Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Liposomes as Anticancer Therapeutic Drug Carrier’s Systems: More than a Tour de Force

Author(s): Mahfoozur Rahman, Sarwar Beg, Amita Verma, Imran Kazmi, Farhan Jalees Ahmed, Vikas Kumar, Firoz Anwar and Sohail Akhter*

Volume 10, Issue 2, 2020

Page: [178 - 185] Pages: 8

DOI: 10.2174/2468187309666190618171332

Abstract

A liposome is a spherical vesicle composed of a bilayer of lipid with central aqueous cavity. Liposomes are the first nano vesicular drug delivery carriers, which are successfully translated into real-time clinical application and gained great potential in the past 30 years. The characteristics of liposomes to encapsulate both hydrophilic and hydrophobic drugs, their biocompatibility and biodegradability make it attractive nanocarriers in drug delivery area. Apart from this, great technical advancement has been made to develops second-generation liposomes named as stealth liposomes, cationic liposomes, triggered release liposomes and ligand targeted liposomes. This led to widespread use of liposomes in various areas including anticancer therapeutics, diagnostics and imaging agents. Therefore, the presents review article made an extensive discussion of various liposomes and its applications in cancer treatment.

Keywords: Phospholipids, Liposomes, ligand targeted liposomes, Cancer, Anticancer drug, and Doxil.

Graphical Abstract

[1]
Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface active agents as observed in the electron microscope. J Mol Biol 1964; 8: 660-8.
[http://dx.doi.org/10.1016/S0022-2836(64)80115-7] [PMID: 14187392]
[2]
Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13(1): 238-52.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[3]
Rahman M, Ahmad MZ, Kazmi I, et al. Advancement in multifunctional nanoparticles for the effective treatment of cancer. Expert Opin Drug Deliv 2012; 9(4): 367-81.
[http://dx.doi.org/10.1517/17425247.2012.668522] [PMID: 22400808]
[4]
Rahman M, Ahmad MZ, Kazmi I, et al. Emergence of nanomedicine as cancer targeted magic bullets: recent development and need to address the toxicity apprehension. Curr Drug Discov Technol 2012; 9(4): 319-29.
[http://dx.doi.org/10.2174/157016312803305898] [PMID: 22725687]
[5]
Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl 2015; 8: 55-66.
[PMID: 26640374]
[6]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[PMID: 17717971]
[7]
Rahman M, Beg S, Verma A, et al. Therapeutic applications of liposomal based drug delivery and drug targeting for immune linked inflammatory maladies: A contemporary view point. Curr Drug Targets 2017; 18(13): 1558-71.
[http://dx.doi.org/10.2174/1389450118666170414113926] [PMID: 28413980]
[8]
Rahman M, Kumar V, Beg S, Sharma G, Katare OP, Anwar F. Emergence of liposome as targeted magic bullet for inflammatory disorders: current state of the art. Artif Cells Nanomed Biotechnol 2016; 44(7): 1597-608.
[http://dx.doi.org/10.3109/21691401.2015.1129617] [PMID: 26758815]
[9]
Beg S, Rahman M, Jain A, et al. Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications. Drug Discov Today 2017; 22(4): 625-37.
[http://dx.doi.org/10.1016/j.drudis.2016.10.001] [PMID: 27742533]
[10]
Rahman M, Kumar V, Beg S, Sharma G, Katare OP, Anwar F. Emergence of liposome as targeted magic bullet for inflammatory disorders: current state of the art. Artif Cells Nanomed Biotechnol 2016; 44(7): 1597-608.
[http://dx.doi.org/10.3109/21691401.2015.1129617] [PMID: 26758815]
[11]
Aneja P, Rahman M, Beg S, Aneja S, Dhingra V, Chugh R. Cancer targeted magic bullets for effective treatment of cancer. Recent Pat Antiinfect Drug Discov 2014; 9(2): 121-35.
[http://dx.doi.org/10.2174/1574891X10666150415120506] [PMID: 25876849]
[12]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017; 9(2)E12
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[13]
Barenholz Y. Doxil®-the first FDA-approved nano-drug: lessons learned. J Control Release 2012; 160(2): 117-34.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[14]
Petre CE, Dittmer DP. Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int J Nanomedicine 2007; 2(3): 277-88.
[PMID: 18019828]
[15]
Leonard RC, Williams S, Tulpule A, Levine AM, Oliveros S. Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet). Breast 2009; 18(4): 218-24.
[http://dx.doi.org/10.1016/j.breast.2009.05.004] [PMID: 19656681]
[16]
Patil YP, Jadhav S. Novel methods for liposome preparation. Chem Phys Lipids 2014; 177: 8-18.
[http://dx.doi.org/10.1016/j.chemphyslip.2013.10.011] [PMID: 24220497]
[17]
Rahman M, Akhter S, Ahmad MZ, et al. Emerging advances in cancer nanotheranostics with graphene nanocomposites: opportunities and challenges. Nanomedicine (Lond) 2015; 10(15): 2405-22.
[http://dx.doi.org/10.2217/nnm.15.68] [PMID: 26252175]
[18]
Alavi M, Karimi N, Safaei M. Applications of various types of liposomes in drug delivery systems. Adv Pharm Bull 2017; 7(1): 3-9.
[http://dx.doi.org/10.15171/apb.2017.002] [PMID: 28507932]
[19]
Rahman M, Ahmad MZ, Ahmad J, et al. Role of Graphene Nano-Composites in Cancer Therapy: Theranostic Applications, Metabolic Fate and Toxicity Issues. Curr Drug Metab 2015; 16(5): 397-409.
[http://dx.doi.org/10.2174/1389200215666141125120633] [PMID: 25429670]
[20]
Ahmad MZ, Akhter S, Anwar M, et al. Colorectal cancer targeted Irinotecan-Assam Bora rice starch based microspheres: a mechanistic, pharmacokinetic and biochemical investigation. Drug Dev Ind Pharm 2013; 39(12): 1936-43.
[http://dx.doi.org/10.3109/03639045.2012.719906] [PMID: 23013140]
[21]
Sharma A, Sharma US. Liposomes in drug delivery: Progress and limitations. Int J Pharm 1997; 154: 123-40.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[22]
Ahmad MZ, Akhter S, Ahmad I, et al. Development of polysaccharide based colon targeted drug delivery system: design and evaluation of Assam Bora rice starch based matrix tablet. Curr Drug Deliv 2011; 8(5): 575-81.
[http://dx.doi.org/10.2174/156720111796642327] [PMID: 21696349]
[23]
Akhter S, Ahmad Z, Singh A, et al. Cancer targeted metallic nanoparticle: targeting overview, recent advancement and toxicity concern. Curr Pharm Des 2011; 17(18): 1834-50.
[http://dx.doi.org/10.2174/138161211796391001] [PMID: 21568874]
[24]
Ahmad MZ, Akhter S, Jain GK, et al. Metallic nanoparticles: technology overview & drug delivery applications in oncology. Expert Opin Drug Deliv 2010; 7(8): 927-42.
[http://dx.doi.org/10.1517/17425247.2010.498473] [PMID: 20645671]
[25]
Rahman M, Beg S, Ahmed A, Swain S. Emergence of functionalized nanomedicines in cancer chemotherapy: recent advancements, current challenges and toxicity considerations. Recent Pat Nanomed 2013; 2: 128-39.
[26]
Rahman M, Ahmed MZ, Kazmi I, et al. Novel approach for the treatment of cancer: Theranostic nanomedicines. Pharmacologia 2012; 3: 371-6.
[http://dx.doi.org/10.5567/pharmacologia.2012.371.376]
[27]
Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005; 5(3): 161-71.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[28]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[PMID: 17717971]
[29]
Kaasgaard T, Andresen TL. Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin Drug Deliv 2010; 7(2): 225-43.
[http://dx.doi.org/10.1517/17425240903427940] [PMID: 20095944]
[30]
Zhao YZ, Dai DD, Lu CT, et al. Epirubicin loaded with propylene glycol liposomes significantly overcomes multidrug resistance in breast cancer. Cancer Lett 2013; 330(1): 74-83.
[http://dx.doi.org/10.1016/j.canlet.2012.11.031] [PMID: 23186833]
[31]
Zhou J, Zhao WY, Ma X, et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 2013; 34(14): 3626-38.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.078] [PMID: 23422592]
[32]
O’Byrne KJ, Thomas AL, Sharma RA, et al. A phase I dose-escalating study of DaunoXome, liposomal daunorubicin, in metastatic breast cancer. Br J Cancer 2002; 87(1): 15-20.
[http://dx.doi.org/10.1038/sj.bjc.6600344] [PMID: 12085249]
[33]
Suzuki R, Takizawa T, Kuwata Y, et al. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm 2008; 346(1-2): 143-50.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.010] [PMID: 17640835]
[34]
Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol 2014; 32(1): 32-45.
[http://dx.doi.org/10.1016/j.tibtech.2013.09.007] [PMID: 24210498]
[35]
Sakurai F, Inoue S, Kaminade T, et al. Cationic liposome-mediated delivery of reovirus enhances the tumor cell-killing efficiencies of reovirus in reovirus-resistant tumor cells. Int J Pharm 2017; 524(1-2): 238-47.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.006] [PMID: 28389364]
[36]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[PMID: 17717971]
[37]
Eichhorn ME, Becker S, Strieth S, et al. Paclitaxel encapsulated in cationic lipid complexes (MBT-0206) impairs functional tumor vascular properties as detected by dynamic contrast enhanced magnetic resonance imaging. Cancer Biol Ther 2006; 5(1): 89-96.
[http://dx.doi.org/10.4161/cbt.5.1.2346] [PMID: 16357513]
[38]
Abu Lila AS, Kizuki S, Doi Y, Suzuki T, Ishida T, Kiwada H. Oxaliplatin encapsulated in PEG-coated cationic liposomes induces significant tumor growth suppression via a dual-targeting approach in a murine solid tumor model. J Control Release 2009; 137(1): 8-14.
[http://dx.doi.org/10.1016/j.jconrel.2009.02.023] [PMID: 19285528]
[39]
Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 2004; 100(1): 135-44.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.007] [PMID: 15491817]
[40]
Goren D, Horowitz AT, Zalipsky S, Woodle MC, Yarden Y, Gabizon A. Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies. Br J Cancer 1996; 74(11): 1749-56.
[http://dx.doi.org/10.1038/bjc.1996.625] [PMID: 8956788]
[41]
Aryasomayajula B, Salzano G, Torchilin VP. Multifunctional Liposomes. Methods Mol Biol 2017; 1530: 41-61.
[http://dx.doi.org/10.1007/978-1-4939-6646-2_3] [PMID: 28150195]
[42]
Fritze A, Hens F, Kimpfler A, Schubert R, Peschka-Süss R. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta 2006; 1758(10): 1633-40.
[http://dx.doi.org/10.1016/j.bbamem.2006.05.028] [PMID: 16887094]
[43]
Yi YS. Folate receptor-targeted diagnostics and therapeutics for inflammatory diseases. Immune Netw 2016; 16(6): 337-43.
[http://dx.doi.org/10.4110/in.2016.16.6.337] [PMID: 28035209]
[44]
Zhang Z, Yao J. Preparation of irinotecan-loaded folate-targeted liposome for tumor targeting delivery and its antitumor activity. AAPS PharmSciTech 2012; 13(3): 802-10.
[http://dx.doi.org/10.1208/s12249-012-9776-5] [PMID: 22639238]
[45]
Zhang Q, Lu L, Zhang L, et al. Dual-functionalized liposomal delivery system for solid tumors based on RGD and a pH-responsive antimicrobial peptide. Sci Rep 2016; 6: 19800.
[http://dx.doi.org/10.1038/srep19800] [PMID: 26842655]
[46]
Jiang L, Li L, He X, et al. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials 2015; 52: 126-39.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.004] [PMID: 25818419]
[47]
Liu GX, Fang GQ, Xu W. Dual targeting biomimetic liposomes for paclitaxel/DNA combination cancer treatment. Int J Mol Sci 2014; 15(9): 15287-303.
[http://dx.doi.org/10.3390/ijms150915287] [PMID: 25177862]
[48]
Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244(4905): 707-12.
[http://dx.doi.org/10.1126/science.2470152] [PMID: 2470152]
[49]
Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000; 19(13): 3159-67.
[http://dx.doi.org/10.1093/emboj/19.13.3159] [PMID: 10880430]
[50]
Kirpotin D, Park JW, Hong K, et al. Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 1997; 36(1): 66-75.
[http://dx.doi.org/10.1021/bi962148u] [PMID: 8993319]
[51]
Ito A, Kuga Y, Honda H, et al. Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 2004; 212(2): 167-75.
[http://dx.doi.org/10.1016/j.canlet.2004.03.038] [PMID: 15279897]
[52]
Adlakha-Hutcheon G, Bally MB, Shew CR, Madden TD. Controlled destabilization of a liposomal drug delivery system enhances mitoxantrone antitumor activity. Nat Biotechnol 1999; 17(8): 775-9.
[http://dx.doi.org/10.1038/11710] [PMID: 10429242]
[53]
Iwase Y, Maitani Y. Octreotide-targeted liposomes loaded with CPT-11 enhanced cytotoxicity for the treatment of medullary thyroid carcinoma. Mol Pharm 2011; 8(2): 330-7.
[http://dx.doi.org/10.1021/mp100380y] [PMID: 21166471]
[54]
Koshkaryev A, Piroyan A, Torchilin VP, Torchilin VP. Increased apoptosis in cancer cells in vitro and in vivo by ceramides in transferrin-modified liposomes. Cancer Biol Ther 2012; 13(1): 50-60.
[http://dx.doi.org/10.4161/cbt.13.1.18871] [PMID: 22336588]
[55]
Suzuki R, Takizawa T, Kuwata Y, et al. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm 2008; 346(1-2): 143-50.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.010] [PMID: 17640835]
[56]
Sriraman SK, Salzano G, Sarisozen C, Torchilin V. Anti-cancer activity of doxorubicin-loaded liposomes co-modified with transferrin and folic acid. Eur J Pharm Biopharm 2016; 105: 40-9.
[http://dx.doi.org/10.1016/j.ejpb.2016.05.023] [PMID: 27264717]

© 2024 Bentham Science Publishers | Privacy Policy