Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Monoterpenoid Geraniol Improves Anti-mycobacterial Drug Efficiency by Interfering with Lipidome and Virulence of Mycobacteria

Author(s): Sharda Sharma, Saif Hameed* and Zeeshan Fatima*

Volume 20, Issue 4, 2020

Page: [467 - 485] Pages: 19

DOI: 10.2174/1871526519666190625113203

Price: $65

Abstract

Background: Tuberculosis (TB) remains a global infectious disorder for which efficient therapeutics are elusive. Nature is a source of novel pharmacologically active compounds with many potential drugs being derived directly or indirectly from plants, microorganisms and marine organisms.

Objective: The present study aimed to elucidate the antimycobacterial potential of Geraniol (Ger), monoterpene alcohol, against Mycobacterium smegmatis.

Methods: Disrupted membrane integrity was studied by membrane permeability assay and PI uptake. Cell surface phenotypes were studied by colony morphology, sliding motility and cell sedimentation rate. Lipidome profile was demonstrated by thin-layer chromatography and liquid chromatography-electrospray ionization mass spectrometry. Amendment in iron homeostasis was assessed by using iron chelator ferrozine and ferroxidase assay while genotoxicity was estimated with EtBr and DAPI staining. Biofilm formation was measured by staining, dry mass and metabolic activity using crystal violet. Cell adherence was examined microscopically and spectrophotometrically.

Results: We found the antimycobacterial activity of Ger to be 500 μg/ml against M. smegmatis. Underlying mechanisms revealed impaired cell surface phenotypes. Lipidomics analysis exposed profound decrement of mycolic acids, phosphatidylinositol mannosides and triacylglycerides which are crucial for MTB pathogenicity. We further explored that Ger impairs iron homeostasis and leads to genotoxic stress. Moreover, Ger inhibited the potential virulence attributes such as biofilm formation and cell adherence to both polystyrene surface and epithelial cells. Finally, we have validated all the disrupted phenotypes by RT-PCR which showed good correlation with the biochemical assays.

Conclusion: Taken together, the current study demonstrates the antimycobacterial mechanisms of Ger, which may be exploited as an effective candidate of pharmacological interest.

Keywords: Mycobacterium, anti-TB drugs, geraniol, membrane, lipidome, biofilm.

[2]
Samad, A.; Sultana, Y.; Akhter, M.S.; Aqil, M. Treatment of tuberculosis: use of active pharmaceuticals. Recent Pat Antiinfect Drug Discov, 2008, 3(1), 34-44.
[http://dx.doi.org/10.2174/157489108783413209] [PMID: 18221184]
[3]
Sharma, S.; Pal, R.; Hameed, S.; Fatima, Z. Antimycobacterial mechanism of vanillin involves disruption of cell-surface integrity, virulence attributes, and iron homeostasis. Int. J. Mycobacteriol., 2016, 5(4), 460-468.
[http://dx.doi.org/10.1016/j.ijmyco.2016.06.010] [PMID: 27931688]
[4]
Galle, M.; Crespo, R.; Kladniew, B.R.; Villegas, S.M.; Polo, M.; de Bravo, M.G. Suppression by geraniol of the growth of A549 human lung adenocarcinoma cells and inhibition of the mevalonate pathway in culture and in vivo: potential use in cancer chemotherapy. Nutr. Cancer, 2014, 66(5), 888-895.
[http://dx.doi.org/10.1080/01635581.2014.916320] [PMID: 24875281]
[5]
Su, Y.W.; Chao, S.H.; Lee, M.H.; Ou, T.Y.; Tsai, Y.C. Inhibitory effects of citronellol and geraniol on nitric oxide and prostaglandin E2production in macrophages. Planta Med., 2010, 76(15), 1666-1671.
[http://dx.doi.org/10.1055/s-0030-1249947] [PMID: 20506077]
[6]
Singh, D.; Kumar, T.R.; Gupt, V.K.; Chaturvedi, P. Antimicrobial activity of some promising plant oils, molecules and formulations. Indian J. Exp. Biol., 2012, 50(10), 714-717.
[PMID: 23214265]
[7]
Rajab, M.S.; Cantrell, C.L.; Franzblau, S.G.; Fischer, N.H. Antimycobacterial activity of (E)-phytol and derivatives: a preliminary structure-activity study. Planta Med., 1998, 64(1), 2-4.
[http://dx.doi.org/10.1055/s-2006-957354] [PMID: 9491760]
[8]
National Committee for Clinical and Laboratory Standards. Reference Method for Broth Dilution Antifungal Susceptibility Testing of YeastsApproved standard M27-A3; National Committee for Clinical and Laboratory Standards: Wayne, Ill, USA, 2008.
[9]
Aubry, A.; Jarlier, V.; Escolano, S.; Truffot-Pernot, C.; Cambau, E. Antibiotic susceptibility pattern of Mycobacterium marinum. Antimicrob. Agents Chemother., 2000, 44(11), 3133-3136.
[http://dx.doi.org/10.1128/AAC.44.11.3133-3136.2000] [PMID: 11036036]
[10]
Hans, S.; Sharma, S.; Hameed, S.; Fatima, Z. Sesamol exhibits potent antimycobacterial activity: Underlying mechanisms and impact on virulence traits. J. Glob. Antimicrob. Resist., 2017, 10, 228-237.
[http://dx.doi.org/10.1016/j.jgar.2017.06.007] [PMID: 28735047]
[11]
Jamet, S.; Slama, N.; Domingues, J.; Laval, F.; Texier, P.; Eynard, N.; Quémard, A.; Peixoto, A.; Lemassu, A.; Daffé, M.; Cam, K. The non-essential mycolic acid biosynthesis genes hada and hadc contribute to the physiology and fitness of Mycobacterium smegmatis. PLoS One, 2015, 10(12) e0145883
[http://dx.doi.org/10.1371/journal.pone.0145883] [PMID: 26701652]
[12]
Flores, A.R.; Parsons, L.M.; Pavelka, M.S. Genetic analysis of the beta-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to beta-lactam antibiotics. Microbiology, 2005, 151(Pt 2), 521-532.
[http://dx.doi.org/10.1099/mic.0.27629-0] [PMID: 15699201]
[13]
Danilchanka, O.; Mailaender, C.; Niederweis, M. Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2008, 52(7), 2503-2511.
[http://dx.doi.org/10.1128/AAC.00298-08] [PMID: 18458127]
[14]
Shi, L.; Günther, S.; Hübschmann, T.; Wick, L.Y.; Harms, H.; Müller, S. Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A., 2007, 71(8), 592-598. Shi, L.; Günther, S.; Hübschmann, T.; Wick, L.Y.; Harms, H.; Müller, S. Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A, 2007, 71(8), 592-598.
[http://dx.doi.org/10.1002/cyto.a.20402] [PMID: 17421025]
[15]
Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 1957, 226(1), 497-509.
[PMID: 13428781]
[16]
Chauhan, P.; Reddy, P.V.; Singh, R.; Jaisinghani, N.; Gandotra, S.; Tyagi, A.K. Secretory phosphatases deficient mutant of Mycobacterium tuberculosis imparts protection at the primary site of infection in guinea pigs. PLoS One, 2013, 8(10) e77930
[http://dx.doi.org/10.1371/journal.pone.0077930] [PMID: 24205032]
[17]
Singh, V.; Jamwal, S.; Jain, R.; Verma, P.; Gokhale, R.; Rao, K.V. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe, 2012, 12(5), 669-681.
[http://dx.doi.org/10.1016/j.chom.2012.09.012] [PMID: 23159056]
[18]
Pal, R.; Hameed, S.; Kumar, P.; Singh, S.; Fatima, Z. Comparative Lipidome Profile of Sensitive and Resistant Mycobacterium tuberculosis Strain. Int. J. Curr. Microbiol. Appl. Sci., 2015, 2015, 189-197.
[19]
Madacki, J.; Laval, F.; Grzegorzewicz, A.; Lemassu, A.; Záhorszká, M.; Arand, M.; McNeil, M.; Daffé, M.; Jackson, M.; Lanéelle, M.A.; Korduláková, J. Impact of the epoxide hydrolase EphD on the metabolism of mycolic acids in mycobacteria. J. Biol. Chem., 2018, 293(14), 5172-5184.
[http://dx.doi.org/10.1074/jbc.RA117.000246] [PMID: 29472294]
[20]
Grzegorzewicz, A.E.; Pham, H.; Gundi, V.A.; Scherman, M.S.; North, E.J.; Hess, T.; Jones, V.; Gruppo, V.; Born, S.E.; Korduláková, J.; Chavadi, S.S.; Morisseau, C.; Lenaerts, A.J.; Lee, R.E.; McNeil, M.R.; Jackson, M. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat. Chem. Biol., 2012, 8(4), 334-341.
[http://dx.doi.org/10.1038/nchembio.794] [PMID: 22344175]
[21]
Pal, R.; Hameed, S.; Sabareesh, V.; Kumar, P.; Singh, S.; Fatima, Z. Investigations into isoniazid treated Mycobacterium tuberculosis by electrospray mass spectrometry reveals new insights into its lipid composition. J. Pathogens, 2018. 20181454316
[http://dx.doi.org/10.1155/2018/1454316] [PMID: 30018826]
[22]
Cao, J.; Dang, G.; Li, H.; Li, T.; Yue, Z.; Li, N.; Liu, Y.; Liu, S.; Chen, L. Identification and characterization of lipase activity and immunogenicity of LipL from Mycobacterium tuberculosis. PLoS One, 2015, 10(9) e0138151
[http://dx.doi.org/10.1371/journal.pone.0138151] [PMID: 26398213]
[23]
Kim, C.; Lorenz, W.W.; Hoopes, J.T.; Dean, J.F. Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J. Bacteriol., 2001, 183(16), 4866-4875.
[http://dx.doi.org/10.1128/JB.183.16.4866-4875.2001] [PMID: 11466290]
[24]
Hao, B.; Cheng, S.; Clancy, C.J.; Nguyen, M.H. Caspofungin kills Candida albicans by causing both cellular apoptosis and necrosis. Antimicrob. Agents Chemother., 2013, 57(1), 326-332.
[http://dx.doi.org/10.1128/AAC.01366-12] [PMID: 23114781]
[25]
Ramsugit, S.; Guma, S.; Pillay, B.; Jain, P.; Larsen, M.H.; Danaviah, S.; Pillay, M. Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis. Antonie van Leeuwenhoek, 2013, 104(5), 725-735.
[http://dx.doi.org/10.1007/s10482-013-9981-6] [PMID: 23907521]
[26]
Pal, R.; Hameed, S.; Fatima, Z. Altered drug efflux under iron deprivation unveils abrogated MmpL3 driven mycolic acid transport and fluidity in mycobacteria. Biometals, 2018.
[PMID: 30430296]
[27]
Brennan, P.J.; Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem., 1995, 64, 29-63.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.000333] [PMID: 7574484]
[28]
Pal, R.; Hameed, S.; Fatima, Z. Lipidomics: Novel Strategy to Conquer Antimicrobial Resistance, Antimicrobial research: Novel bioknowledge and educational programs. 2017, 644-650.
[29]
Sabareesh, V.; Singh, G. Mass spectrometry based lipid(ome) analyzer and molecular platform: a new software to interpret and analyze electrospray and/or matrix-assisted laser desorption/ionization mass spectrometric data of lipids: a case study from Mycobacterium tuberculosis. J. Mass Spectrom., 2013, 48(4), 465-477.
[http://dx.doi.org/10.1002/jms.3163] [PMID: 23584940]
[30]
Layre, E.; Al-Mubarak, R.; Belisle, J.T.; Branch Moody, D. Mycobacterial Lipidomics. Microbiol. Spectr., 2014, 2(3)
[http://dx.doi.org/10.1128/microbiolspec.MGM2-0033-2013] [PMID: 26103971]
[31]
Kinsella, R.J.; Fitzpatrick, D.A.; Creevey, C.J.; McInerney, J.O. Fatty acid biosynthesis in Mycobacterium tuberculosis: lateral gene transfer, adaptive evolution, and gene duplication. Proc. Natl. Acad. Sci. USA, 2003, 100(18), 10320-10325.
[http://dx.doi.org/10.1073/pnas.1737230100] [PMID: 12917487]
[32]
Coleman, R.A.; Lee, D.P. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res., 2004, 43(2), 134-176.
[http://dx.doi.org/10.1016/S0163-7827(03)00051-1] [PMID: 14654091]
[33]
Jackson, M. The mycobacterial cell envelope-lipids. Cold Spring Harb. Perspect. Med., 2014, 4(10) a021105
[http://dx.doi.org/10.1101/cshperspect.a021105] [PMID: 25104772]
[34]
Boldrin, F.; Ventura, M.; Degiacomi, G.; Ravishankar, S.; Sala, C.; Svetlikova, Z.; Ambady, A.; Dhar, N.; Kordulakova, J.; Zhang, M.; Serafini, A.; Vishwas, K.G.; Kolly, G.S.; Kumar, N.; Palù, G.; Guerin, M.E.; Mikusova, K.; Cole, S.T.; Manganelli, R. The phosphatidyl-myo-inositol mannosyltransferase PimA is essential for Mycobacterium tuberculosis growth in vitro and in vivo. J. Bacteriol., 2014, 196(19), 3441-3451.
[http://dx.doi.org/10.1128/JB.01346-13] [PMID: 25049093]
[35]
Bailo, R.; Bhatt, A.; Aínsa, J.A. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development. Biochem. Pharmacol., 2015, 96(3), 159-167.
[http://dx.doi.org/10.1016/j.bcp.2015.05.001] [PMID: 25986884]
[36]
Belardinelli, J.M.; Larrouy-Maumus, G.; Jones, V.; Sorio de Carvalho, L.P.; McNeil, M.R.; Jackson, M. Biosynthesis and translocation of unsulfated acyltrehaloses in Mycobacterium tuberculosis. J. Biol. Chem., 2014, 289(40), 27952-27965.
[http://dx.doi.org/10.1074/jbc.M114.581199] [PMID: 25124040]
[37]
Wu, M.J.; O’Doherty, P.J.; Fernandez, H.R.; Lyons, V.; Rogers, P.J.; Dawes, I.W.; Higgins, V.J. An antioxidant screening assay based on oxidant-induced growth arrest in Saccharomyces cerevisiae. FEMS Yeast Res., 2011, 11(4), 379-387.
[http://dx.doi.org/10.1111/j.1567-1364.2011.00726.x] [PMID: 21375688]
[38]
Trivedi, A.; Mavi, P.S.; Bhatt, D.; Kumar, A. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis. Nat. Commun., 2016, 7, 11392.
[http://dx.doi.org/10.1038/ncomms11392] [PMID: 27109928]
[39]
Ojha, A.K.; Baughn, A.D.; Sambandan, D.; Hsu, T.; Trivelli, X.; Guerardel, Y.; Alahari, A.; Kremer, L.; Jacobs, W.R., Jr; Hatfull, G.F. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol., 2008, 69(1), 164-174.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06274.x] [PMID: 18466296]
[40]
Wang, F.; Sambandan, D.; Halder, R.; Wang, J.; Batt, S.M.; Weinrick, B.; Ahmad, I.; Yang, P.; Zhang, Y.; Kim, J.; Hassani, M.; Huszar, S.; Trefzer, C.; Ma, Z.; Kaneko, T.; Mdluli, K.E.; Franzblau, S.; Chatterjee, A.K.; Johnsson, K.; Mikusova, K.; Besra, G.S.; Fütterer, K.; Robbins, S.H.; Barnes, S.W.; Walker, J.R.; Jacobs, W.R., Jr; Schultz, P.G. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proc. Natl. Acad. Sci. USA, 2013, 110(27), E2510-E2517.
[http://dx.doi.org/10.1073/pnas.1309171110] [PMID: 23776209]
[41]
Pang, J.M.; Layre, E.; Sweet, L.; Sherrid, A.; Moody, D.B.; Ojha, A.; Sherman, D.R. The polyketide Pks1 contributes to biofilm formation in Mycobacterium tuberculosis. J. Bacteriol., 2012, 194(3), 715-721.
[http://dx.doi.org/10.1128/JB.06304-11] [PMID: 22123254]
[42]
Coutte, L.; Alonso, S.; Reveneau, N.; Willery, E.; Quatannens, B.; Locht, C.; Jacob-Dubuisson, F. Role of adhesin release for mucosal colonization by a bacterial pathogen. J. Exp. Med., 2003, 197(6), 735-742.
[http://dx.doi.org/10.1084/jem.20021153] [PMID: 12629063]
[43]
Pawelczyk, J.; Viljoen, A.; Kremer, L.; Dziadek, J. The influence of AccD5 on AccD6 carboxyltransferase essentiality in pathogenic and non-pathogenic Mycobacterium. Sci. Rep., 2017, 7, 42692.
[http://dx.doi.org/10.1038/srep42692] [PMID: 28205597]
[44]
Skovierová, H.; Larrouy-Maumus, G.; Zhang, J.; Kaur, D.; Barilone, N.; Korduláková, J.; Gilleron, M.; Guadagnini, S.; Belanová, M.; Prevost, M.C.; Gicquel, B.; Puzo, G.; Chatterjee, D.; Brennan, P.J.; Nigou, J.; Jackson, M. AftD, a novel essential arabinofuranosyltransferase from mycobacteria. Glycobiology, 2009, 19(11), 1235-1247.
[http://dx.doi.org/10.1093/glycob/cwp116] [PMID: 19654261]
[45]
Zanfardino, A.; Migliardi, A.; D’Alonzo, D.; Lombardi, A.; Varcamonti, M.; Cordone, A. Inactivation of MSMEG_0412 gene drastically affects surface related properties of Mycobacterium smegmatis. BMC Microbiol., 2016, 16(1), 267.
[http://dx.doi.org/10.1186/s12866-016-0888-z] [PMID: 27825305]
[46]
Burbaud, S.; Laval, F.; Lemassu, A.; Daffé, M.; Guilhot, C.; Chalut, C. Trehalose Polyphleates Are Produced by a Glycolipid Biosynthetic Pathway Conserved across Phylogenetically Distant Mycobacteria. Cell Chem. Biol., 2016, 23(2), 278-289.
[http://dx.doi.org/10.1016/j.chembiol.2015.11.013] [PMID: 27028886]
[47]
Ojha, A.; Hatfull, G.F. The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Mol. Microbiol., 2007, 66(2), 468-483.
[http://dx.doi.org/10.1111/j.1365-2958.2007.05935.x] [PMID: 17854402]
[48]
Wang, Y.; Huang, Y.; Xue, C.; He, Y.; He, Z.G. ClpR protein-like regulator specifically recognizes RecA protein-independent promoter motif and broadly regulates expression of DNA damage inducible genes in mycobacteria. J. Biol. Chem., 2011, 286(36), 31159-31167.
[http://dx.doi.org/10.1074/jbc.M111.241802] [PMID: 21771781]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy