Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Targeting Tubulin-colchicine Site for Cancer Therapy: Inhibitors, Antibody- Drug Conjugates and Degradation Agents

Author(s): Yongtao Duan*, Wei Liu, Liang Tian, Yanna Mao and Chuanjun Song*

Volume 19, Issue 15, 2019

Page: [1289 - 1304] Pages: 16

DOI: 10.2174/1568026619666190618130008

Price: $65

Abstract

Microtubules are essential for the mitotic division of cells and have been an attractive target for antitumour drugs due to the increased incidence of cancer and significant mitosis rate of tumour cells. In the past few years, tubulin-colchicine binding site, as one of the three binding pockets including taxol-, vinblastine- and colchicine-binding sites, has been focused on to design tubulin-destabilizing agents including inhibitors, antibody-drug conjugates and degradation agents. The present review is the first to cover a systemic and recent synopsis of tubulin-colchicine binding site agents. We believe that it would provide an increase in our understanding of receptor-ligand interaction pattern and consciousness of a series of challenges about tubulin target druggability.

Keywords: Microtubules, Antimitotic, Antitumour, Tubulin-colchicine binding site, Inhibitors, Antibody-drug conjugates, Degraders.

Graphical Abstract

[1]
Smith, R.A.; Manassaram-Baptiste, D.; Brooks, D.; Doroshenk, M.; Fedewa, S.; Saslow, D.; Brawley, O.W.; Wender, R. Cancer screening in the United States, 2015: A review of current American cancer society guidelines and current issues in cancer screening. CA Cancer J. Clin., 2015, 65(1), 30-54. [http://dx.doi.org/10.3322/caac.21261]. [PMID: 25581023].
[2]
Fitzmaurice, C.; Akinyemiju, T.F.; Al Lami, F.H.; Alam, T.; Alizadeh-Navaei, R.; Allen, C.; Alsharif, U.; Alvis-Guzman, N.; Amini, E.; Anderson, B.O.; Aremu, O.; Artaman, A.; Asgedom, S.W.; Assadi, R.; Atey, T.M.; Avila-Burgos, L.; Awasthi, A.; Ba Saleem, H.O.; Barac, A.; Bennett, J.R.; Bensenor, I.M.; Bhakta, N.; Brenner, H.; Cahuana-Hurtado, L.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Choi, J.J.; Christopher, D.J.; Chung, S.C.; Curado, M.P.; Dandona, L.; Dandona, R. das Neves, J.; Dey, S.; Dharmaratne, S.D.; Doku, D.T.; Driscoll, T.R.; Dubey, M.; Ebrahimi, H.; Edessa, D.; El-Khatib, Z.; Endries, A.Y.; Fischer, F.; Force, L.M.; Foreman, K.J.; Gebrehiwot, S.W.; Gopalani, S.V.; Grosso, G.; Gupta, R.; Gyawali, B.; Hamadeh, R.R.; Hamidi, S.; Harvey, J.; Hassen, H.Y.; Hay, R.J.; Hay, S.I.; Heibati, B.; Hiluf, M.K.; Horita, N.; Hosgood, H.D.; Ilesanmi, O.S.; Innos, K.; Islami, F.; Jakovljevic, M.B.; Johnson, S.C.; Jonas, J.B.; Kasaeian, A.; Kassa, T.D.; Khader, Y.S.; Khan, E.A.; Khan, G.; Khang, Y.H.; Khosravi, M.H.; Khubchandani, J.; Kopec, J.A.; Kumar, G.A.; Kutz, M.; Lad, D.P.; Lafranconi, A.; Lan, Q.; Legesse, Y.; Leigh, J.; Linn, S.; Lunevicius, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Mantovani, L.G.; McMahon, B.J.; Meier, T.; Melaku, Y.A.; Melku, M.; Memiah, P.; Mendoza, W.; Meretoja, T.J.; Mezgebe, H.B.; Miller, T.R.; Mohammed, S.; Mokdad, A.H.; Moosazadeh, M.; Moraga, P.; Mousavi, S.M.; Nangia, V.; Nguyen, C.T.; Nong, V.M.; Ogbo, F.A.; Olagunju, A.T.; Pa, M.; Park, E.K.; Patel, T.; Pereira, D.M.; Pishgar, F.; Postma, M.J.; Pourmalek, F.; Qorbani, M.; Rafay, A.; Rawaf, S.; Rawaf, D.L.; Roshandel, G.; Safiri, S.; Salimzadeh, H.; Sanabria, J.R.; Santric Milicevic, M.M.; Sartorius, B.; Satpathy, M.; Sepanlou, S.G.; Shackelford, K.A.; Shaikh, M.A.; Sharif-Alhoseini, M.; She, J.; Shin, M.J.; Shiue, I.; Shrime, M.G.; Sinke, A.H.; Sisay, M.; Sligar, A.; Sufiyan, M.B.; Sykes, B.L.; Tabarés-Seisdedos, R.; Tessema, G.A.; Topor-Madry, R.; Tran, T.T.; Tran, B.X.; Ukwaja, K.N.; Vlassov, V.V.; Vollset, S.E.; Weiderpass, E.; Williams, H.C.; Yimer, N.B.; Yonemoto, N.; Younis, M.Z.; Murray, C.J.L.; Naghavi, M. Global burden of disease cancer collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: A systematic analysis for the global burden of disease study. JAMA Oncol., 2018, 4(11), 1553-1568. [http://dx.doi.org/10.1001/jamaoncol.2018.2706]. [PMID: 29860482].
[3]
Brouhard, G.J.; Rice, L.M. The contribution of αβ-tubulin curvature to microtubule dynamics. J. Cell Biol., 2014, 207(3), 323-334. [http://dx.doi.org/10.1083/jcb.201407095]. [PMID: 25385183].
[4]
McIntosh, J.R.; Hays, T. A brief history of research on mitotic mechanisms. Biology (Basel), 2016, 5(4), E55. [http://dx.doi.org/10.3390/biology5040055]. [PMID: 28009830].
[5]
Petry, S. Mechanisms of mitotic spindle assembly. Annu. Rev. Biochem., 2016, 85, 659-683. [http://dx.doi.org/10.1146/annurev-biochem-060815-014528]. [PMID: 27145846].
[6]
Magiera, M.M.; Singh, P.; Gadadhar, S.; Janke, C. Tubulin posttranslational modifications and emerging links to human disease. Cell, 2018, 173(6), 1323-1327. [http://dx.doi.org/10.1016/j.cell.2018.05.018]. [PMID: 29856952].
[7]
Zhang, Y.; Park, K.Y.; Suazo, K.F.; Distefano, M.D. Recent progress in enzymatic protein labelling techniques and their applications. Chem. Soc. Rev., 2018, 47(24), 9106-9136. [http://dx.doi.org/10.1039/C8CS00537K]. [PMID: 30259933].
[8]
Kaur, R.; Kaur, G.; Gill, R.K.; Soni, R.; Bariwal, J. Recent developments in tubulin polymerization inhibitors: An overview. Eur. J. Med. Chem., 2014, 87, 89-124. [http://dx.doi.org/10.1016/j.ejmech.2014.09.051]. [PMID: 25240869].
[9]
Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer, 2010, 10(3), 194-204. [http://dx.doi.org/10.1038/nrc2803]. [PMID: 20147901].
[10]
Banerjee, S.; Hwang, D.J.; Li, W.; Miller, D.D. Current advances of tubulin inhibitors in nanoparticle drug delivery and vascular disruption/angiogenesis. Molecules, 2016, 21(11), 21. [http://dx.doi.org/10.3390/molecules21111468]. [PMID: 27827858].
[11]
Wu, X.; Wang, Q.; Li, W. Recent advances in heterocyclic tubulin inhibitors targeting the colchicine binding site. Anticancer. Agents Med. Chem., 2016, 16(10), 1325-1338. [http://dx.doi.org/10.2174/1871520616666160219161921]. [PMID: 26899186].
[12]
Checchi, P.M.; Nettles, J.H.; Zhou, J.; Snyder, J.P.; Joshi, H.C. Microtubule-interacting drugs for cancer treatment. Trends Pharmacol. Sci., 2003, 24(7), 361-365. [http://dx.doi.org/10.1016/S0165-6147(03)00161-5]. [PMID: 12871669].
[13]
Brossi, A.; Yeh, H.J.; Chrzanowska, M.; Wolff, J.; Hamel, E.; Lin, C.M.; Quin, F.; Suffness, M.; Silverton, J. Colchicine and its analogues: Recent findings. Med. Res. Rev., 1988, 8(1), 77-94. [http://dx.doi.org/10.1002/med.2610080105]. [PMID: 3278182].
[14]
Negi, A.S.; Gautam, Y.; Alam, S.; Chanda, D.; Luqman, S.; Sarkar, J.; Khan, F.; Konwar, R. Natural antitubulin agents: importance of 3,4,5-trimethoxyphenyl fragment. Bioorg. Med. Chem., 2015, 23(3), 373-389. [http://dx.doi.org/10.1016/j.bmc.2014.12.027]. [PMID: 25564377].
[15]
Acharya, B.R.; Chatterjee, A.; Ganguli, A.; Bhattacharya, S.; Chakrabarti, G. Thymoquinone inhibits microtubule polymerization by tubulin binding and causes mitotic arrest following apoptosis in A549 cells. Biochimie, 2014, 97, 78-91. [http://dx.doi.org/10.1016/j.biochi.2013.09.025]. [PMID: 24113316].
[16]
Dybkova, N.; Wagner, S.; Backs, J.; Hund, T.J.; Mohler, P.J.; Sowa, T.; Nikolaev, V.O.; Maier, L.S. Tubulin polymerization disrupts cardiac β-adrenergic regulation of late INa. Cardiovasc. Res., 2014, 103(1), 168-177. [http://dx.doi.org/10.1093/cvr/cvu120]. [PMID: 24812278].
[17]
Herdman, C.A.; Devkota, L.; Lin, C.M.; Niu, H.; Strecker, T.E.; Lopez, R.; Liu, L.; George, C.S.; Tanpure, R.P.; Hamel, E.; Chaplin, D.J.; Mason, R.P.; Trawick, M.L.; Pinney, K.G. Structural interrogation of benzosuberene-based inhibitors of tubulin polymerization. Bioorg. Med. Chem., 2015, 23(24), 7497-7520. [http://dx.doi.org/10.1016/j.bmc.2015.10.012]. [PMID: 26775540].
[18]
Sunil, D.; Kamath, P.R. Indole based tubulin polymerization inhibitors: An update on recent developments. Mini Rev. Med. Chem., 2016, 16(18), 1470-1499. [http://dx.doi.org/10.2174/1389557516666160505115324]. [PMID: 27468786].
[19]
Lee, C.H.; Lin, Y.F.; Chen, Y.C.; Wong, S.M.; Juan, S.H.; Huang, H.M. MPT0B169 and MPT0B002, New tubulin inhibitors, induce growth inhibition, G2/M cell cycle arrest, and apoptosis in human colorectal cancer cells. Pharmacology, 2018, 102(5-6), 262-271. [http://dx.doi.org/10.1159/000492494]. [PMID: 30227438].
[20]
Majcher, U.; Urbaniak, A.; Maj, E.; Moshari, M.; Delgado, M.; Wietrzyk, J.; Bartl, F.; Chambers, T.C.; Tuszynski, J.A.; Huczyński, A. Synthesis, antiproliferative activity and molecular docking of thiocolchicine urethanes. Bioorg. Chem., 2018, 81, 553-566. [http://dx.doi.org/10.1016/j.bioorg.2018.09.004]. [PMID: 30248507].
[21]
Wang, G.; Peng, Z.; Peng, S.; Qiu, J.; Li, Y.; Lan, Y. (E)-N-Aryl-2-oxo-2-(3,4,5-trimethoxyphenyl)acetohydrazonoyl cyanides as tubulin polymerization inhibitors: Structure-based bioisosterism design, synthesis, biological evaluation, molecular docking and in silico ADME prediction. Bioorg. Med. Chem. Lett., 2018, 5, 30732-30735. [http://dx.doi.org/10.1016/j.bmcl.2018.09.004].
[22]
Alswah, M.; Bayoumi, A.H.; Elgamal, K.; Elmorsy, A.; Ihmaid, S.; Ahmed, H.E.A. Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing triazolo[4,3-a]-quinoxaline moieties as potent anticancer agents with dual EGFR kinase and tubulin polymerization inhibitory effects. Molecules, 2017, 23(1), 23. [http://dx.doi.org/10.3390/molecules23010048]. [PMID: 29280968].
[23]
Fu, D.J.; Liu, J.F.; Zhao, R.H.; Li, J.H.; Zhang, S.Y.; Zhang, Y.B. Design and antiproliferative evaluation of novel sulfanilamide derivatives as potential tubulin polymerization inhibitors. Molecules, 2017, 22(9), 22. [http://dx.doi.org/10.3390/molecules22091470]. [PMID: 28872607].
[24]
Mandić, B.M.; Simić, M.R.; Vučković, I.M.; Vujisić, L.V.; Novaković, M.M.; Trifunović, S.S.; Nikolić-Mandić, S.D.; Tešević, V.V.; Vajs, V.V.; Milosavljević, S.M. Pyrrolizidine alkaloids and fatty acids from the endemic plant species Rindera umbellata and the effect of lindelofine-N-oxide on tubulin polymerization. Molecules, 2013, 18(9), 10694-10706. [http://dx.doi.org/10.3390/molecules180910694]. [PMID: 24005964].
[25]
Zayed, M.F.; Rateb, H.S.; Ahmed, S.; Khaled, O.A.; Ibrahim, S.R.M. Quinazolinone-amino acid hybrids as dual inhibitors of EGFR kinase and tubulin polymerization. Molecules, 2018, 23(7), 23. [http://dx.doi.org/10.3390/molecules23071699]. [PMID: 30002297].
[26]
Li, L.; Jiang, S.; Li, X.; Liu, Y.; Su, J.; Chen, J. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site. Eur. J. Med. Chem., 2018, 151, 482-494. [http://dx.doi.org/10.1016/j.ejmech.2018.04.011]. [PMID: 29649743].
[27]
Marzaro, G.; Coluccia, A.; Ferrarese, A.; Brun, P.; Castagliuolo, I.; Conconi, M.T.; La Regina, G.; Bai, R.; Silvestri, R.; Hamel, E.; Chilin, A. Discovery of biarylaminoquinazolines as novel tubulin polymerization inhibitors. J. Med. Chem., 2014, 57(11), 4598-4605. [http://dx.doi.org/10.1021/jm500034j]. [PMID: 24801610].
[28]
O’Boyle, N.M.; Pollock, J.K.; Carr, M.; Knox, A.J.; Nathwani, S.M.; Wang, S.; Caboni, L.; Zisterer, D.M.; Meegan, M.J. β-Lactam estrogen receptor antagonists and a dual-targeting estrogen receptor/tubulin ligand. J. Med. Chem., 2014, 57(22), 9370-9382. [http://dx.doi.org/10.1021/jm500670d]. [PMID: 25369367].
[29]
Wang, X.F.; Guan, F.; Ohkoshi, E.; Guo, W.; Wang, L.; Zhu, D.Q.; Wang, S.B.; Wang, L.T.; Hamel, E.; Yang, D.; Li, L.; Qian, K.; Morris-Natschke, S.L.; Yuan, S.; Lee, K.H.; Xie, L. Optimization of 4-(N-cycloamino)phenylquinazolines as a novel class of tubulin-polymerization inhibitors targeting the colchicine site. J. Med. Chem., 2014, 57(4), 1390-1402. [http://dx.doi.org/10.1021/jm4016526]. [PMID: 24502232].
[30]
Brancale, A.; Silvestri, R. Indole, a core nucleus for potent inhibitors of tubulin polymerization. Med. Res. Rev., 2007, 27(2), 209-238. [http://dx.doi.org/10.1002/med.20080]. [PMID: 16788980].
[31]
Inatsuki, S.; Noguchi, T.; Miyachi, H.; Oda, S.; Iguchi, T.; Kizaki, M.; Hashimoto, Y.; Kobayashi, H. Tubulin-polymerization inhibitors derived from thalidomide. Bioorg. Med. Chem. Lett., 2005, 15(2), 321-325. [http://dx.doi.org/10.1016/j.bmcl.2004.10.072]. [PMID: 15603947].
[32]
Weisenberg, R.C.; Borisy, G.G.; Taylor, E.W. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry, 1968, 7(12), 4466-4479. [http://dx.doi.org/10.1021/bi00852a043]. [PMID: 5700666].
[33]
Mohri, H. Amino-acid composition of “Tubulin” constituting microtubules of sperm flagella. Nature, 1968, 217(5133), 1053-1054. [http://dx.doi.org/10.1038/2171053a0]. [PMID: 4296139].
[34]
Gigant, B.; Cormier, A.; Dorléans, A.; Ravelli, R.B.; Knossow, M. Microtubule-destabilizing agents: structural and mechanistic insights from the interaction of colchicine and vinblastine with tubulin. Top. Curr. Chem., 2009, 286, 259-278. [http://dx.doi.org/10.1007/128_2008_11]. [PMID: 23563615].
[35]
Bai, R.; Covell, D.G.; Pei, X.F.; Ewell, J.B.; Nguyen, N.Y.; Brossi, A.; Hamel, E. Mapping the binding site of colchicinoids on beta -tubulin. 2-Chloroacetyl-2-demethylthiocolchicine covalently reacts predominantly with cysteine 239 and secondarily with cysteine 354. J. Biol. Chem., 2000, 275(51), 40443-40452. [http://dx.doi.org/10.1074/jbc.M005299200]. [PMID: 11005811].
[36]
Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004, 428(6979), 198-202. [http://dx.doi.org/10.1038/nature02393]. [PMID: 15014504].
[37]
Dorléans, A.; Gigant, B.; Ravelli, R.B.; Mailliet, P.; Mikol, V.; Knossow, M. Variations in the colchicine-binding domain provide insight into the structural switch of tubulin. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 13775-13779. [http://dx.doi.org/10.1073/pnas.0904223106]. [PMID: 19666559].
[38]
Barbier, P.; Dorléans, A.; Devred, F.; Sanz, L.; Allegro, D.; Alfonso, C.; Knossow, M.; Peyrot, V.; Andreu, J.M. Stathmin and interfacial microtubule inhibitors recognize a naturally curved conformation of tubulin dimers. J. Biol. Chem., 2010, 285(41), 31672-31681. [http://dx.doi.org/10.1074/jbc.M110.141929]. [PMID: 20675373].
[39]
Prota, A.E.; Danel, F.; Bachmann, F.; Bargsten, K.; Buey, R.M.; Pohlmann, J.; Reinelt, S.; Lane, H.; Steinmetz, M.O. The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization. J. Mol. Biol., 2014, 426(8), 1848-1860. [http://dx.doi.org/10.1016/j.jmb.2014.02.005]. [PMID: 24530796].
[40]
Zhao, W.; Zhou, C.; Guan, Z.Y.; Yin, P.; Chen, F.; Tang, Y.J. Structural insights into the inhibition of tubulin by the antitumor agent 4β-(1,2,4-triazol-3-ylthio)-4-deoxypodophyllotoxin. ACS Chem. Biol., 2017, 12(3), 746-752. [http://dx.doi.org/10.1021/acschembio.6b00842]. [PMID: 28035796].
[41]
Niu, L.; Wang, Y.; Wang, C.; Wang, Y.; Jiang, X.; Ma, L.; Wu, C.; Yu, Y.; Chen, Q. Structure of 4′-demethylepipodophyllotoxin in complex with tubulin provides a rationale for drug design. Biochem. Biophys. Res. Commun., 2017, 493(1), 718-722. [http://dx.doi.org/10.1016/j.bbrc.2017.08.125]. [PMID: 28864414].
[42]
Arnst, K.E.; Wang, Y.; Hwang, D.J.; Xue, Y.; Costello, T.; Hamilton, D.; Chen, Q.; Yang, J.; Park, F.; Dalton, J.T.; Miller, D.D.; Li, W. A potent, metabolically stable tubulin inhibitor targets the colchicine binding site and overcomes taxane resistance. Cancer Res., 2018, 78(1), 265-277. [http://dx.doi.org/10.1158/0008-5472.CAN-17-0577]. [PMID: 29180476].
[43]
Yang, J.; Yan, W.; Yu, Y.; Wang, Y.; Yang, T.; Xue, L.; Yuan, X.; Long, C.; Liu, Z.; Chen, X.; Hu, M.; Zheng, L.; Qiu, Q.; Pei, H.; Li, D.; Wang, F.; Bai, P.; Wen, J.; Ye, H.; Chen, L. The compound millepachine and its derivatives inhibit tubulin polymerization by irreversibly binding to the colchicine-binding site in β-tubulin. J. Biol. Chem., 2018, 293(24), 9461-9472. [http://dx.doi.org/10.1074/jbc.RA117.001658]. [PMID: 29691282].
[44]
Bueno, O.; Estevez Gallego, J.; Martins, S.; Prota, A. E.; Gago, F.; Gomez-SanJuan, A.; Camarasa, M. J.; Barasoain, I.; Steinmetz, M. O.; Diaz, J. F.; Perez-Perez, M. J.; Liekens, S.; Priego, E. M. High-affinity ligands of the colchicine domain in tubulin based on a structure-guided design. Sci Rep, 2018, 8, 018-22382.
[http://dx.doi.org/10.1038/s41598-018-22382-x]
[45]
Tozer, G.M.; Kanthou, C.; Parkins, C.S.; Hill, S.A. The biology of the combretastatins as tumour vascular targeting agents. Int. J. Exp. Pathol., 2002, 83(1), 21-38. [http://dx.doi.org/10.1046/j.1365-2613.2002.00211.x]. [PMID: 12059907].
[46]
Ohsumi, K.; Hatanaka, T.; Fujita, K.; Nakagawa, R.; Fukuda, Y.; Nihei, Y.; Suga, Y.; Morinaga, Y.; Akiyama, Y.; Tsuji, T. Syntheses and antitumor activity of cis-restricted combretastatins: 5-membered heterocyclic analogues. Bioorg. Med. Chem. Lett., 1998, 8(22), 3153-3158. [http://dx.doi.org/10.1016/S0960-894X(98)00579-4]. [PMID: 9873694].
[47]
Herdman, C.A.; Strecker, T.E.; Tanpure, R.P.; Chen, Z.; Winters, A.; Gerberich, J.; Liu, L.; Hamel, E.; Mason, R.P.; Chaplin, D.J.; Trawick, M.L.; Pinney, K.G. Synthesis and biological evaluation of benzocyclooctene-based and indene-based anticancer agents that function as inhibitors of tubulin polymerization. MedChemComm, 2016, 7(12), 2418-2427. [http://dx.doi.org/10.1039/C6MD00459H]. [PMID: 28217276].
[48]
Wang, L.; Woods, K.W.; Li, Q.; Barr, K.J.; McCroskey, R.W.; Hannick, S.M.; Gherke, L.; Credo, R.B.; Hui, Y.H.; Marsh, K.; Warner, R.; Lee, J.Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg, S.H.; Sham, H.L. Potent, orally active heterocycle-based combretastatin A-4 analogues: Synthesis, structure-activity relationship, pharmacokinetics, and in vivo antitumor activity evaluation. (vol 45, pg 1704, 2002). J. Med. Chem., 2002, 45, 4946-4946. [http://dx.doi.org/10.1021/jm020332+].
[49]
Nam, N.H.; Kim, Y.; You, Y.J.; Hong, D.H.; Kim, H.M.; Ahn, B.Z. Synthesis and anti-tumor activity of novel combretastatins: combretocyclopentenones and related analogues. Bioorg. Med. Chem. Lett., 2002, 12(15), 1955-1958. [http://dx.doi.org/10.1016/S0960-894X(02)00321-9]. [PMID: 12113817].
[50]
Nam, N.H.; Kim, Y.; You, Y.J.; Hong, D.H.; Kim, H.M.; Ahn, B.Z. Combretoxazolones: synthesis, cytotoxicity and antitumor activity. Bioorg. Med. Chem. Lett., 2001, 11(23), 3073-3076. [http://dx.doi.org/10.1016/S0960-894X(01)00622-9]. [PMID: 11714613].
[51]
Simoni, D.; Grisolia, G.; Giannini, G.; Roberti, M.; Rondanin, R.; Piccagli, L.; Baruchello, R.; Rossi, M.; Romagnoli, R.; Invidiata, F.P.; Grimaudo, S.; Jung, M.K.; Hamel, E.; Gebbia, N.; Crosta, L.; Abbadessa, V.; Di Cristina, A.; Dusonchet, L.; Meli, M.; Tolomeo, M. Heterocyclic and phenyl double-bond-locked combretastatin analogues possessing potent apoptosis-inducing activity in HL60 and in MDR cell lines. J. Med. Chem., 2005, 48(3), 723-736. [http://dx.doi.org/10.1021/jm049622b]. [PMID: 15689156].
[52]
Tron, G.C.; Pagliai, F.; Del Grosso, E.; Genazzani, A.A.; Sorba, G. Synthesis and cytotoxic evaluation of combretafurazans. J. Med. Chem., 2005, 48(9), 3260-3268. [http://dx.doi.org/10.1021/jm049096o]. [PMID: 15857132].
[53]
Xu, J.M.; Zhang, E.; Shi, X.J.; Wang, Y.C.; Yu, B.; Jiao, W.W.; Guo, Y.Z.; Liu, H.M. Synthesis and preliminary biological evaluation of 1,2,3-triazole-Jaspine B hybrids as potential cytotoxic agents. Eur. J. Med. Chem., 2014, 80, 593-604. [http://dx.doi.org/10.1016/j.ejmech.2014.03.022]. [PMID: 24835817].
[54]
Fürst, R.; Zupkó, I.; Berényi, A.; Ecker, G.F.; Rinner, U. Synthesis and antitumor-evaluation of cyclopropyl-containing combretastatin analogs. Bioorg. Med. Chem. Lett., 2009, 19(24), 6948-6951. [http://dx.doi.org/10.1016/j.bmcl.2009.10.064]. [PMID: 19879758].
[55]
Hadfield, J.A.; Gaukroger, K.; Hirst, N.; Weston, A.P.; Lawrence, N.J.; McGown, A.T. Synthesis and evaluation of double bond substituted combretastatins. Eur. J. Med. Chem., 2005, 40(6), 529-541. [http://dx.doi.org/10.1016/j.ejmech.2004.12.008]. [PMID: 15922837].
[56]
Greene, T.F.; Wang, S.; Greene, L.M.; Nathwani, S.M.; Pollock, J.K.; Malebari, A.M.; McCabe, T.; Twamley, B.; O’Boyle, N.M.; Zisterer, D.M.; Meegan, M.J. Synthesis and biochemical evaluation of 3-phenoxy-1,4-diarylazetidin-2-ones as tubulin-targeting antitumor agents. J. Med. Chem., 2016, 59(1), 90-113. [http://dx.doi.org/10.1021/acs.jmedchem.5b01086]. [PMID: 26680364].
[57]
Tripodi, F.; Pagliarin, R.; Fumagalli, G.; Bigi, A.; Fusi, P.; Orsini, F.; Frattini, M.; Coccetti, P. Synthesis and biological evaluation of 1,4-diaryl-2-azetidinones as specific anticancer agents: activation of adenosine monophosphate activated protein kinase and induction of apoptosis. J. Med. Chem., 2012, 55(5), 2112-2124. [http://dx.doi.org/10.1021/jm201344a]. [PMID: 22329561].
[58]
Zhou, P.; Liu, Y.; Zhou, L.; Zhu, K.; Feng, K.; Zhang, H.; Liang, Y.; Jiang, H.; Luo, C.; Liu, M.; Wang, Y. Potent antitumor activities and structure basis of the chiral β-lactam bridged analogue of combretastatin A-4 binding to tubulin. J. Med. Chem., 2016, 59(22), 10329-10334. [http://dx.doi.org/10.1021/acs.jmedchem.6b01268]. [PMID: 27805821].
[59]
Lee, L.; Davis, R.; Vanderham, J.; Hills, P.; Mackay, H.; Brown, T.; Mooberry, S.L.; Lee, M. 1,2,3,4-tetrahydro-2-thioxopyrimidine analogs of combretastatin-A4. Eur. J. Med. Chem., 2008, 43(9), 2011-2015. [http://dx.doi.org/10.1016/j.ejmech.2007.11.030]. [PMID: 18226429].
[60]
Rasolofonjatovo, E.; Provot, O.; Hamze, A.; Rodrigo, J.; Bignon, J.; Wdzieczak-Bakala, J.; Lenoir, C.; Desravines, D.; Dubois, J.; Brion, J.D.; Alami, M. Design, synthesis and anticancer properties of 5-arylbenzoxepins as conformationally restricted isocombretastatin A-4 analogs. Eur. J. Med. Chem., 2013, 62, 28-39. [http://dx.doi.org/10.1016/j.ejmech.2012.12.042]. [PMID: 23353744].
[61]
Yan, J.; Pang, Y.; Sheng, J.; Wang, Y.; Chen, J.; Hu, J.; Huang, L.; Li, X. A novel synthetic compound exerts effective anti-tumour activity in vivo via the inhibition of tubulin polymerisation in A549 cells. Biochem. Pharmacol., 2015, 97(1), 51-61. [http://dx.doi.org/10.1016/j.bcp.2015.07.008]. [PMID: 26212540].
[62]
Hu, Y.; Lu, X.; Chen, K.; Yan, R.; Li, Q.S.; Zhu, H.L. Design, synthesis, biological evaluation and molecular modeling of 1,3,4-oxadiazoline analogs of combretastatin-A4 as novel antitubulin agents. Bioorg. Med. Chem., 2012, 20(2), 903-909. [http://dx.doi.org/10.1016/j.bmc.2011.11.057]. [PMID: 22192936].
[63]
dos Santos, E. A.; Hamel, E.; Bai, R.; Burnett, J.C.; Tozatti, C.S.; Bogo, D.; Perdomo, R.T.; Antunes, A.M.; Marques, M.M.; Matos, Mde.F.; de Lima, D.P. Synthesis and evaluation of diaryl sulfides and diaryl selenide compounds for antitubulin and cytotoxic activity. Bioorg. Med. Chem. Lett., 2013, 23(16), 4669-4673. [http://dx.doi.org/10.1016/j.bmcl.2013.06.009]. [PMID: 23810282].
[64]
Nakamura, M.; Kajita, D.; Matsumoto, Y.; Hashimoto, Y. Design and synthesis of silicon-containing tubulin polymerization inhibitors: replacement of the ethylene moiety of combretastatin A-4 with a silicon linker. Bioorg. Med. Chem., 2013, 21(23), 7381-7391. [http://dx.doi.org/10.1016/j.bmc.2013.09.046]. [PMID: 24139940].
[65]
Soussi, M.A.; Provot, O.; Bernadat, G.; Bignon, J.; Wdzieczak-Bakala, J.; Desravines, D.; Dubois, J.; Brion, J.D.; Messaoudi, S.; Alami, M. Discovery of azaisoerianin derivatives as potential antitumors agents. Eur. J. Med. Chem., 2014, 78, 178-189. [http://dx.doi.org/10.1016/j.ejmech.2014.03.032]. [PMID: 24681982].
[66]
Patil, S.A.; Patil, R.; Miller, D.D. Indole molecules as inhibitors of tubulin polymerization: potential new anticancer agents. Future Med. Chem., 2012, 4(16), 2085-2115. [http://dx.doi.org/10.4155/fmc.12.141]. [PMID: 23157240].
[67]
Cacchi, S.; Fabrizi, G. Update 1 of: Synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem. Rev., 2011, 111(5), PR215-PR283. [http://dx.doi.org/10.1021/cr100403z]. [PMID: 21557620].
[68]
Kim, M.; Park, J.; Sharma, S.; Han, S.; Han, S.H.; Kwak, J.H.; Jung, Y.H.; Kim, I.S. Synthesis and C2-functionalization of indoles with allylic acetates under rhodium catalysis. Org. Biomol. Chem., 2013, 11(42), 7427-7434. [http://dx.doi.org/10.1039/c3ob41828f]. [PMID: 24081311].
[69]
Matcha, K.; Antonchick, A.P. Cascade multicomponent synthesis of indoles, pyrazoles, and pyridazinones by functionalization of alkenes. Angew. Chem. Int. Ed. Engl., 2014, 53(44), 11960-11964. [http://dx.doi.org/10.1002/anie.201406464]. [PMID: 25287788].
[70]
Liou, J.P.; Chang, Y.L.; Kuo, F.M.; Chang, C.W.; Tseng, H.Y.; Wang, C.C.; Yang, Y.N.; Chang, J.Y.; Lee, S.J.; Hsieh, H.P. Concise synthesis and structure-activity relationships of combretastatin A-4 analogues, 1-aroylindoles and 3-aroylindoles, as novel classes of potent antitubulin agents. J. Med. Chem., 2004, 47(17), 4247-4257. [http://dx.doi.org/10.1021/jm049802l]. [PMID: 15293996].
[71]
Alvarez, R.; Alvarez, C.; Mollinedo, F.; Sierra, B.G.; Medarde, M.; Peláez, R. Isocombretastatins A: 1,1-diarylethenes as potent inhibitors of tubulin polymerization and cytotoxic compounds. Bioorg. Med. Chem., 2009, 17(17), 6422-6431. [http://dx.doi.org/10.1016/j.bmc.2009.07.012]. [PMID: 19647439].
[72]
Baek, D.J.; MacRitchie, N.; Anthony, N.G.; Mackay, S.P.; Pyne, S.; Pyne, N.J.; Bittman, R. Structure-activity relationships and molecular modeling of sphingosine kinase inhibitors. J. Med. Chem., 2013, 56(22), 9310-9327. [http://dx.doi.org/10.1021/jm401399c]. [PMID: 24164513].
[73]
De Martino, G.; Edler, M.C.; La Regina, G.; Coluccia, A.; Barbera, M.C.; Barrow, D.; Nicholson, R.I.; Chiosis, G.; Brancale, A.; Hamel, E.; Artico, M.; Silvestri, R. New arylthioindoles: potent inhibitors of tubulin polymerization. 2. Structure-activity relationships and molecular modeling studies. J. Med. Chem., 2006, 49(3), 947-954. [http://dx.doi.org/10.1021/jm050809s]. [PMID: 16451061].
[74]
De Martino, G.; La Regina, G.; Coluccia, A.; Edler, M.C.; Barbera, M.C.; Brancale, A.; Wilcox, E.; Hamel, E.; Artico, M.; Silvestri, R. Arylthioindoles, potent inhibitors of tubulin polymerization. J. Med. Chem., 2004, 47(25), 6120-6123. [http://dx.doi.org/10.1021/jm049360d]. [PMID: 15566282].
[75]
Yan, J.; Chen, J.; Zhang, S.; Hu, J.; Huang, L.; Li, X. Synthesis, evaluation, and mechanism study of novel indole-chalcone derivatives exerting effective antitumor activity through microtubule destabilization in vitro and in vivo. J. Med. Chem., 2016, 59(11), 5264-5283. [http://dx.doi.org/10.1021/acs.jmedchem.6b00021]. [PMID: 27149641].
[76]
Lu, Y.; Chen, J.; Wang, J.; Li, C.M.; Ahn, S.; Barrett, C.M.; Dalton, J.T.; Li, W.; Miller, D.D. Design, synthesis, and biological evaluation of stable colchicine binding site tubulin inhibitors as potential anticancer agents. J. Med. Chem., 2014, 57(17), 7355-7366. [http://dx.doi.org/10.1021/jm500764v]. [PMID: 25122533].
[77]
Hwang, D.J.; Wang, J.; Li, W.; Miller, D.D. Structural optimization of indole derivatives acting at colchicine binding site as potential anticancer agents. ACS Med. Chem. Lett., 2015, 6(9), 993-997. [http://dx.doi.org/10.1021/acsmedchemlett.5b00208]. [PMID: 26396686].
[78]
Arthuis, M.; Pontikis, R.; Chabot, G.G.; Quentin, L.; Scherman, D.; Florent, J.C. Domino approach to 2-aroyltrimethoxyindoles as novel heterocyclic combretastatin A4 analogues. Eur. J. Med. Chem., 2011, 46(1), 95-100. [http://dx.doi.org/10.1016/j.ejmech.2010.10.018]. [PMID: 21112130].
[79]
Lai, M.J.; Chang, J.Y.; Lee, H.Y.; Kuo, C.C.; Lin, M.H.; Hsieh, H.P.; Chang, C.Y.; Wu, J.S.; Wu, S.Y.; Shey, K.S.; Liou, J.P. Synthesis and biological evaluation of 1-(4′-Indolyl and 6′-Quinolinyl) indoles as a new class of potent anticancer agents. Eur. J. Med. Chem., 2011, 46(9), 3623-3629. [http://dx.doi.org/10.1016/j.ejmech.2011.04.065]. [PMID: 21641700].
[80]
Lai, M.J.; Kuo, C.C.; Yeh, T.K.; Hsieh, H.P.; Chen, L.T.; Pan, W.Y.; Hsu, K.Y.; Chang, J.Y.; Liou, J.P. Synthesis and structure-activity relationships of 1-benzyl-4,5,6-trimethoxyindoles as a novel class of potent antimitotic agents. ChemMedChem, 2009, 4(4), 588-593. [http://dx.doi.org/10.1002/cmdc.200800405]. [PMID: 19266513].
[81]
Gaukroger, K.; Hadfield, J.A.; Lawrence, N.J.; Nolan, S.; McGown, A.T. Structural requirements for the interaction of combretastatins with tubulin: how important is the trimethoxy unit? Org. Biomol. Chem., 2003, 1(17), 3033-3037. [http://dx.doi.org/10.1039/B306878A]. [PMID: 14518125].
[82]
Duan, Y.T.; Man, R.J.; Tang, D.J.; Yao, Y.F.; Tao, X.X.; Yu, C.; Liang, X.Y.; Makawana, J.A.; Zou, M.J.; Wang, Z.C.; Zhu, H.L. Design, synthesis and antitumor activity of novel link-bridge and b-ring modified combretastatin A-4 (CA-4) analogues as potent antitubulin agents. Sci. Rep., 2016, 6, 25387. [http://dx.doi.org/10.1038/srep25387]. [PMID: 27138035].
[83]
Yao, Y.F.; Wang, Z.C.; Wu, S.Y.; Li, Q.F.; Yu, C.; Liang, X.Y.; Lv, P.C.; Duan, Y.T.; Zhu, H.L. Identification of novel 1-indolyl acetate-5-nitroimidazole derivatives of combretastatin A-4 as potential tubulin polymerization inhibitors. Biochem. Pharmacol., 2017, 137, 10-28. [http://dx.doi.org/10.1016/j.bcp.2017.04.026]. [PMID: 28456516].
[84]
Gastpar, R.; Goldbrunner, M.; Marko, D.; von Angerer, E. Methoxy-substituted 3-formyl-2-phenylindoles inhibit tubulin polymerization. J. Med. Chem., 1998, 41(25), 4965-4972. [http://dx.doi.org/10.1021/jm980228l]. [PMID: 9836614].
[85]
Banerjee, S.; Arnst, K.E.; Wang, Y.; Kumar, G.; Deng, S.; Yang, L.; Li, G-B.; Yang, J.; White, S.W.; Li, W.; Miller, D.D. Heterocyclic-fused pyrimidines as novel tubulin polymerization inhibitors targeting the colchicine binding site: structural basis and antitumor efficacy. J. Med. Chem., 2018, 61(4), 1704-1718. [http://dx.doi.org/10.1021/acs.jmedchem.7b01858]. [PMID: 29406710].
[86]
Shetty, R.S.; Lee, Y.; Liu, B.; Husain, A.; Joseph, R.W.; Lu, Y.; Nelson, D.; Mihelcic, J.; Chao, W.; Moffett, K.K.; Schumacher, A.; Flubacher, D.; Stojanovic, A.; Bukhtiyarova, M.; Williams, K.; Lee, K.J.; Ochman, A.R.; Saporito, M.S.; Moore, W.R.; Flynn, G.A.; Dorsey, B.D.; Springman, E.B.; Fujimoto, T.; Kelly, M.J. Synthesis and pharmacological evaluation of N-(3-(1H-indol-4-yl)-5-(2-methoxyisonicotinoyl)phenyl)methanesulfonamide (LP-261), a potent antimitotic agent. J. Med. Chem., 2011, 54(1), 179-200. [http://dx.doi.org/10.1021/jm100659v]. [PMID: 21126027].
[87]
Duan, Y.T.; Sang, Y.L.; Makawana, J.A.; Teraiya, S.B.; Yao, Y.F.; Tang, D.J.; Tao, X.X.; Zhu, H.L. Discovery and molecular modeling of novel 1-indolyl acetate--5-nitroimidazole targeting tubulin polymerization as antiproliferative agents. Eur. J. Med. Chem., 2014, 85, 341-351. [http://dx.doi.org/10.1016/j.ejmech.2014.07.082]. [PMID: 25105922].
[88]
Ducki, S.; Forrest, R.; Hadfield, J.A.; Kendall, A.; Lawrence, N.J.; McGown, A.T.; Rennison, D. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorg. Med. Chem. Lett., 1998, 8(9), 1051-1056. [http://dx.doi.org/10.1016/S0960-894X(98)00162-0]. [PMID: 9871706].
[89]
Ducki, S.; Rennison, D.; Woo, M.; Kendall, A.; Chabert, J.F.; McGown, A.T.; Lawrence, N.J. Combretastatin-like chalcones as inhibitors of microtubule polymerization. Part 1: synthesis and biological evaluation of antivascular activity. Bioorg. Med. Chem., 2009, 17(22), 7698-7710. [http://dx.doi.org/10.1016/j.bmc.2009.09.039]. [PMID: 19837593].
[90]
Lawrence, N.J.; Patterson, R.P.; Ooi, L.L.; Cook, D.; Ducki, S. Effects of alpha-substitutions on structure and biological activity of anticancer chalcones. Bioorg. Med. Chem. Lett., 2006, 16(22), 5844-5848. [http://dx.doi.org/10.1016/j.bmcl.2006.08.065]. [PMID: 16949281].
[91]
Li, W.; Yin, Y.; Yao, H.; Shuai, W.; Sun, H.; Xu, S.; Liu, J.; Yao, H.; Zhu, Z.; Xu, J. Discovery of novel vinyl sulfone derivatives as anti-tumor agents with microtubule polymerization inhibitory and vascular disrupting activities. Eur. J. Med. Chem., 2018, 157, 1068-1080. [http://dx.doi.org/10.1016/j.ejmech.2018.08.074]. [PMID: 30176537].
[92]
Cao, D.; Liu, Y.; Yan, W.; Wang, C.; Bai, P.; Wang, T.; Tang, M.; Wang, X.; Yang, Z.; Ma, B.; Ma, L.; Lei, L.; Wang, F.; Xu, B.; Zhou, Y.; Yang, T.; Chen, L. Design, Synthesis, and Evaluation of in Vitro and in Vivo Anticancer activity of 4-substituted coumarins: a novel class of potent tubulin polymerization inhibitors. J. Med. Chem., 2016, 59(12), 5721-5739. [http://dx.doi.org/10.1021/acs.jmedchem.6b00158]. [PMID: 27213819].
[93]
Pettit, G.R.; Anderson, C.R.; Herald, D.L.; Jung, M.K.; Lee, D.J.; Hamel, E.; Pettit, R.K. Antineoplastic agents. 487. Synthesis and biological evaluation of the antineoplastic agent 3,4-methylenedioxy-5,4′-dimethoxy-3′-amino-Z-stilbene and derived amino acid amides. J. Med. Chem., 2003, 46(4), 525-531. [http://dx.doi.org/10.1021/jm020204l]. [PMID: 12570374].
[94]
Wang, G.; Peng, Z.; Zhang, J.; Qiu, J.; Xie, Z.; Gong, Z. Synthesis, biological evaluation and molecular docking studies of aminochalcone derivatives as potential anticancer agents by targeting tubulin colchicine binding site. Bioorg. Chem., 2018, 78, 332-340. [http://dx.doi.org/10.1016/j.bioorg.2018.03.028]. [PMID: 29627654].
[95]
Xu, Q.; Sun, M.; Bai, Z.; Wang, Y.; Wu, Y.; Tian, H.; Zuo, D.; Guan, Q.; Bao, K.; Wu, Y.; Zhang, W. Design, synthesis and bioevaluation of antitubulin agents carrying diaryl-5,5-fused-heterocycle scaffold. Eur. J. Med. Chem., 2017, 139, 242-249. [http://dx.doi.org/10.1016/j.ejmech.2017.05.065]. [PMID: 28802124].
[96]
Zhang, M.; Liang, Y.R.; Li, H.; Liu, M.M.; Wang, Y. Design, synthesis, and biological evaluation of hydantoin bridged analogues of combretastatin A-4 as potential anticancer agents. Bioorg. Med. Chem., 2017, 25(24), 6623-6634. [http://dx.doi.org/10.1016/j.bmc.2017.10.045]. [PMID: 29126741].
[97]
Canela, M.D.; Noppen, S.; Bueno, O.; Prota, A.E.; Bargsten, K.; Sáez-Calvo, G.; Jimeno, M.L.; Benkheil, M.; Ribatti, D.; Velázquez, S.; Camarasa, M.J.; Díaz, J.F.; Steinmetz, M.O.; Priego, E.M.; Pérez-Pérez, M.J.; Liekens, S. Antivascular and antitumor properties of the tubulin-binding chalcone TUB091. Oncotarget, 2017, 8(9), 14325-14342. [http://dx.doi.org/10.18632/oncotarget.9527]. [PMID: 27224920].
[98]
Kamal, A.; Balakrishna, M.; Nayak, V.L.; Shaik, T.B.; Faazil, S.; Nimbarte, V.D. Design and synthesis of imidazo[2,1-b]thiazole-chalcone conjugates: microtubule-destabilizing agents. ChemMedChem, 2014, 9(12), 2766-2780. [http://dx.doi.org/10.1002/cmdc.201402310]. [PMID: 25313981].
[99]
Kamal, A.; Kumar, G.B.; Vishnuvardhan, M.V.; Shaik, A.B.; Reddy, V.S.; Mahesh, R.; Sayeeda, I.B.; Kapure, J.S. Synthesis of phenstatin/isocombretastatin-chalcone conjugates as potent tubulin polymerization inhibitors and mitochondrial apoptotic inducers. Org. Biomol. Chem., 2015, 13(13), 3963-3981. [http://dx.doi.org/10.1039/C4OB02606C]. [PMID: 25721862].
[100]
Martel-Frachet, V.; Keramidas, M.; Nurisso, A.; DeBonis, S.; Rome, C.; Coll, J.L.; Boumendjel, A.; Skoufias, D.A.; Ronot, X. IPP51, a chalcone acting as a microtubule inhibitor with in vivo antitumor activity against bladder carcinoma. Oncotarget, 2015, 6(16), 14669-14686. [http://dx.doi.org/10.18632/oncotarget.4144]. [PMID: 26036640].
[101]
Mirzaei, H.; Emami, S. Recent advances of cytotoxic chalconoids targeting tubulin polymerization: Synthesis and biological activity. Eur. J. Med. Chem., 2016, 121, 610-639. [http://dx.doi.org/10.1016/j.ejmech.2016.05.067]. [PMID: 27318983].
[102]
Sharma, S.; Kaur, C.; Budhiraja, A.; Nepali, K.; Gupta, M.K.; Saxena, A.K.; Bedi, P.M. Chalcone based azacarboline analogues as novel antitubulin agents: design, synthesis, biological evaluation and molecular modelling studies. Eur. J. Med. Chem., 2014, 85, 648-660. [http://dx.doi.org/10.1016/j.ejmech.2014.08.005]. [PMID: 25128667].
[103]
Vitorović-Todorović, M.D.; Erić-Nikolić, A.; Kolundžija, B.; Hamel, E.; Ristić, S.; Juranić, I.O.; Drakulić, B.J. (E)-4-aryl-4-oxo-2-butenoic acid amides, chalcone-aroylacrylic acid chimeras: design, antiproliferative activity and inhibition of tubulin polymerization. Eur. J. Med. Chem., 2013, 62, 40-50. [http://dx.doi.org/10.1016/j.ejmech.2013.01.006]. [PMID: 23353745].
[104]
Wang, G.; Li, C.; He, L.; Lei, K.; Wang, F.; Pu, Y.; Yang, Z.; Cao, D.; Ma, L.; Chen, J.; Sang, Y.; Liang, X.; Xiang, M.; Peng, A.; Wei, Y.; Chen, L. Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents. Bioorg. Med. Chem., 2014, 22(7), 2060-2079. [http://dx.doi.org/10.1016/j.bmc.2014.02.028]. [PMID: 24629450].
[105]
Zhang, H.; Liu, J.J.; Sun, J.; Yang, X.H.; Zhao, T.T.; Lu, X.; Gong, H.B.; Zhu, H.L. Design, synthesis and biological evaluation of novel chalcone derivatives as antitubulin agents. Bioorg. Med. Chem., 2012, 20(10), 3212-3218. [http://dx.doi.org/10.1016/j.bmc.2012.03.055]. [PMID: 22503741].
[106]
Cosentino, L.; Redondo-Horcajo, M.; Zhao, Y.; Santos, A.R.; Chowdury, K.F.; Vinader, V.; Abdallah, Q.M.; Abdel-Rahman, H.; Fournier-Dit-Chabert, J.; Shnyder, S.D.; Loadman, P.M.; Fang, W.S.; Díaz, J.F.; Barasoain, I.; Burns, P.A.; Pors, K. Synthesis and biological evaluation of colchicine B-ring analogues tethered with halogenated benzyl moieties. J. Med. Chem., 2012, 55(24), 11062-11066. [http://dx.doi.org/10.1021/jm301151t]. [PMID: 23176628].
[107]
Crielaard, B.J.; van der Wal, S.; Lammers, T.; Le, H.T.; Hennink, W.E.; Schiffelers, R.M.; Storm, G.; Fens, M.H. A polymeric colchicinoid prodrug with reduced toxicity and improved efficacy for vascular disruption in cancer therapy. Int. J. Nanomedicine, 2011, 6, 2697-2703. [http://dx.doi.org/10.2147/IJN.S24450]. [PMID: 22114500].
[108]
Crielaard, B.J.; van der Wal, S.; Le, H.T.; Bode, A.T.; Lammers, T.; Hennink, W.E.; Schiffelers, R.M.; Fens, M.H.; Storm, G. Liposomes as carriers for colchicine-derived prodrugs: vascular disrupting nanomedicines with tailorable drug release kinetics. Eur. J. Pharm. Sci., 2012, 45(4), 429-435. [http://dx.doi.org/10.1016/j.ejps.2011.08.027]. [PMID: 21907797].
[109]
Lu, Y.; Li, C.M.; Wang, Z.; Ross, C.R., II; Chen, J.; Dalton, J.T.; Li, W.; Miller, D.D. Discovery of 4-substituted methoxybenzoyl-aryl-thiazole as novel anticancer agents: synthesis, biological evaluation, and structure-activity relationships. J. Med. Chem., 2009, 52(6), 1701-1711. [http://dx.doi.org/10.1021/jm801449a]. [PMID: 19243174].
[110]
Rubenstein, S.M.; Baichwal, V.; Beckmann, H.; Clark, D.L.; Frankmoelle, W.; Roche, D.; Santha, E.; Schwender, S.; Thoolen, M.; Ye, Q.; Jaen, J.C. Hydrophilic, pro-drug analogues of T138067 are efficacious in controlling tumor growth in vivo and show a decreased ability to cross the blood brain barrier. J. Med. Chem., 2001, 44(22), 3599-3605. [http://dx.doi.org/10.1021/jm000478d]. [PMID: 11606124].
[111]
Thomopoulou, P.; Sachs, J.; Teusch, N.; Mariappan, A.; Gopalakrishnan, J.; Schmalz, H.G. New colchicine-derived triazoles and their influence on cytotoxicity and microtubule morphology. ACS Med. Chem. Lett., 2015, 7(2), 188-191. [http://dx.doi.org/10.1021/acsmedchemlett.5b00418]. [PMID: 26985296].
[112]
Vilanova, C.; Díaz-Oltra, S.; Murga, J.; Falomir, E.; Carda, M.; Redondo-Horcajo, M.; Díaz, J.F.; Barasoain, I.; Marco, J.A. Design and synthesis of pironetin analogue/colchicine hybrids and study of their cytotoxic activity and mechanisms of interaction with tubulin. J. Med. Chem., 2014, 57(24), 10391-10403. [http://dx.doi.org/10.1021/jm501112q]. [PMID: 25426924].
[113]
Zhang, X.; Kong, Y.; Zhang, J.; Su, M.; Zhou, Y.; Zang, Y.; Li, J.; Chen, Y.; Fang, Y.; Zhang, X.; Lu, W. Design, synthesis and biological evaluation of colchicine derivatives as novel tubulin and histone deacetylase dual inhibitors. Eur. J. Med. Chem., 2015, 95, 127-135. [http://dx.doi.org/10.1016/j.ejmech.2015.03.035]. [PMID: 25805446].
[114]
Anderson, H.L.; Yap, J.T.; Miller, M.P.; Robbins, A.; Jones, T.; Price, P.M. Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate. J. Clin. Oncol., 2003, 21(15), 2823-2830. [http://dx.doi.org/10.1200/JCO.2003.05.186]. [PMID: 12807935].
[115]
Bilenker, J.H.; Flaherty, K.T.; Rosen, M.; Davis, L.; Gallagher, M.; Stevenson, J.P.; Sun, W.; Vaughn, D.; Giantonio, B.; Zimmer, R.; Schnall, M.; O’Dwyer, P.J. Phase I trial of combretastatin a-4 phosphate with carboplatin. Clin. Cancer Res., 2005, 11(4), 1527-1533. [http://dx.doi.org/10.1158/1078-0432.CCR-04-1434]. [PMID: 15746056].
[116]
Dowlati, A.; Robertson, K.; Cooney, M.; Petros, W.P.; Stratford, M.; Jesberger, J.; Rafie, N.; Overmoyer, B.; Makkar, V.; Stambler, B.; Taylor, A.; Waas, J.; Lewin, J.S.; McCrae, K.R.; Remick, S.C. A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res., 2002, 62(12), 3408-3416. [PMID: 12067983].
[117]
Nathan, P.; Zweifel, M.; Padhani, A.R.; Koh, D.M.; Ng, M.; Collins, D.J.; Harris, A.; Carden, C.; Smythe, J.; Fisher, N.; Taylor, N.J.; Stirling, J.J.; Lu, S.P.; Leach, M.O.; Rustin, G.J.; Judson, I. Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer. Clin. Cancer Res., 2012, 18(12), 3428-3439. [http://dx.doi.org/10.1158/1078-0432.CCR-11-3376]. [PMID: 22645052].
[118]
Stevenson, J.P.; Rosen, M.; Sun, W.; Gallagher, M.; Haller, D.G.; Vaughn, D.; Giantonio, B.; Zimmer, R.; Petros, W.P.; Stratford, M.; Chaplin, D.; Young, S.L.; Schnall, M.; O’Dwyer, P.J. Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. J. Clin. Oncol., 2003, 21(23), 4428-4438. [http://dx.doi.org/10.1200/JCO.2003.12.986]. [PMID: 14645433].
[119]
Patterson, D.M.; Zweifel, M.; Middleton, M.R.; Price, P.M.; Folkes, L.K.; Stratford, M.R.; Ross, P.; Halford, S.; Peters, J.; Balkissoon, J.; Chaplin, D.J.; Padhani, A.R.; Rustin, G.J. Phase I clinical and pharmacokinetic evaluation of the vascular-disrupting agent OXi4503 in patients with advanced solid tumors. Clin. Cancer Res., 2012, 18(5), 1415-1425. [http://dx.doi.org/10.1158/1078-0432.CCR-11-2414]. [PMID: 22235096].
[120]
Hori, K.; Saito, S. Microvascular mechanisms by which the combretastatin A-4 derivative AC7700 (AVE8062) induces tumour blood flow stasis. Br. J. Cancer, 2003, 89(7), 1334-1344. [PMID: 14520469].
[121]
Carlson, D.M.; Steinberg, J.L.; Gordon, G. Targeting the unmet medical need: The abbott laboratories oncology approach. Clin. Adv. Hematol. Oncol., 2005, 3(9), 703-710. [PMID: 16224444].
[122]
Yarian, F.; Alibakhshi, A.; Eyvazi, S.; Arezumand, R.; Ahangarzadeh, S. Antibody-drug therapeutic conjugates: Potential of antibody-siRNAs in cancer therapy. J. Cell. Physiol., 2019, 25, 28490. [http://dx.doi.org/10.1002/jcp.28490]. [PMID: 30908646].
[123]
Chen, H.; Lin, Z.; Arnst, K.E.; Miller, D.D.; Li, W. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecules, 2017, 22(8), 22. [http://dx.doi.org/10.3390/molecules22081281]. [PMID: 28763044].
[124]
Hu, X.; Huang, W.; Fan, M. Emerging therapies for breast cancer. J. Hematol. Oncol, 2017, 10, 017-0466.
[http://dx.doi.org/10.1186/s13045-017-0466-3]
[125]
Newman, D.J.; Cragg, G.M. Current status of marine-derived compounds as warheads in anti-tumor drug candidates. Mar. Drugs, 2017, 15(4), 15. [http://dx.doi.org/10.3390/md15040099]. [PMID: 28353637].
[126]
Sapra, P.; Betts, A.; Boni, J. Preclinical and clinical pharmacokinetic/pharmacodynamic considerations for antibody-drug conjugates. Expert Rev. Clin. Pharmacol., 2013, 6(5), 541-555. [http://dx.doi.org/10.1586/17512433.2013.827405]. [PMID: 23978126].
[127]
Klute, K.; Nackos, E.; Tasaki, S.; Nguyen, D.P.; Bander, N.H.; Tagawa, S.T. Microtubule inhibitor-based antibody-drug conjugates for cancer therapy. OncoTargets Ther., 2014, 7, 2227-2236. [PMID: 25506226].
[128]
Baron, J.M.; Boster, B.L.; Barnett, C.M. Ado-trastuzumab emtansine (T-DM1): A novel antibody-drug conjugate for the treatment of HER2-positive metastatic breast cancer. J. Oncol. Pharm. Pract., 2015, 21(2), 132-142. [http://dx.doi.org/10.1177/1078155214527144]. [PMID: 24682654].
[129]
Schumacher, D.; Hackenberger, C.P.; Leonhardt, H.; Helma, J. Current status: Site-specific antibody drug conjugates. J. Clin. Immunol., 2016, 36(Suppl. 1), 100-107. [http://dx.doi.org/10.1007/s10875-016-0265-6]. [PMID: 27003914].
[130]
Almhanna, K.; Prithviraj, G.K.; Veiby, P.; Kalebic, T. Antibody-drug conjugate directed against the guanylyl cyclase antigen for the treatment of gastrointestinal malignancies. Pharmacol. Ther., 2017, 170, 8-13. [http://dx.doi.org/10.1016/j.pharmthera.2016.10.007]. [PMID: 27765652].
[131]
Erickson, H.K.; Lambert, J.M. ADME of antibody-maytansinoid conjugates. AAPS J., 2012, 14(4), 799-805. [http://dx.doi.org/10.1208/s12248-012-9386-x]. [PMID: 22875610].
[132]
Stack, G.D.; Walsh, J.J. Optimising the delivery of tubulin targeting agents through antibody conjugation. Pharm. Res., 2012, 29(11), 2972-2984. [http://dx.doi.org/10.1007/s11095-012-0810-9]. [PMID: 22777294].
[133]
Lambert, J.M. Drug-conjugated antibodies for the treatment of cancer. Br. J. Clin. Pharmacol., 2013, 76(2), 248-262. [http://dx.doi.org/10.1111/bcp.12044]. [PMID: 23173552].
[134]
Salami, J.; Crews, C.M. Waste disposal-An attractive strategy for cancer therapy. Science, 2017, 355(6330), 1163-1167. [http://dx.doi.org/10.1126/science.aam7340]. [PMID: 28302825].
[135]
An, Z.; Lv, W.; Su, S.; Wu, W.; Rao, Y. Developing potent PROTACs tools for selective degradation of HDAC6 protein. Protein Cell, 2019, 10(8), 606-609. [http://dx.doi.org/10.1007/s13238-018-0602-z].
[136]
Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8554-8559. [http://dx.doi.org/10.1073/pnas.141230798]. [PMID: 11438690].
[137]
Schneekloth, A.R.; Pucheault, M.; Tae, H.S.; Crews, C.M. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg. Med. Chem. Lett., 2008, 18(22), 5904-5908. [http://dx.doi.org/10.1016/j.bmcl.2008.07.114]. [PMID: 18752944].
[138]
Zengerle, M.; Chan, K.H.; Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol., 2015, 10(8), 1770-1777. [http://dx.doi.org/10.1021/acschembio.5b00216]. [PMID: 26035625].
[139]
Neklesa, T.K.; Winkler, J.D.; Crews, C.M. Targeted protein degradation by PROTACs. Pharmacol. Ther., 2017, 174, 138-144. [http://dx.doi.org/10.1016/j.pharmthera.2017.02.027]. [PMID: 28223226].
[140]
Churcher, I. Protac-induced protein degradation in drug discovery: Breaking the rules or just making new ones? J. Med. Chem., 2018, 61(2), 444-452. [http://dx.doi.org/10.1021/acs.jmedchem.7b01272]. [PMID: 29144739].
[141]
Gu, S.; Cui, D.; Chen, X.; Xiong, X.; Zhao, Y. PROTACs: An emerging targeting technique for protein degradation in drug discovery. BioEssays, 2018, 40(4), e1700247. [http://dx.doi.org/10.1002/bies.201700247]. [PMID: 29473971].
[142]
Itoh, Y. Chemical protein degradation approach and its application to epigenetic targets. Chem. Rec., 2018, 18(12), 1681-1700. [http://dx.doi.org/10.1002/tcr.201800032]. [PMID: 29893461].
[143]
Salami, J.; Alabi, S.; Willard, R. R.; Vitale, N. J.; Wang, J.; Dong, H.; Jin, M.; McDonnell, D. P.; Crew, A. P.; Neklesa, T. K.; Crews, C. M. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol, 2018, 1, 018-0105.
[144]
Sun, Y.; Zhao, X.; Ding, N.; Gao, H.; Wu, Y.; Yang, Y.; Zhao, M.; Hwang, J.; Song, Y.; Liu, W.; Rao, Y. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res., 2018, 28(7), 779-781. [http://dx.doi.org/10.1038/s41422-018-0055-1]. [PMID: 29875397].
[145]
Zhang, X.; Lee, H.C.; Shirazi, F.; Baladandayuthapani, V.; Lin, H.; Kuiatse, I.; Wang, H.; Jones, R.J.; Berkova, Z.; Singh, R.K.; Lu, J.; Qian, Y.; Raina, K.; Coleman, K.G.; Crews, C.M.; Li, B.; Wang, H.; Hailemichael, Y.; Thomas, S.K.; Wang, Z.; Davis, R.E.; Orlowski, R.Z. Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia, 2018, 32(10), 2224-2239. [http://dx.doi.org/10.1038/s41375-018-0044-x]. [PMID: 29581547].
[146]
Han, X.; Wang, C.; Qin, C.; Xiang, W.; Fernandez-Salas, E. yang, c-y.; wang, m.; zhao, l.; xu, t.; chinnaswamy, k.; delproposto, j.; stuckey, j.; wang, s. discovery of ard-69 as a highly potent proteolysis targeting chimera (protac) degrader of androgen receptor (AR) for the treatment of prostate cancer. J. Med. Chem., 2019, 62(2), 941-964. [http://dx.doi.org/10.1021/acs.jmedchem.8b01631]. [PMID: 30629437].
[147]
Hines, J.; Lartigue, S.; Dong, H.; Qian, Y.; Crews, C.M. MDM2-Recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of brd4 and stabilization of p53. Cancer Res., 2019, 79(1), 251-262. [http://dx.doi.org/10.1158/0008-5472.CAN-18-2918]. [PMID: 30385614].
[148]
Sun, X.; Wang, J.; Yao, X.; Zheng, W.; Mao, Y.; Lan, T.; Wang, L.; Sun, Y.; Zhang, X.; Zhao, Q.; Zhao, J.; Xiao, R. P.; Ji, G.; Rao, Y. A chemical approach for global protein knockdown from mice to non-human primates. Cell Discov,, 2019, 5, 018-0079.
[http://dx.doi.org/10.1038/s41421-018-0079-1]]
[149]
Tinworth, C.P.; Lithgow, H.; Dittus, L.; Bassi, Z.I.; Hughes, S.E.; Muelbaier, M.; Dai, H.; Smith, I.E.D.; Kerr, W.J.; Burley, G.A.; Bantscheff, M.; Harling, J.D. PROTAC-mediated degradation of bruton’s tyrosine kinase is inhibited by covalent binding. ACS Chem. Biol., 2019, 14(3), 342-347. [http://dx.doi.org/10.1021/acschembio.8b01094]. [PMID: 30807093].
[150]
Zou, Y.; Ma, D.; Wang, Y. The PROTAC technology in drug development. Cell Biochem. Funct., 2019, 37(1), 21-30. [http://dx.doi.org/10.1002/cbf.3369]. [PMID: 30604499].
[151]
Mi, L.; Gan, N.; Cheema, A.; Dakshanamurthy, S.; Wang, X.; Yang, D.C.; Chung, F.L. Cancer preventive isothiocyanates induce selective degradation of cellular alpha- and beta-tubulins by proteasomes. J. Biol. Chem., 2009, 284(25), 17039-17051. [http://dx.doi.org/10.1074/jbc.M901789200]. [PMID: 19339240].
[152]
Harris, G.; Schaefer, K.L. The microtubule-targeting agent T0070907 induces proteasomal degradation of tubulin. Biochem. Biophys. Res. Commun., 2009, 388(2), 345-349. [http://dx.doi.org/10.1016/j.bbrc.2009.08.009]. [PMID: 19665001].
[153]
Alhosin, M.; Ibrahim, A.; Boukhari, A.; Sharif, T.; Gies, J.P.; Auger, C.; Schini-Kerth, V.B. Anti-neoplastic agent thymoquinone induces degradation of α and β tubulin proteins in human cancer cells without affecting their level in normal human fibroblasts. Invest. New Drugs, 2012, 30(5), 1813-1819. [http://dx.doi.org/10.1007/s10637-011-9734-1]. [PMID: 21881916].
[154]
Ren, Y.; Zhao, J.; Feng, J. Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J. Neurosci., 2003, 23(8), 3316-3324. [http://dx.doi.org/10.1523/JNEUROSCI.23-08-03316.2003]. [PMID: 12716939].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy