[1]
Starka, L. Advances in endocrinology, 1st ed; MAXDORF: Praha, 2007. (In Czech)
[2]
Melmed, S.; Polonsky, K.S.; Larsen, R.L.; Kronenberg, H.M. Williams Textbook of Endocrinology, 13th ed; Elsevier Health Sciences, 2015.
[3]
Beato, M.; Klug, J. Steroid hormone receptors: An update. Hum. Reprod. Update, 2000, 6(3), 225-236.
[4]
Melmed, S.; Polonsky, K.S.; Larsen, P.R.; Kronenberg, H.M. Williams Textbook of Endocrinology, 13th ed; Elsevier: Philadelphia, 2016.
[5]
Fatranska, M.; Repcekova-Jezova, D.; Jurcovicova, J.; Vigas, M. LH and testosterone response to LH-RH in blind men. Horm. Metab. Res., 1978, 10(1), 82-83.
[6]
Jezova, D.; Komadel, L.; Mikulaj, L. Plasma testosterone response to repeated human chorionic gonadotropin administration is increased in trained athletes. Endocrinol. Exp., 1987, 21(2), 143-147.
[7]
Repcekova, D.; Mikulaj, L. Plasma testosterone response to HCG in normal men without and after administration of anabolic drug. Endokrinologie, 1977, 69(1), 115-118.
[8]
Repcekova, D.; Mikulaj, L. Plasma testosterone of rats subjected to immobilization stress and/or HCG administration. Horm. Res., 1977, 8(1), 51-57.
[9]
Taché, Y.; Ducharme, J.R.; Charpenet, G.; Haour, F.; Saez, J.; Collu, R. Effect of chronic intermittent immobilization stress on hypophyso-gonadal function of rats. Acta Endocrinol. (Copenh.), 1980, 93(2), 168-174.
[10]
Jezova, D.; Vigas, M. Testosterone response to exercise during blockade and stimulation of adrenergic receptors in man. Horm. Res., 1981, 15(3), 141-147.
[11]
Jezova-Repcekova, D.; Vigas, M.; Mikulaj, L.; Jurcovicova, J. Plasma testosterone during bicycle ergometer exercise without and after L-dopa pretreatment. Endocrinol. Exp., 1982, 16(1), 3-8.
[12]
Jezova, D.; Vigas, M.; Tatar, P.; Kvetnansky, R.; Nazar, K.; Kaciuba-Uścilko, H.; Kozlowski, S. Plasma testosterone and catecholamine responses to physical exercise of different intensities in men. Eur. J. Appl. Physiol. Occup. Physiol., 1985, 54(1), 62-66.
[13]
Daly, W.; Seegers, C.A.; Rubin, D.A.; Dobridge, J.D.; Hackney, A.C. Relationship between stress hormones and testosterone with prolonged endurance exercise. Eur. J. Appl. Physiol., 2005, 93(4), 375-380.
[14]
Afrisham, R.; Sadegh-Nejadi, S. SoliemaniFar, O.; Kooti, W.; Ashtary-Larky, D.; Alamiri, F.; Aberomand, M.; Najjar-Asl, S.; Khaneh-Keshi, A. Salivary testosterone levels under psychological stress and its relationship with rumination and five personality traits in medical students. Psychiatry Investig., 2016, 13(6), 637-643.
[15]
Kuusi, T.; Kostiainen, E.; Vartiainen, E.; Pitkänen, L.; Ehnholm, C.; Korhonen, H.J.; Nissinen, A.; Puska, P. Acute effects of marathon running on levels of serum lipoproteins and androgenic hormones in healthy males. Metabolism, 1984, 33(6), 527-531.
[16]
Tauler, P.; Martinez, S.; Moreno, C.; Martínez, P.; Aguilo, A. Changes in salivary hormones, immunoglobulin A, and C-reactive protein in response to ultra-endurance exercises. Appl. Physiol. Nutr. Metab., 2014, 39, 560-565.
[17]
Kapsdorfer, D.; Hlavacova, N.; Vondrova, D.; Argalasova, L.; Sevcikova, L.; Jezova, D. Neuroendocrine response to school load in prepubertal children: Focus on trait anxiety. Cell. Mol. Neurobiol., 2018, 38(1), 155-162.
[18]
Gerra, G.; Zaimovic, A.; Zambelli, U.; Timpano, M.; Reali, N.; Bernasconi, S.; Brambilla, F. Neuroendocrine responses to psychological stress in adolescents with anxiety disorder. Neuropsychobiology, 2000, 42(2), 82-92.
[19]
Wegner, M.; Koedijker, J.M.; Budde, H. The effect of acute exercise and psychosocial stress on fine motor skills and testosterone concentration in the saliva of high school students. PLoS One, 2014, 9(3)e92953
[20]
Prastyo, D.B.; Deliana, M.; Dimyati, Y.; Arto, K.S. The effect of psychological stress on salivary testosterone in puberty children. Open Access Maced. J. Med. Sci., 2018, 6(9), 1611-1616.
[21]
Crewther, B.T.; Obmiński, Z.; Orysiak, J.; Al-Dujaili, E.A.S. The utility of salivary testosterone and cortisol concentration measures for assessing the stress responses of junior athletes during a sporting competition. J. Clin. Lab. Anal., 2018, 32(1), [Epub 2017 Mar
13]. DOI: 10.1002/jcla.22197.,
[22]
Davis, S.R.; Wahlin-Jacobsen, S. Testosterone in women--the clinical significance. Lancet Diabetes Endocrinol., 2015, 3(12), 980-992.
[23]
Drake, E.B.; Henderson, V.W.; Stanczyk, F.Z.; McCleary, C.A.; Brown, W.S.; Smith, C.A.; Rizzo, A.A.; Murdock, G.A.; Buckwalter, J.G. Associations between circulating sex steroid hormones and cognition in normal elderly women. Neurology, 2000, 54(3), 599-603.
[24]
Wolf, O.T.; Kirschbaum, C. Endogenous estradiol and testosterone levels are associated with cognitive performance in older women and men. Horm. Behav., 2002, 41(3), 259-266.
[25]
Kocoska-Maras, L.; Rådestad, A.F.; Carlström, K.; Bäckström, T.; von Schoultz, B.; Hirschberg, A.L. Cognitive function in association with sex hormones in postmenopausal women. Gynecol. Endocrinol., 2013, 29(1), 59-62.
[26]
Cherrier, M.M.; Anderson, K.; Shofer, J.; Millard, S.; Matsumoto, A.M. Testosterone treatment of men with mild cognitive impairment and low testosterone levels. Am. J. Alzheimers Dis. Other Demen., 2015, 30(4), 421-430.
[27]
Wahjoepramono, E.J.; Asih, P.R.; Aniwiyanti, V.; Taddei, K.; Dhaliwal, S.S.; Fuller, S.J.; Foster, J.; Carruthers, M.; Verdile, G.; Sohrabi, H.R.; Martins, R.N. The effects of testosterone supplementation on cognitive functioning in older men. CNS Neurol. Disord. Drug Targets, 2016, 15(3), 337-343.
[28]
Hampson, E. Endocrine contributions to sex differences in visuospatial perception and cognition.In: Sex differences in the brain: From genes to behavior; Becker, J.B.; Berkley, K.J.; Geary, N.; Hampson, E.; Herman, J.; Young, E., Eds.; Oxford University Press: New York, 2007, pp. 311-325.
[29]
Quaiser-Pohl, C.; Jansen, P.; Lehmann, J.; Kudielka, B.M. Is there a relationship between the performance in a chronometric mental-rotations test and salivary testosterone and estradiol levels in children aged 9-14 years? Dev. Psychobiol., 2016, 58(1), 120-128.
[30]
Ostatnikova, D.; Dohnanyiova, M.; Mataseje, A.; Putz, Z.; Laznibatova, J.; Hajek, J. Salivary testosterone and cognitive ability in children. Bratisl. Lek Listy, 2000, 101(8), 470-473. [Slovak.].
[31]
Ostatnikova, D.; Celec, P.; Putz, Z.; Hodosy, J.; Schmidt, F.; Laznibatova, J.; Kudela, M. Intelligence and salivary testosterone levels in prepubertal children. Neuropsychologia, 2007, 45(7), 1378-1385.
[32]
Celec, P.; Tretinarova, D.; Minarik, G.; Ficek, A.; Szemes, T.; Lakatosova, S.; Schmidtova, E.; Turňa, J.; Kádaši, Ľ.; Ostatnikova, D. Genetic polymorphisms related to testosterone metabolism in intellectually gifted boys. PLoS One, 2013, 8(1)e54751
[33]
Shores, M.M.; Moceri, V.M.; Sloan, K.L.; Matsumoto, A.M.; Kivlahan, D.R. Low testosterone levels predict incident depressive illness in older men: effects of age and medical morbidity. J. Clin. Psychiatry, 2005, 66(1), 7-14.
[34]
McIntyre, R.S.; Mancini, D.; Eisfeld, B.S.; Soczynska, J.K.; Grupp, L.; Konarski, J.Z.; Kennedy, S.H. Calculated bioavailable testosterone levels and depression in middle-aged men. Psychoneuroendocrinology, 2006, 31(9), 1029-1035.
[35]
Aydogan, U.; Aydogdu, A.; Akbulut, H.; Sonmez, A.; Yuksel, S.; Basaran, Y.; Uzun, O.; Bolu, E.; Saglam, K. Increased frequency of anxiety, depression, quality of life and sexual life in young hypogonadotropic hypogonadal males and impacts of testosterone replacement therapy on these conditions. Endocr. J., 2012, 59(12), 1099-1105.
[36]
Ji, E.; Weickert, C.S.; Lenroot, R.; Catts, S.V.; Vercammen, A.; White, C.; Gur, R.E.; Weickert, T.W. Endogenous testosterone levels are associated with neural activity in men with schizophrenia during facial emotion processing. Behav. Brain Res., 2015, 286, 338-346.
[37]
Li, J.; Xiao, W.; Sha, W.; Xian, K.; Tang, X.; Zhang, X. Relationship of serum testosterone levels with cognitive function in chronic antipsychotic-treated male patients with schizophrenia. Asia-Pac. Psychiatry, 2015, 7(3), 323-329.
[38]
Moore, L.; Kyaw, M.; Vercammen, A.; Lenroot, R.; Kulkarni, J.; Curtis, J.; O’Donnell, M.; Carr, V.J.; Shannon Weickert, C.; Weickert, T.W. Serum testosterone levels are related to cognitive function in men with schizophrenia. Psychoneuroendocrinology, 2013, 38(9), 1717-1728.
[39]
Sisek-Šprem, M.; Križaj, A.; Jukić, V.; Milošević, M.; Petrović, Z.; Herceg, M. Testosterone levels and clinical features of schizophrenia with emphasis on negative symptoms and aggression. Nord. J. Psychiatry, 2015, 69(2), 102-109.
[40]
Paipa, N.; Stephan-Otto, C.; Cuevas-Esteban, J.; Núñez-Navarro, A.; Usall, J.; Brébion, G. Second-to-fourth digit length ratio is associated with negative and affective symptoms in schizophrenia patients. Schizophr. Res., 2018, 199, 297-303.
[41]
Misiak, B.; Frydecka, D.; Loska, O.; Moustafa, A.A.; Samochowiec, J.; Kasznia, J.; Stańczykiewicz, B. Testosterone, DHEA and DHEA-S in patients with schizophrenia: A systematic review and meta-analysis. Psychoneuroendocrinology, 2018, 89, 92-102.
[42]
Fuller, P.J.; Lim-Tio, S.S.; Brennan, F.E. Specificity in mineralocorticoid versus glucocorticoid action. Kidney Int., 2000, 57(4), 1256-1264.
[43]
Taddei, S.; Virdis, A.; Mattei, P.; Salvetti, A. Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hypertension, 1993, 21(6 Pt2), 929-933.
[44]
Golembiewska, E.; Machowska, A.; Stenvinkel, P.; Lindholm, B. Prognostic value of copeptin in chronic kidney disease: from general population to end-stage renal disease. Curr. Protein Pept. Sci., 2017, 18(12), 1232-1243.
[45]
DiBona, G.F. Central angiotensin modulation of baroreflex control of renal sympathetic nerve activity in the rat: Influence of dietary sodium. Acta Physiol. Scand., 2003, 177(3), 285-289.
[46]
El Ghorayeb, N.; Bourdeau, I.; Lacroix, A. Role of ACTH and other hormones in the regulation of aldosterone production in primary aldosteronism. Front. Endocrinol., 2016, 7, 72.
[47]
Murck, H.; Büttner, M.; Kircher, T.; Konrad, C. Genetic, molecular and clinical determinants for the involvement of aldosterone and its receptors in major depression. Nephron, Physiol., 2014, 128(1-2), 17-25.
[48]
Korte, S.M. Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci. Biobehav. Rev., 2001, 25(2), 117-142.
[49]
Jezova, D. Control of ACTH secretion by excitatory amino acids: Functional significance and clinical implications. Endocrine, 2005, 28(3), 287-294.
[50]
Stier, C.T., Jr; Serova, L.I.; Singh, G.; Sabban, E.L. Stress triggered rise in plasma aldosterone is lessened by chronic nicotine infusion. Eur. J. Pharmacol., 2004, 495(2-3), 167-170.
[51]
Moncek, F.; Aguilera, G.; Jezova, D. Insufficient activation of adrenocortical but not adrenomedullary hormones during stress in rats subjected to repeated immune challenge. J. Neuroimmunol., 2003, 142(1-2), 86-92.
[52]
Kajihara, H.; Malliwah, J.A.; Matsumura, M.; Taguchi, K.; Iijima, S. Changes in blood cortisol and aldosterone levels and ultrastructure of the adrenal cortex during hemorrhagic shock. Pathol. Res. Pract., 1983, 176(2-4), 324-340.
[53]
Belyakova, E.I.; Mendzheritskii, A.M. Adrenocortical and thyroid systems of rats during the initial period of nociceptive influences. Neurosci. Behav. Physiol., 2006, 36(5), 561-564.
[54]
Varga, J.; Ferenczi, S.; Kovács, K.J.; Garafova, A.; Jezova, D.; Zelena, D. Comparison of stress-induced changes in adults and pups: Is aldosterone the main adrenocortical stress hormone during the perinatal period in rats? PLoS One, 2013, 8(9)e72313
[55]
Csanova, A.; Hlavacova, N.; Hasiec, M.; Pokusa, M.; Prokopova, B.; Jezova, D. β(3)-Adrenergic receptors, adipokines and neuroendocrine activation during stress induced by repeated immune challenge in male and female rats. Stress, 2017, 20(3), 294-302.
[56]
Kubzansky, L.D.; Adler, G.K. Aldosterone: a forgotten mediator of the relationship between psychological stress and heart disease. Neurosci. Biobehav. Rev., 2010, 34(1), 80-86.
[57]
Makatsori, A.; Duncko, R.; Moncek, F.; Loder, I.; Katina, S.; Jezova, D. Modulation of neuroendocrine response and non-verbal behavior during psychosocial stress in healthy volunteers by the glutamate release-inhibiting drug lamotrigine. Neuroendocrinology, 2004, 79(1), 34-42.
[58]
Bae, Y.J.; Reinelt, J.; Netto, J.; Uhlig, M.; Willenberg, A.; Ceglarek, U.; Villringer, T.J.; Gaebler, M.; Kratzsch, J. Salivary cortisone, as a biomarker for psychosocial stress, is associated with state anxiety and heart rate. Psychoneuroendocrinology, 2018, 101, 35-41.
[59]
Hlavacova, N.; Solarikova, P.; Marko, M.; Brezina, I.; Jezova, D. Blunted cortisol response to psychosocial stress in atopic patients is associated with decrease in salivary alpha-amylase and aldosterone: Focus on sex and menstrual cycle phase. Psychoneuroendocrinology, 2017, 78, 31-38.
[60]
Hlavacova, N.; Wes, P.D.; Ondrejcakova, M.; Flynn, M.E.; Poundstone, P.K.; Babic, S.; Murck, H.; Jezova, D. Subchronic treatment with aldosterone induces depression-like behaviours and gene expression changes relevant to major depressive disorder. Int. J. Neuropsychopharmacol., 2012, 15(2), 247-265.
[61]
Aguilera, G.; Kiss, A.; Luo, X.; Akbasak, B.S. The renin angiotensin system and the stress response. Ann. N. Y. Acad. Sci., 1995, 771, 173-186.
[62]
Grippo, A.J.; Johnson, A.K. Stress, depression and cardiovascular dysregulation: A review of neurobiological mechanisms and the integration of research from preclinical disease models. Stress, 2009, 12(1), 1-21.
[63]
Schiffrin, E.L. Effects of aldosterone on the vasculature. Hypertension, 2006, 47(3), 312-318.
[64]
Garg, R.; Adler, G.K. Aldosterone and the mineralocorticoid receptor: Risk factors for cardiometabolic disorders. Curr. Hypertens. Rep., 2015, 17(7), 52.
[65]
Gilbert, K.C.; Brown, N.J. Aldosterone and inflammation. Curr. Opin. Endocrinol. Diabetes Obes., 2010, 17(3), 199-204.
[66]
Bruder-Nascimento, T.; da Silva, M.A.; Tostes, R.C. The involvement of aldosterone on vascular insulin resistance: Implications in obesity and type 2 diabetes. Diabetol. Metab. Syndr., 2014, 6(1), 90.
[67]
Geerling, J.C.; Loewy, A.D. Aldosterone in the brain. Am. J. Physiol. Renal Physiol., 2009, 297(3), F559-F576.
[68]
Huang, B.S.; Leenen, F.H. Mineralocorticoid actions in the brain and hypertension. Curr. Hypertens. Rep., 2011, 13(3), 214-220.
[69]
Hlavacova, N.; Jezova, D. Chronic treatment with the mineralocorticoid hormone aldosterone results in increased anxiety-like behavior. Horm. Behav., 2008, 54, 90-97.
[70]
Franklin, M.; Hlavacova, N.; Babic, S.; Pokusa, M.; Bermudez, I.; Jezova, D. Aldosterone signals the onset of depressive behaviour in a female rat model of depression along with SSRI treatment resistance. Neuroendocrinology, 2015, 102(4), 274-287.
[71]
Sonino, N.; Fallo, F.; Fava, G.A. Psychological aspects of primary aldosteronism. Psychother. Psychosom., 2006, 75, 327-330.
[72]
Künzel, H.E. Psychopathological symptoms in patients with primary hyperaldosteronism--possible pathways. Horm. Metab. Res., 2012, 44(3), 202-207.
[73]
Apostolopoulou, K.; Künzel, H.E.; Gerum, S.; Merkle, K.; Schulz, S.; Fischer, E.; Pallauf, A.; Brand, V.; Bidlingmaier, M.; Endres, S.; Beuschlein, F.; Reincke, M. Gender differences in anxiety and depressive symptoms in patients with primary hyperaldosteronism: A cross-sectional study. World J. Biol. Psychiatry, 2014, 15(1), 26-35.
[74]
Murck, H.; Held, K.; Ziegenbein, M.; Künzel, H.; Koch, K.; Steiger, A. The renin-angiotensin-aldosterone system in patients with depression compared to controls-a sleep endocrine study. BMC Psychiatry, 2003, 3, 15.
[75]
Emanuele, E.; Geroldi, D.; Minoretti, P.; Coen, E.; Politi, P. Increased plasma aldosterone in patients with clinical depression. Arch. Med. Res., 2005, 36, 544-548.
[76]
Häfner, S.; Baumert, J.; Emeny, R.T.; Lacruz, M.E.; Bidlingmaier, M.; Reincke, M.; Kuenzel, H.; Holle, R.; Rupprecht, R.; Ladwig, K.H. To live alone and to be depressed, an alarming combination for the renin-angiotensin-aldosterone-system (RAAS). Psychoneuroendocrinology, 2012, 37, 230-237.
[77]
Häfner, S.; Baumert, J.; Emeny, R.T.; Lacruz, M.E.; Bidlingmaier, M.; Reincke, M.; Ladwig, K.H. Hypertension and depressed symptomatology: A cluster related to the activation of the renin-angiotensin-aldosterone system (RAAS). Findings from population based KORA F4 study. Psychoneuroendocrinology, 2013, 38, 2065-2074.
[78]
Segeda, V.; Izakova, L.; Hlavacova, N.; Bednarova, A.; Jezova, D. Aldosterone concentrations in saliva reflect the duration and severity of depressive episode in a sex dependent manner. J. Psychiatr. Res., 2017, 91, 164-168.
[79]
Connell, J.M.; Davies, E. The new biology of aldosterone. J. Endocrinol., 2005, 186(1), 1-20.
[80]
Haseroth, K.; Christ, M.; Falkenstein, E.; Wehling, M. Aldosterone- and progesterone-membrane-binding proteins: New concepts of nongenomic steroid action. Curr. Protein Pept. Sci., 2000, 1(4), 385-401.
[81]
Fischer, A.K.; von Rosenstiel, P.; Fuchs, E.; Goula, D.; Almeida, O.F.; Czéh, B. The prototypic mineralocorticoid receptor agonist aldosterone influences neurogenesis in the dentate gyrus of the adrenalectomized rat. Brain Res., 2002, 947(2), 290-293.