[1]
Chaves OA, Mathew B, Sobrinho DC, et al. Spectroscopic, zeta potential and molecular docking analysis on the interaction between human serum albumin and halogenated thienyl chalcones. J Mol Liq 2017; 242: 1016-26.
[2]
Dimmock JR, Elias DW, Beazely MA, Kandepu NM. Bioactivities of chalcones. Curr Med Chem 1999; 6(12): 1125-49.
[3]
Mathew B, Suresh J, Anbazhagan S, Paulraj J, Krishnan GK. Heteroaryl chalcones: Mini review about their therapeutic voyage. BioMed Prev Nut 2014; 4: 451-8.
[4]
Jandial DD, Blair CA, Zhang S, Krill LS, Zhang YB, Zi X. Molecular targeted approaches to cancer therapy and prevention using chalcones. Curr Cancer Drug Targets 2014; 14(2): 181-200.
[5]
Mathew B, Adeniyi AA, Joy M, et al. Anti-oxidant behaviour of functionalized chalcone-a combined quantum chemical and crystallographic structural investigation. J Mol Struct 2017; 1147: 682-96.
[6]
Tadigoppula N, Korthikunta V, Gupta S, et al. Synthesis and insight into the structure-activity relationships of chalcones as antimalarial agents. J Med Chem 2013; 56(1): 31-45.
[7]
Abdullah MI, Mahmood A, Madni M, Masood S, Kashif M. Synthesis, characterization, theoretical, anti-bacterial and molecular docking studies of quinoline based chalcones as a DNA gyrase inhibitor. Bioorg Chem 2014; 54: 31-7.
[8]
Lahtchev KL, Batovska DI, Parushev SP, Ubiyvovk VM, Sibirny AA. Antifungal activity of chalcones: A mechanistic study using various yeast strains. Eur J Med Chem 2008; 43(10): 2220-8.
[9]
Zhai L, Chen M, Blom J, Theander TG, Christensen SB, Kharazmi A. The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. J Antimicrob Chemother 1999; 43(6): 793-803.
[10]
Rizvi SUF, Siddiqui HL, Johns M, Detorio M, Schinazi RF. Anti-HIV-1 and cytotoxicity studies of piperidyl-thienyl chalcones and their 2-pyrazoline derivatives. Med Chem Res 2012; 21: 3741-9.
[11]
Satyanarayana M, Tiwari P, Tripathi BK, Srivastava AK, Pratap R. Synthesis and antihyperglycemic activity of chalcone based aryloxypropanolamines. Bioorg Med Chem 2004; 12(5): 883-9.
[12]
Yarishkin OV, Ryu HW, Park JY, Yang MS, Hong SG, Park KH. Sulfonate chalcone as new class voltage-dependent K+ channel blocker. Bioorg Med Chem Lett 2008; 18(1): 137-40.
[13]
Nowakowska Z. A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 2007; 42(2): 125-37.
[14]
Batovska DI, Todorova IT. Trends in utilization of the pharmacological potential of chalcones. Curr Clin Pharmacol 2010; 5(1): 1-29.
[15]
Sahu NK, Balbhadra SS, Choudhary J, Kohli DV. Exploring pharmacological significance of chalcone scaffold: A review. Curr Med Chem 2012; 19(2): 209-25.
[16]
Bukhari SNA, Jantan I, Jasamai M. Anti-inflammatory trends of 1, 3-diphenyl-2-propen-1-one derivatives. Mini Rev Med Chem 2013; 13(1): 87-94.
[17]
Singh P, Anand A, Kumar V. Recent developments in biological activities of chalcones: A mini review. Eur J Med Chem 2014; 85: 758-77.
[18]
Mahapatra DK, Bharti SK, Asati V. Chalcone scaffolds as anti-infective agents: Structural and molecular target perspectives. Eur J Med Chem 2015; 101: 496-524.
[19]
Karthikeyan C, Moorthy NSHN, Ramasamy S, et al. Advances in chalcones with anticancer activities. Recent Pat Anti-Cans Drug Discov 2015; 10(1): 97-115.
[20]
Rahul S, Rakesh K, Rishi K, et al. A review on mechanisms of antitumor activity of chalcones. Anticancer Agents Med Chem 2016; 16: 200-11.
[21]
Mahapatra DK, Asati V, Bharti SK. Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives. Eur J Med Chem 2015; 92: 839-65.
[22]
Mahapatra DK, Bharti SK. Therapeutic potential of chalcones as cardiovascular agents. Life Sci 2016; 148: 154-72.
[23]
Claisen L, Claparéde A. Condensationen von Ketonen mit Aldehyden. Chem Ber 1881; 14: 2460-8.
[24]
Schmidt JG. Ueber die Einwirkung von Aceton auf Furfurol und auf Bittermandelöl bei Gegenwart von Alkalilauge. Chem Ber 1881; 14: 1459-61.
[25]
Kazuo I, Ken-ichi W. Catalysis of metal (II) acetate 2-2ʹbipyridine complexes in the aldol condensation. Bull Chem Soc Jpn 1981; 54: 1195-8.
[26]
Xu LW, Li L, Xia CG, Zhao PQ. Efficient coupling reactions of arylalkynes and aldehydes leading to the synthesis of enones. Helv Chim Acta 2004; 87: 3080-4.
[27]
Eddarir S, Cotelle N, Bakkour Y, Rolando C. An efficient synthesis of chalcones based on the Suzuki reaction. Tetrahedron Lett 2003; 44: 5359-63.
[28]
Wu XF, Neumann H, Spannenberg A, Schulz T, Jiao H, Beller M. Development of a general palladium-catalyzed carbonylative Heck reaction of aryl halides. J Am Chem Soc 2010; 132(41): 14596-602.
[29]
Bhukari SNA, Jasamai M, Jantan I, Ahmad W. Review of methods and various catalysts used for chalcone synthesis. Mini Rev Org Chem 2013; 10: 73-83.
[30]
Fringuelli F, Pizzo F, Vittoriani C, Vaccaro L. Polystyryl-supported TBD as an efficient and reusable catalyst under solvent-free conditions. Chem Commun (Camb) 2004; 130(23): 2756-7.
[31]
Siddiqui ZN, Musthafa TNM. An efficient and novel synthesis of chromonyl chalcones using recyclable Zn(l-proline)2 catalyst in water. Tetrahedron Lett 2011; 52: 4008-13.
[32]
Zeng M, Wang L, Shao J, Zhong Q. A facile synthesis of α, α′-bis(substituted benzylidene)cycloalkanones catalyzed by bis(p-ethoxyphenyl)telluroxide(bmpto) under microwave irradiation. Synth Commun 1997; 27: 351-4.
[33]
Kakati D, Sarma JC. Microwave assisted solvent free synthesis of 1,3-diphenylpropenones. Chem Cent J 2011; 5: 8.
[34]
Schramm OG. Multi-component Heterocycle Syntheses Based Upon Sonogashira Coupling Isomerization. Thesis Heidelberg University 2006.
[35]
Mathew B, Haridas A, Suresh J, Mathew GE, Uçar G, Jayaprakash V. Monoamine oxidase inhibitory actions of chalcones. A mini review. Cent Nerv Syst Agents Med Chem 2016; 16(2): 120-36.
[36]
Mathew B, Suresh J, Anbazhagan S. Synthesis, preclinical evaluation and antidepressant activity of 5-substituted phenyl-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazole-1-carbothioamides. EXCLI J 2014; 13: 437-45.
[37]
Mathew B, Suresh J, Anbazhagan S. Development of novel (1-H) benzimidazole bearing pyrimidine-trione based MAO-A inhibitors: Synthesis, docking studies and antidepressant activity. J Saudi Chem Soc 2016; 20: S132-9.
[38]
Wang W, Hu X, Zhao Z, et al. Antidepressant-like effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis in the forced swimming test and tail suspension test in mice. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(5): 1179-84.
[39]
Sui X, Zhao DH, Qu YL, Zhang RP, Guan LP. Synthesis and studies on antidepressant activity of 2´, 4´, 6´-trihydroxychalcone derivatives. Med Chem Res 2012; 21: 1290-6.
[40]
Guan LP, Zhao DH, Chang Y, Sun Y, Ding XL, Jiang JD. Design, synthesis and antidepressant activity evaluation of 2-hydroxy-4-6- diisoprenylchalcone derivatives. Med Chem Res 2013; 22: 5218-26.
[41]
Afzal O, Bawas S, Kumar S, Kumar R, Hassan MQ. Design, synthesis and evaluation of novel 2-piperidinyl quinoline chalcones/ amines as potential antidepressant agents. Lett Drug Des Discov 2013; 10: 75-85.
[42]
Guan LP, Zhao DH, Chang Y, Wen ZS, Tang LM, Huang FF. Synthesis of 2,4-dihydroxychalcone derivatives as potential antidepressant effect. Drug Res (Stuttg) 2013; 63(1): 46-51.
[43]
Jamal H, Ansari WH, Rizvi SJ. Evaluation of chalcones--a flavonoid subclass for their anxiolytic effects in rats using elevated plus maze and open field behaviour tests. Fundam Clin Pharmacol 2008; 22(6): 673-81.
[44]
Cao Y, Wang Y, Ji C, Ye J. Determination of liquiritigenin and isoliquiritigenin in Glycyrrhiza uralensis and its medicinal preparations by capillary electrophoresis with electrochemical detection. J Chromatogr A 2004; 1042(1-2): 203-9.
[45]
Jang EY, Choe ES, Hwang M, et al. Isoliquiritigenin suppresses cocaine-induced extracellular dopamine release in rat brain through GABA(B) receptor. Eur J Pharmacol 2008; 587(1-3): 124-8.
[46]
Cho S, Kim S, Jin Z, et al. Isoliquiritigenin, a chalcone compound, is a positive allosteric modulator of GABAA receptors and shows hypnotic effects. Biochem Biophys Res Commun 2011; 413(4): 637-42.
[47]
Tumiatti V, Minarini A, Bolognesi ML, Milelli A, Rosini M, Melchiorre C. Tacrine derivatives and Alzheimer’s disease. Curr Med Chem 2010; 17(17): 1825-38.
[48]
Giacobini E. Cholinesterase inhibitors: New roles and therapeutic alternatives. Pharmacol Res 2004; 50(4): 433-40.
[49]
Andersson CD, Forsgren N, Akfur C, et al. Divergent structure-activity relationships of structurally similar acetylcholinesterase inhibitors. J Med Chem 2013; 56(19): 7615-24.
[50]
Hasan A, Khan KM, Sher M, et al. Synthesis and inhibitory potential towards acetylcholinesterase, butyrylcholinesterase and lipoxygenase of some variably substituted chalcones. J Enzyme Inhib Med Chem 2005; 20(1): 41-7.
[51]
Saranya AV, Rav S. In vitro acetylcholinesterase inhibition activity of chalcones with phenothiazine moiety. Res J Recent Sci 2012; 1: 40-3.
[52]
Kang JE, Cho JK, Curtis-Long MJ, et al. Inhibitory evaluation of sulfonamide chalcones on β-Secretase and acylcholinesterase. Molecules 2012; 18(1): 140-53.
[53]
Liu HR, Liu XJ, Fan HQ, Tang JJ, Gao XH, Liu WK. Design, synthesis and pharmacological evaluation of chalcone derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem 2014; 22(21): 6124-33.
[54]
Liu HR, Zhou C, Fan HQ, et al. Novel potent and selective acetylcholinesterase inhibitors as potential drugs for the treatment of Alzheimer’s disease: Synthesis, pharmacological evaluation, and molecular modeling of amino alkyl substituted fluoro-chalcones derivatives. Chem Biol Drug Des 2015; 86(4): 517-22.
[55]
Liu H, Fan H, Gao X, et al. Design, synthesis and preliminary structure-activity relationship investigation of nitrogen-containing chalcone derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors: A further study based on Flavokawain B Mannich base derivatives. J Enzyme Inhib Med Chem 2016; 31(4): 580-9.
[56]
Selkoe DJ. Alzheimer’s disease: Genes, proteins, and therapy. Physiol Rev 2001; 81(2): 741-66.
[57]
Bag S, Ghosh S, Tulsan R, et al. Design, synthesis and biological activity of multifunctional α,β-unsaturated carbonyl scaffolds for Alzheimer’s disease. Bioorg Med Chem Lett 2013; 23(9): 2614-8.
[58]
Sashidhara KV, Modukuri RK, Jadiya P, et al. Benzofuran-chalcone hybrids as potential multifunctional agents against Alzheimer’s disease: Synthesis and in vivo studies with transgenic Caenorhabditis elegans. ChemMedChem 2014; 9(12): 2671-84.
[59]
Hardy JA, Higgins GA. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[60]
Mathis CA, Wang Y, Klunk WE. Imaging beta-amyloid plaques and neurofibrillary tangles in the aging human brain. Curr Pharm Des 2004; 10(13): 1469-92.
[61]
Yang Y, Zhang X, Cui M, et al. Preliminary characterization and in vivo studies of structurally identical 18F- and 125I-labeled benzyloxybenzenes for pet/spectimaging of β-amyloid plaques. Sci Rep 2015; 5: 12084.
[62]
Camus V, Payoux P, Barré L, et al. Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur J Nucl Med Mol Imaging 2012; 39(4): 621-31.
[63]
Ono M, Hori M, Haratake M, Tomiyama T, Mori H, Nakayama M. Structure-activity relationship of chalcones and related derivatives as ligands for detecting of β-amyloid plaques in the brain. Bioorg Med Chem 2007; 15(19): 6388-96.
[64]
Ono M, Haratake M, Mori H, Nakayama M. Novel chalcones as probes for in vivo imaging of β-amyloid plaques in Alzheimer’s brains. Bioorg Med Chem 2007; 15(21): 6802-9.
[65]
Ono M, Ikeoka R, Watanabe H, et al. Synthesis and evaluation of novel chalcone derivatives with (99m)Tc/Re complexes as potential probes for detection of β-amyloid plaques. ACS Chem Neurosci 2010; 1(9): 598-607.
[66]
Cui M, Ono M, Kimura H, Liu BL, Saji H. Synthesis and biological evaluation of indole-chalcone derivatives as β-amyloid imaging probe. Bioorg Med Chem Lett 2011; 21(3): 980-2.
[67]
Fuchigami T, Yamashita Y, Haratake M, Ono M, Yoshida S, Nakayama M. Synthesis and evaluation of ethyleneoxylated and allyloxylated chalcone derivatives for imaging of amyloid β plaques by SPECT. Bioorg Med Chem 2014; 22(9): 2622-8.
[68]
Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 2006; 5(3): 247-64.
[69]
Vazquez-Rodriguez S, Matos MJ, Santana L, et al. Chalcone-based derivatives as new scaffolds for hA3 adenosine receptor antagonists. J Pharm Pharmacol 2013; 65(5): 697-703.
[70]
Youdim MB, Edmondson D, Tripton K. The therapeutic potential of MAO inhibitors: Safety and future. Nat Rev Neurosci 2006; 7: 295-309.
[71]
De Monte CD, Ascenzio M, Guglielmi P, Mancini V, Carradori S. Opening new scenario for human MAO inhibitors. Cent Nerv Syst Agents Med Chem 2016; 16(2): 98-104.
[72]
Mathew B, Mathew GE, Suresh J, et al. Perspective design for the treatment of depression and neurological disorders. Curr Enzym Inhib 2016; 12: 115-22.
[73]
Carradori S, D’Ascenzio M, Chimenti P, Secci D, Bolasco A. Selective MAO-B inhibitors: A lesson from natural products. Mol Divers 2014; 18(1): 219-43.
[74]
Chimenti F, Fioravanti R, Bolasco A, et al. Chalcones: A valid scaffold for monoamine oxidases inhibitors. J Med Chem 2009; 52(9): 2818-24.
[75]
Robinson SJ, Petzer JP, Petzer A, Bergh JJ, Lourens ACU. Selected furanochalcones as inhibitors of monoamine oxidase. Bioorg Med Chem Lett 2013; 23(17): 4985-9.
[76]
Jo G, Ahn S, Kim BG, et al. Chromenylchalcones with inhibitory effects on monoamine oxidase B. Bioorg Med Chem 2013; 21(24): 7890-7.
[77]
Evranos-Aksöz B, Yabanoğlu-Çiftçi S, Uçar G, Yelekçi K, Ertan R. Synthesis of some novel hydrazone and 2-pyrazoline derivatives: Monoamine oxidase inhibitory activities and docking studies. Bioorg Med Chem Lett 2014; 24(15): 3278-84.
[78]
Choi JW, Jang BK, Cho NC, et al. Synthesis of a series of unsaturated ketone derivatives as selective and reversible monoamine oxidase inhibitors. Bioorg Med Chem 2015; 23(19): 6486-96.
[79]
Evranos-Aksöz B, Baysal İ, Yabanoğlu-Çiftçi S, et al. Synthesis and screening of human monoamine oxidase-A inhibitor effect of new 2-pyrazoline and hydrazone derivatives. Arch Pharm (Weinheim) 2015; 348(10): 743-56.
[80]
Mathew B, Mathew GE, Uçar G, et al. Development of fluorinated methoxylated chalcones as selective monoamine oxidase-B inhibitors: Synthesis, biochemistry and molecular docking studies. Bioorg Chem 2015; 62: 22-9.
[81]
Mathew B, Uçar G, Yabanoğlu-Çiftçi S, et al. Development of fluorinated thienylchalcones as monoamine oxidase-b inhibitors: Design, synthesis, biological evaluation and molecular docking studies. Lett Org Chem 2015; 12: 605-13.
[82]
Zaib S, Rizvi SUF, Aslam S, et al. Quinolinyl-thienyl chalcones as monoamine oxidase inhibitors and their in silico modeling studies. Med Chem 2015; 11(6): 580-9.
[83]
Zaib S, Farooq Rizvi SU, Aslam S, Ahmad M, Al-Rashida M, Iqbal J. Monoamine oxidase inhibition and molecular modeling studies of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones. Med Chem 2015; 11(5): 497-505.
[84]
Morales-Camilo N, Salas CO, Sanhueza C, et al. Synthesis, biological evaluation, and molecular simulation of chalcones and aurones as selective MAO-B inhibitors. Chem Biol Drug Des 2015; 85(6): 685-95.
[85]
Minders C, Petzer JP, Petzer A, Lourens ACU. Monoamine oxidase inhibitory activities of heterocyclic chalcones. Bioorg Med Chem Lett 2015; 25(22): 5270-6.
[86]
Mathew B, Mathew GE, Ucar G, Baysal I, Suresh J, Mathew S. Potent and selective monoamine oxidase-b inhibitory activity:
Fluoro vs. trifluoromethyl-4-hydroxylated chalcone derivatives Chem Biodivers 2-16(13): 1046-52.
[87]
Mathew B, Uçar G, Mathew GE, et al. Monoamine oxidase inhibitory activity: Methyl- versus chloro-chalcone derivatives. ChemMedChem 2016; 11(24): 2649-55.
[88]
Hammuda A, Shalaby R, Rovida S, Edmondson DE, Binda C, Khalil A. Design and synthesis of novel chalcones as potent selective monoamine oxidase-B inhibitors. Eur J Med Chem 2016; 114: 162-9.
[89]
Mathew B, Haridas A, Uçar G, et al. Exploration of chlorinated thienyl chalcones: A new class of monoamine oxidase-B inhibitors. Int J Biol Macromol 2016; 91: 680-95.
[90]
Mathew B, Haridas A, Uçar G, et al. Synthesis, biochemistry, and computational studies of brominated thienyl chalcones: A new class of reversible MAO-B inhibitors. ChemMedChem 2016; 11(11): 1161-71.
[91]
Mathew B, Adeniyi AA, Dev S, et al. Pharmacophore based 3D-QSAR analysis of thienyl chalcone as new class of human MAO-B inhibitors. Investigation of combined quantum chemical and molecular dynamics approach. J Phys Chem B 2017; 121(6): 1186-203.
[92]
Sasidharan R, Manju SL, Uçar G, Baysal I, Mathew B. Identification of indole based chalcones: Discovery of potent, selective and reversible class of MAO-B inhibitors. Arch Pharm (Weinheim) 2016; 349(8): 627-37.
[93]
Chaves OA, Sasidharan R, dos Santos de Oliveria CHC, et al. In vitro study of the interaction between HSA and indolylchalcone, a potent human MAO-B inhibitor: Spectroscopic and molecular modeling studies. ChemistrySelect 2019; 4: 1007-14.
[94]
Mathew B, Mathew GE, Ucar G, et al. Monoamine oxidase inhibitory activity of methoxy-substituted chalcones. Int J Biol Macromol 2017; 104(Pt A): 1321-9.
[95]
Mathew B, Ucar G, Raphael C, Mathew GE, Joy M, Machaba KE. Characterization of thienylchalcones as hMAO-B inhibitors: Synthesis, biochemistry and molecular dynamics studies. ChemistrySelect 2017; 2: 11113-9.
[96]
Suresh J, Baek SC, Ramakrishnan SP, Kim H, Mathew B. Discovery of potent and reversible MAO-B inhibitors as furanochalcones. Int J Biol Macromol 2018; 108: 660-4.
[97]
Sasidharan R, Baek SC, Sreedharannair Leelabaiamma M, Kim H, Mathew B. Imidazole bearing chalcones as a new class of monoamine oxidase inhibitors. Biomed Pharmacother 2018; 106: 8-13.
[98]
Mathew B, Baek SC, Thomas Parambi DG, et al. Potent and highly selective dual-targeting monoamine oxidase-B inhibitors: Fluorinated chalcones of morpholine versus imidazole. Arch Pharm (Weinheim) 2019; 352(4)e1800309
[99]
Lakshminarayan B, Baek SC, Kannappan N, et al. Ethoxylated head of chalcones as a new class of Multi-targeted MAO inhibitors. ChemistrySelect 2019; 4: 6614-9.
[100]
Katsori AM, Hadjipavlou-Litina D. Recent progress in therapeutic applications of chalcones. Expert Opin Ther Patents 2011; 21(10): 1575-96.
[101]
Matos MJ, Vazquez-Rodriguez S, Uriarte E, Santana L. Potential pharmacological uses of chalcones: A patent review. Expert Opin Ther Patents 2014; 25(3): 351-66.
[102]
Toray Industries. Tissue transglutaminase inhibitors containing
chalcone derivatives (1-thienyl-3-phenyl-2-propen-1-ones) and anti-
Alzheimer agents containing them. JP180955 2013.
[103]
Zhao HF, Wang G, Wu CP, et al. A multi-targeted natural flavonoid myricetin suppresses lamellipodia and focal adhesions formation and impedes glioblastoma cell invasiveness and abnormal motility. CNS Neurol Disord Drug Targets 2018; 17(7): 557-67.
[104]
Neganova ME, Klochkov SG, Petrova LN, et al. Securinine derivatives as potential anti-amyloid therapeutic approach. CNS Neurol Disord Drug Targets 2017; 16(3): 351-5.
[105]
Dereli FTG, Ilhan M, Akkol EK. New drug discovery from medicinal plants and phytoconstituents for depressive disorders. CNS Neurol Disord Drug Targets 2019; 18(2): 92-102.
[106]
Sharma S, Sarathlal KC, Taliyan R. Epigenetics in neurodegenerative diseases: The role of histone deacetylases. CNS Neurol Disord Drug Targets 2019; 18(1): 11-8.
[107]
Kumar A, Dhawan A, Kadam A, Shinde A. Autophagy and mitochondria: Targets in neurodegenerative disorders. CNS Neurol Disord Drug Targets 2018; 17(9): 696-705.