002] [PMID: 23644194]
[http://dx.doi.org/10.1016/j.ejmech.2009.12.016] [PMID: 20056520]
[http://dx.doi.org/10.1016/j.ijbiomac.2005.12.009] [PMID: 16413607]
[http://dx.doi.org/10.2174/1570180811666141001005129]
[http://dx.doi.org/10.1248/cpb.c14-00837] [PMID: 25757494]
[http://dx.doi.org/10.1007/s00044-015-1369-x]
[http://dx.doi.org/10.1016/j.bmcl.2015.05.058] [PMID: 26081291]
b)Daud, A.I.; Khairul, W.M.; Mohamed Zuki, H. KuBulat, K. Synthesis and characterization of N-(4-Aminophenylethynylbenzo-nitrile)-N′-(1-naphthoyl) thiourea as single molecular chemosensor for carbon monoxide sensing. J. Sulfur Chem., 2014, 35, 691-699.
[http://dx.doi.org/10.1080/17415993.2014.954248]
[http://dx.doi.org/10.1016/j.mineng.2011.01.009]
[http://dx.doi.org/10.1016/j.agee.2008.02.001]
b )Kot, M.; Karcz, W.; Zaborska, W. 5-Hydroxy-1,4-naphthoquinone (juglone) and 2-hydroxy-1,4-naphthoquinone (lawsone) influence on jack bean urease activity: Elucidation of the difference in inhibition activity. Bioorg. Chem., 2010, 38(3), 132-137.
[http://dx.doi.org/10.1016/j.bioorg.2010.02.002] [PMID: 20202666]
c)Ito, Y.; Shibata, K.; Hongo, A.; Kinoshita, M. Ecabet sodium, a locally acting antiulcer drug, inhibits urease activity of Helicobacter pylori. Eur. J. Pharmacol., 1998, 345(2), 193-198.
[http://dx.doi.org/10.1016/S0014-2999(97)01622-1] [PMID: 9600637]
d)Weatherburn, M. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem., 1967, 39, 971-974.
[http://dx.doi.org/10.1021/ac60252a045]
[http://dx.doi.org/10.1016/j.foodres.2009.10.006]
[http://dx.doi.org/10.1111/cbdd.12675] [PMID: 26496515]
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[http://dx.doi.org/10.1107/S0907444909042073] [PMID: 20057044]
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[http://dx.doi.org/10.1093/nar/gkg565] [PMID: 12824316]
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[http://dx.doi.org/10.1093/bioinformatics/btt055] [PMID: 23407358]
[http://dx.doi.org/10.1021/jp807056c] [PMID: 19708111]
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[http://dx.doi.org/10.1063/1.3446812] [PMID: 20649318]
[http://dx.doi.org/10.1515/HC.2002.8.6.593]
[http://dx.doi.org/10.1055/s-2007-971236]
[http://dx.doi.org/10.1002/elps.11501401163] [PMID: 8125050]
[http://dx.doi.org/10.1186/1477-5956-7-41] [PMID: 19889238]
[http://dx.doi.org/10.1016/0022-2836(82)90515-0] [PMID: 7108955]
[http://dx.doi.org/10.1021/cn200100h] [PMID: 22267984]
[http://dx.doi.org/10.4103/0250-474X.38464]
[http://dx.doi.org/10.1016/j.ejmech.2010.07.069] [PMID: 20965619]
[http://dx.doi.org/10.1016/j.addr.2015.01.009] [PMID: 25666163]
[http://dx.doi.org/10.1016/S1359-6446(01)02100-6] [PMID: 11790621]
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[http://dx.doi.org/10.1016/j.bioorg.2015.06.004] [PMID: 26119990]
[http://dx.doi.org/10.3390/molecules22081352] [PMID: 28813027]
b)An expedient synthesis of N-(1-(5-mercapto-4-((substituted benzylidene)amino)-4H-1,2,4-triazol-3-yl)-2-phenylethyl)benzamides as jack bean urease inhibitors and free radical scavengers: Kinetic mechanism and molecular docking studies. Chem. Biol. Drug Des., 2017, 90, 764-777.
[http://dx.doi.org/10.1055/s-0043-113832] [PMID: 28672409]
b)Saeed, A.; Mahesar, P.A.; Channar, P.A.; Abbas, Q.; Larik, F.A.; Hassan, M.; Raza, H.; Seo, S-Y. Synthesis, molecular docking studies of coumarinyl-pyrazolinyl substituted thiazoles as non-competitive inhibitors of mushroom tyrosinase. Bioorg. Chem., 2017, 74, 187-196.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.002] [PMID: 28837887]
[http://dx.doi.org/10.1016/j.jtice.2017.04.044]