Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Novel p-Functionalized Chromen-4-on-3-yl Chalcones Bearing Astonishing Boronic Acid Moiety as MDM2 Inhibitor: Synthesis, Cytotoxic Evaluation and Simulation Studies

Author(s): Richa K. Bhatia*, Lakhwinder Singh, Ruchika Garg, Maninder Kaur, Manmohan Yadav, Jitender Madan, Satyavathi Kancherla, Raghuvir R.S. Pissurlenkar and Evans C. Coutinho

Volume 16, Issue 2, 2020

Page: [212 - 228] Pages: 17

DOI: 10.2174/1573406415666190531123751

Price: $65

Abstract

Background: Novel 4-[3-(6/7/8-Substituted 4-Oxo-4H-chromen-3-yl)acryloyl]phenylboronic acid derivatives (5a-h) as well as other 6/7/8-substituted-3-(3-oxo-3-(4-substitutedphenyl) prop-1-enyl)-4H-chromen-4-one derivatives (3a-u) have been designed as p53-MDM2 pathway inhibitors and reported to possess significant cytotoxic properties against several cancer cell lines.

Objectives: The current project aims to frame the structure-anticancer activity relationship of chromen-4-on-3-yl chalcones (3a-u/5a-h). In addition, docking studies were performed on these chromeno-chalcones in order to have an insight into their interaction possibilities with MDM2 protein.

Methods: Twenty-nine chromen-4-on-3-yl chalcone derivatives (3a-u/5a-h) were prepared by utilizing silica supported-HClO4 (green route with magnificent yield) and tested against four cancer cell lines (HCT116, MCF-7, THP-1, NCIH322).

Results: Among the series 3a-u, compound 3b exhibited the highest anticancer activity (with IC50 values ranging from 8.6 to 28.4 µM) overall against tested cancer cell lines. Interestingly, para- Boronic acid derivative (5b) showed selective inhibition against colon cancer cell line, HCT-116 with an IC50 value of 2.35 µM. Besides the emblematic hydrophobic interactions of MDM2 inhibitors, derivative 5b was found to exhibit extra hydrogen bonding with GLN59 and GLN72 residues of MDM2 in molecular dynamics (MD) simulation. All the compounds were virtually nontoxic against normal fibroblast cells.

Conclusion: Novel compounds were obtained with good anticancer activity especially 6- Chlorochromen-4-one substituted boronic acid derivative 5b. The molecular docking study proposed good activity as a MDM-2 inhibitor suggesting hydrophobic as well as hydrogen bonding interactions with MDM2.

Keywords: Boronic chalcone, chromen-4-one, silica supported-HClO4, cytotoxicity, MDM2, simulations.

Graphical Abstract

[1]
O’Connor, P.M.; Jackman, J.; Bae, I.; Myers, T.G.; Fan, S.; Mutoh, M.; Scudiero, D.A.; Monks, A.; Sausville, E.A.; Weinstein, J.N.; Friend, S.; Fornace, A.J., Jr; Kohn, K.W. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res., 1997, 57(19), 4285-4300.
[PMID: 9331090]
[2]
Estrada-Ortiz, N.; Neochoritis, C.G.; Dömling, A. How to design a successful p53-MDM2/X interaction inhibitor: A thorough overview based on crystal structures. ChemMedChem, 2016, 11(8), 757-772.
[http://dx.doi.org/10.1002/cmdc.201500487] [PMID: 26676832]
[3]
Lai, C.K.; Rao, Y.K.; Chang, K.R.; Lin, C.W.; Su, H.L.; Chang, C.S.; Lai, C.H.; Tzeng, Y.M. 3,3′,4′, 5′-Tetramethoxychalcone inhibits human oral cancer cell proliferation and migration via p53-mediated mitochondrial-dependent apoptosis. Anticancer Res., 2014, 34(4), 1811-1819.
[PMID: 24692714]
[4]
Rao, Y.K.; Kao, T-Y.; Ko, J-L.; Tzeng, Y-M. Chalcone HTMC causes in vitro selective cytotoxicity, cell-cycle G1 phase arrest through p53-dependent pathway in human lung adenocarcinoma A549 cells, and in vivo tumor growth suppression. Bioorg. Med. Chem. Lett., 2010, 20(22), 6508-6512.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.056] [PMID: 20926293]
[5]
Zhou, Y.; Ho, W.S. Combination of liquiritin, isoliquiritin and isoliquirigenin induce apoptotic cell death through upregulating p53 and p21 in the A549 non-small cell lung cancer cells. Oncol. Rep., 2014, 31(1), 298-304.
[http://dx.doi.org/10.3892/or.2013.2849] [PMID: 24247527]
[6]
Bombardelli, E.; Valenti, P. Chalcones having antiproliferative activity. U.S. Patent, 6423740 B1. 2002.
[7]
Machado, N.F.L.; Marques, M.P.M. Bioactive chromone derivatives-structural diversity. Curr. Bioact. Compd., 2010, 6, 76-89.
[http://dx.doi.org/10.2174/157340710791184859]
[8]
Carte, B.K.; Can, S.; DeBrosse, C.; Hemling, M.E.; MacKenzie, L.; Offen, P.; Berry, D.E. Aciculatin, a novel flavones-C-glycoside with DNA binding activity from Chrysopogon aciculatis. Tetrahedron, 1991, 47, 1815-1822.
[http://dx.doi.org/10.1016/S0040-4020(01)96096-X]
[9]
Xing, C.G.; Zhu, B.S.; Liu, H.H.; Lin, F.; Yao, H.H.; Liang, Z.Q.; Qin, Z.H. LY294002 induces p53-dependent apoptosis of SGC7901 gastric cancer cells. Acta Pharmacol. Sin., 2008, 29(4), 489-498.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00770.x] [PMID: 18358096]
[10]
Fabijańska, M.; Studzian, K.; Szmigiero, L.; Rybarczyk-Pirek, A.J.; Pfitzner, A.; Cebula-Obrzut, B.; Smolewski, P.; Zyner, E.; Ochocki, J. trans-Platinum(II) complex of 3-aminoflavone - synthesis, X-ray crystal structure and biological activities in vitro. Dalton Trans., 2015, 44(3), 938-947.
[http://dx.doi.org/10.1039/C4DT01501K] [PMID: 25110914]
[11]
Meng, L.H.; Kohn, K.W.; Pommier, Y. Dose-response transition from cell cycle arrest to apoptosis with selective degradation of Mdm2 and p21WAF1/CIP1 in response to the novel anticancer agent, aminoflavone (NSC 686,288). Oncogene, 2007, 26(33), 4806-4816.
[http://dx.doi.org/10.1038/sj.onc.1210283] [PMID: 17297446]
[12]
Clapham, K.M.; Bardos, J.; Finlay, M.R.V.; Golding, B.T.; Griffen, E.J.; Griffin, R.J.; Hardcastle, I.R.; Menear, K.A.; Ting, A.; Turner, P.; Young, G.L.; Cano, C. DNA-dependent protein kinase (DNA-PK) inhibitors: structure-activity relationships for O-alkoxyphenylchromen-4-one probes of the ATP-binding domain. Bioorg. Med. Chem. Lett., 2011, 21(3), 966-970.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.047] [PMID: 21216595]
[13]
Lima, C.F.; Costa, M.; Proença, M.F.; Pereira-Wilson, C. Novel structurally similar chromene derivatives with opposing effects on p53 and apoptosis mechanisms in colorectal HCT116 cancer cells. Eur. J. Pharm. Sci., 2015, 72, 34-45.
[http://dx.doi.org/10.1016/j.ejps.2015.02.019] [PMID: 25746954]
[14]
Michaelis, A.; Becker, P. About Monophenylborchlorid and the valence of the boron. Ber. Dtsch. Chem. Ges., 1880, 13, 58-61.
[http://dx.doi.org/10.1002/cber.18800130118]
[15]
Khan, S.R.; Mills, O. Boronic Acid Aryl Analogs. U.S. Patent, 2008/0171723A1. 2008.
[16]
Khan, S.R.; Mills, O. Boronic chalcone derivatives and uses thereof. U.S. Patent, 7514579 B2. 2009.
[17]
Achanta, G.; Modzelewska, A.; Feng, L.; Khan, S.R.; Huang, P. A boronic-chalcone derivative exhibits potent anticancer activity through inhibition of the proteasome. Mol. Pharmacol., 2006, 70(1), 426-433.
[PMID: 16636137]
[18]
Daskiewicz, J.B.; Comte, G.; Barron, D.; Pietro, A.D.; Thomasson, F. Organolithium mediated synthesis of prenylchalcones as potential inhibitors of chemoresistance. Tetrahedron Lett., 1999, 40, 7095.
[http://dx.doi.org/10.1016/S0040-4039(99)01461-6]
[19]
Nohara, A.; Umetani, T.; Sanno, Y. Studies on antianaphylactic agents-I: A facile synthesis of 4-oxo-4H-1-benzopyran-3-carboxa-ldehydes by Vilsmeier reagents. Tetrahedron, 1974, 30, 3561-3561.
[20]
Fries, K.; Finck, G. Über Homologe des Cumaranons und ihre Abkömmlinge. Chem. Ber., 1908, 41, 4271-4284.
[http://dx.doi.org/10.1002/cber.190804103146]
[21]
Cooper, S.R. Resacetophenone. Org. Synth., 1955, 3, 761.
[22]
Chakraborti, A.K.; Chankeshwara, S.V. HClO4-SiO2 as a new, highly efficient, inexpensive and reusable catalyst for N-tert-butoxycarbonylation of amines. Org. Biomol. Chem., 2006, 4(14), 2769-2771.
[http://dx.doi.org/10.1039/B605074C] [PMID: 16826301]
[23]
Siddiqui, Z.N. A convenient synthesis of coumarinyl chalcones using HClO4–SiO2: A green approach. Arab. J. Chem., 2019, 12, 2788-2797.
[http://dx.doi.org/10.1016/j.arabjc.2015.06.013]
[24]
Riyadh, S.M.; Gomha, M.S.; Mahmmoud, E.A.; Elaasser, M.M. Synthesis and anticancer activities of thiazoles, 1,3-thiazines, and thiazolidine using chitosan-grafted -poly(vinylpyridine) as basic catalyst. Heterocycles, 2015, 91, 1227-1243.
[http://dx.doi.org/10.3987/COM-15-13210]
[25]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[26]
Jyoti, K.; Bhatia, R.K.; Martis, E.A.F.; Coutinho, E.C.; Jain, U.K.; Chandra, R.; Madan, J. Soluble curcumin amalgamated chitosan microspheres augmented drug delivery and cytotoxicity in colon cancer cells: In vitro and in vivo study. Colloids Surf. B Biointerfaces, 2016, 148, 674-683.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.044] [PMID: 27701049]
[27]
Abdelhamid, A.O.; Gomha, S.M.; Abdelriheem, N.A.; Kandeel, S.M. Synthesis of New 3-Heteroarylindoles as Potential Anticancer Agents. Molecules, 2016, 21(7), 929-932.
[http://dx.doi.org/10.3390/molecules21070929] [PMID: 27438822]
[28]
Schrödinger, Release. 2014-1: Maestro, version 9.7; Glide, version 6.2; Prime, version 3.5; Desmond Molecular Dynamics System, version 3.7; Schrödinger, LLC: New York, NY, 2014.
[29]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[30]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[31]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[32]
Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; Salmon, J.K.; Shan, Y.; Shaw, D.E. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, FloridaNovember 11-17. 2006, 43.
[33]
Guo, Z.; Mohanty, U.; Noehre, J.; Sawyer, T.K.; Sherman, W.; Krilov, G. Probing the alpha-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis. Chem. Biol. Drug Des., 2010, 75(4), 348-359.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00951.x] [PMID: 20331649]
[34]
Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput., 2010, 6(5), 1509-1519.
[http://dx.doi.org/10.1021/ct900587b] [PMID: 26615687]
[35]
Ghosh, C.K.J. Chemistry of 4-Oxo-4H-[1]benzopyran-3-carboxaldehyde. Heterocycl. Chem., 1983, 20, 1437-1445.
[http://dx.doi.org/10.1002/jhet.5570200601]
[36]
Sabitha, G. 3-Formylchromone as a versatile synthon in heterocyclic chemistry. Aldrichim Acta, 1996, 29, 15-25.
[37]
Ghosh, C.K.; Patra, A. Chemistry and application of 4-oxo-4H-1-benzopyran-3-carboxaldehyde. J. Heterocycl. Chem., 2008, 45, 1529-1547.
[http://dx.doi.org/10.1002/jhet.5570450601]
[38]
Raj, T.; Bhatia, R.K.; Sharma, R.K.; Gupta, V.; Sharma, D.; Ishar, M.P.S. Mechanism of unusual formation of 3-(5-phenyl-3H-[1,2,4]dithiazol-3-yl)chromen-4-ones and 4-oxo-4H-chromene-3-carbothioic acid N-phenylamides and their antimicrobial evaluation. Eur. J. Med. Chem., 2009, 44(8), 3209-3216.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.030] [PMID: 19375826]
[39]
Hatzade, K.M.; Taile, V.S.; Gaidhane, P.K.; Umare, V.D.; Haldar, G.M.; Ingle, V.N. Synthesis and biological activities of new 7-O-β-D-glucopyranosyloxy-3-(3-oxo-3-arylprop-1-enyl)-chromones. Indian J. Chem., 2009, 48B, 1548-1557.
[40]
Bhatia, R.K.; Kancherla, S.; Singh, L. Utility of superacid in heterocyclic chalcone synthesis. World J. Pharm. Res., 2017, 6(14), 678-684.
[41]
Bhatia, R.K.; Kancherla, S.; Garg, R.; Kancherla, S.; Jain, U.K.; Suri, N.; Kaul, A.; Saxena, A.K. Synthesis and anticancer evaluation of some chromenone derived chalcones. Eur. J. Pharm. Med. Res., 2017, 4(11), 509-515.
[42]
Dalpozzo, R.; Bartoli, G.; Sambri, L.; Melchiorre, P. Perchloric acid and its salts: very powerful catalysts in organic chemistry. Chem. Rev., 2010, 110(6), 3501-3551.
[http://dx.doi.org/10.1021/cr9003488] [PMID: 20235581]
[43]
Khan, A.T.; Ghosh, S.; Choudhury, L.H. Perchloric Acid Impregnated on Silica Gel (HClO4/SiO2): A Versatile Catalyst for Michael Addition of Thiols to the Electron-Deficient Alkenes. Eur. J. Org. Chem., 2006, 2006, 2226-2231.
[http://dx.doi.org/10.1002/ejoc.200600006]
[44]
Khatik, G.L.; Sharma, G.; Kumar, R.; Chakraborti, A.K. Scope and limitations of HClO4–SiO2 as an extremely efficient, inexpensive, and reusable catalyst for chemoselective carbon–sulfur bond formation. Tetrahedron, 2007, 63, 1200-1210.
[http://dx.doi.org/10.1016/j.tet.2006.11.050]
[45]
Shaikh, M.F.; Morano, W.F.; Lee, J.; Gleeson, E.; Babcock, B.D.; Michl, J.; Sarafraz-Yazdi, E.; Pincus, M.R.; Bowne, W.B. Emerging role of MDM2 as target for anti-cancer therapy: a review. Ann. Clin. Lab. Sci., 2016, 46(6), 627-634.
[PMID: 27993876]
[46]
Sun, X.X.; Dai, M.S.; Lu, H. 5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J. Biol. Chem., 2007, 282(11), 8052-8059.
[http://dx.doi.org/10.1074/jbc.M610621200] [PMID: 17242401]
[47]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy