Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Genome-Wide Analysis of Low Dose Bisphenol-A (BPA) Exposure in Human Prostate Cells

Author(s): Ludivine Renaud, Matthew Huff, Willian A. da Silveira, Mila Angert, Martin Haas and Gary Hardiman*

Volume 20, Issue 4, 2019

Page: [260 - 274] Pages: 15

DOI: 10.2174/1389202920666190603123040

Price: $65

Abstract

Endocrine disrupting compounds (EDCs) have the potential to cause adverse effects on wildlife and human health. Two important EDCs are the synthetic estrogen 17α-ethynylestradiol (EE2) and bisphenol-A (BPA) both of which are xenoestrogens (XEs) as they bind the estrogen receptor and disrupt estrogen physiology in mammals and other vertebrates. In the recent years the influence of XEs on oncogenes, specifically in relation to breast and prostate cancer has been the subject of considerable study.

Methodology: In this study, healthy primary human prostate epithelial cells (PrECs) were exposed to environmentally relevant concentrations of BPA (5nM and 25nM BPA) and interrogated using a whole genome microarray.

Results: Exposure to 5 and 25nM BPA resulted in 7,182 and 7,650 differentially expressed (DE) genes, respectively in treated PrECs. Exposure to EE2 had the greatest effect on the PrEC transcriptome (8,891 DE genes).

Conclusion: We dissected and investigated the nature of the non-estrogenic gene signature associated with BPA with a focus on transcripts relevant to epigenetic modifications. The expression of transcripts encoding nuclear hormone receptors as well as histone and DNA methylation, modifying enzymes were significantly perturbed by exposure to BPA.

Keywords: Endocrine disruptor (ED), xenoestrogen (XE), bisphenol-A (BPA), microarray, prostate epithelial cells, metaanalysis, epigenomic biomarkers.

Graphical Abstract

[1]
Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev., 2009, 30(4), 293-342.
[http://dx.doi.org/10.1210/er.2009-0002] [PMID: 19502515]
[2]
Paterni, I.; Granchi, C.; Minutolo, F. Risks and benefits related to alimentary exposure to xenoestrogens. Crit. Rev. Food Sci. Nutr., 2016, 57(16), 3384-3404.
[PMID: 26744831]
[3]
Kang, J.H.; Kondo, F.; Katayama, Y. Human exposure to bisphenol A. Toxicology, 2006, 226(2-3), 79-89.
[http://dx.doi.org/10.1016/j.tox.2006.06.009] [PMID: 16860916]
[4]
Belfroid, A.; van Velzen, M.; van der Horst, B.; Vethaak, D. Occurrence of bisphenol A in surface water and uptake in fish: Evaluation of field measurements. Chemosphere, 2002, 49(1), 97-103.
[http://dx.doi.org/10.1016/S0045-6535(02)00157-1] [PMID: 12243336]
[5]
Rubin, B.S.; Bisphenol, A. An endocrine disruptor with widespread exposure and multiple effects. J. Steroid Biochem. Mol. Biol., 2011, 127(1-2), 27-34.
[http://dx.doi.org/10.1016/j.jsbmb.2011.05.002] [PMID: 21605673]
[6]
Prins, G.S.; Korach, K.S. The role of estrogens and estrogen receptors in normal prostate growth and disease. Steroids, 2008, 73(3), 233-244.
[http://dx.doi.org/10.1016/j.steroids.2007.10.013] [PMID: 18093629]
[7]
Fenichel, P.; Chevalier, N.; Brucker-Davis, F.; Bisphenol, A. An endocrine and metabolic disruptor. Ann. Endocrinol. (Paris), 2013, 74(3), 211-220.
[http://dx.doi.org/10.1016/j.ando.2013.04.002] [PMID: 23796010]
[8]
Sugimura, Y.; Cunha, G.R.; Yonemura, C.U.; Kawamura, J. Temporal and spatial factors in diethylstilbestrol-induced squamous metaplasia of the developing human prostate. Hum. Pathol., 1988, 19(2), 133-139.
[http://dx.doi.org/10.1016/S0046-8177(88)80340-X] [PMID: 3343029]
[9]
Härkönen, P.L.; Mäkelä, S.I. Role of estrogens in development of prostate cancer. J. Steroid Biochem. Mol. Biol., 2004, 92(4), 297-305.
[http://dx.doi.org/10.1016/j.jsbmb.2004.10.016] [PMID: 15663993]
[10]
Pasquali, D.; Rossi, V.; Esposito, D.; Abbondanza, C.; Puca, G.A.; Bellastella, A.; Sinisi, A.A. Loss of estrogen receptor β expression in malignant human prostate cells in primary cultures and in prostate cancer tissues. J. Clin. Endocrinol. Metab., 2001, 86(5), 2051-2055.
[http://dx.doi.org/10.1210/jc.86.5.2051] [PMID: 11344205]
[11]
Cox, R.L.; Crawford, E.D. Estrogens in the treatment of prostate cancer. J. Urol., 1995, 154(6), 1991-1998.
[http://dx.doi.org/10.1016/S0022-5347(01)66670-9] [PMID: 7500443]
[12]
Huggins, C.; Scott, W.W.; Hodges, C.V. Studies on Prostatic Cancer. III. The effects of fever, of desoxycorticosterone and of estrogen on clinical patients with metastatic carcinoma of the prostate. J. Urol., 1941, 46(5), 997-1006.
[http://dx.doi.org/10.1016/S0022-5347(17)71004-X]
[13]
Huang, L.; Pu, Y.; Alam, S.; Birch, L.; Prins, G.S. Estrogenic regulation of signaling pathways and homeobox genes during rat prostate development. J. Androl., 2004, 25(3), 330-337.
[http://dx.doi.org/10.1002/j.1939-4640.2004.tb02796.x] [PMID: 15064308]
[14]
Prins, G.S.; Birch, L.; Couse, J.F.; Choi, I.; Katzenellenbogen, B.; Korach, K.S. Estrogen imprinting of the developing prostate gland is mediated through stromal estrogen receptor α: Studies with alphaERKO and betaERKO mice. Cancer Res., 2001, 61(16), 6089-6097.
[PMID: 11507058]
[15]
Risbridger, G.; Wang, H.; Young, P.; Kurita, T.; Wang, Y.Z.; Lubahn, D.; Gustafsson, J.A.; Cunha, G. Evidence that epithelial and mesenchymal estrogen receptor-α mediates effects of estrogen on prostatic epithelium. Dev. Biol., 2001, 229(2), 432-442.
[http://dx.doi.org/10.1006/dbio.2000.9994] [PMID: 11150243]
[16]
Multigner, L.; Ndong, J.R.; Giusti, A.; Romana, M.; Delacroix-Maillard, H.; Cordier, S.; Jégou, B.; Thome, J.P.; Blanchet, P. Chlordecone exposure and risk of prostate cancer. J. Clin. Oncol., 2010, 28(21), 3457-3462.
[http://dx.doi.org/10.1200/JCO.2009.27.2153] [PMID: 20566993]
[17]
Li, Y.; Burns, K.A.; Arao, Y.; Luh, C.J.; Korach, K.S. Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor α and β in vitro. Environ. Health Perspect., 2012, 120(7), 1029-1035.
[http://dx.doi.org/10.1289/ehp.1104689] [PMID: 22494775]
[18]
Matthews, J.B.; Twomey, K.; Zacharewski, T.R. In vitro and in vivo interactions of bisphenol A and its metabolite, bisphenol A glucuronide, with estrogen receptors α and β. Chem. Res. Toxicol., 2001, 14(2), 149-157.
[http://dx.doi.org/10.1021/tx0001833] [PMID: 11258963]
[19]
Tohmé, M.; Prud’homme, S.M.; Boulahtouf, A.; Samarut, E.; Brunet, F.; Bernard, L.; Bourguet, W.; Gibert, Y.; Balaguer, P.; Laudet, V. Estrogen-related receptor γ is an in vivo receptor of bisphenol A. FASEB J., 2014, 28(7), 3124-3133.
[http://dx.doi.org/10.1096/fj.13-240465] [PMID: 24744145]
[20]
Sohoni, P.; Sumpter, J.P. Several environmental oestrogens are also anti-androgens. J. Endocrinol., 1998, 158(3), 327-339.
[http://dx.doi.org/10.1677/joe.0.1580327] [PMID: 9846162]
[21]
Zoeller, R.T. Environmental chemicals as thyroid hormone analogues: New studies indicate that thyroid hormone receptors are targets of industrial chemicals? Mol. Cell. Endocrinol., 2005, 242(1-2), 10-15.
[http://dx.doi.org/10.1016/j.mce.2005.07.006] [PMID: 16150534]
[22]
Bouskine, A.; Nebout, M.; Brücker-Davis, F.; Benahmed, M.; Fenichel, P. Low doses of bisphenol A promote human seminoma cell proliferation by activating PKA and PKG via a membrane G-protein-coupled estrogen receptor. Environ. Health Perspect., 2009, 117(7), 1053-1058.
[http://dx.doi.org/10.1289/ehp.0800367] [PMID: 19654912]
[23]
Sargis, R.M.; Johnson, D.N.; Choudhury, R.A.; Brady, M.J. Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation. Obesity (Silver Spring), 2010, 18(7), 1283-1288.
[http://dx.doi.org/10.1038/oby.2009.419] [PMID: 19927138]
[24]
Birceanu, O.; Mai, T.; Vijayan, M.M. Maternal transfer of bisphenol A impacts the ontogeny of cortisol stress response in rainbow trout. Aquat. Toxicol., 2015, 168, 11-18.
[http://dx.doi.org/10.1016/j.aquatox.2015.09.002] [PMID: 26398930]
[25]
Sui, Y.; Park, S.H.; Helsley, R.N.; Sunkara, M.; Gonzalez, F.J.; Morris, A.J.; Zhou, C. Bisphenol A increases atherosclerosis in pregnane X receptor-humanized ApoE deficient mice. J. Am. Heart Assoc., 2014, 3(2)e000492
[http://dx.doi.org/10.1161/JAHA.113.000492] [PMID: 24755147]
[26]
Forner-Piquer, I.; Mylonas, C.C.; Calduch-Giner, J.; Maradonna, F.; Gioacchini, G.; Allarà, M.; Piscitelli, F.; Di Marzo, V.; Pérez-Sánchez, J.; Carnevali, O. Endocrine disruptors in the diet of male Sparus aurata: Modulation of the endocannabinoid system at the hepatic and central level by Di-isononyl phthalate and Bisphenol A. Environ. Int., 2018, 119, 54-65.
[http://dx.doi.org/10.1016/j.envint.2018.06.011] [PMID: 29933238]
[27]
Martella, A.; Silvestri, C.; Maradonna, F.; Gioacchini, G.; Allarà, M.; Radaelli, G.; Overby, D.R.; Di Marzo, V.; Carnevali, O. Bisphenol A induces fatty liver by an endocannabinoid-mediated positive feedback loop. Endocrinology, 2016, 157(5), 1751-1763.
[http://dx.doi.org/10.1210/en.2015-1384] [PMID: 27014939]
[28]
Schug, T.T.; Janesick, A.; Blumberg, B.; Heindel, J.J. Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol., 2011, 127(3-5), 204-215.
[http://dx.doi.org/10.1016/j.jsbmb.2011.08.007] [PMID: 21899826]
[29]
Calafat, A.M.; Ye, X.; Wong, L.Y.; Reidy, J.A.; Needham, L.L. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ. Health Perspect., 2008, 116(1), 39-44.
[http://dx.doi.org/10.1289/ehp.10753] [PMID: 18197297]
[30]
Howdeshell, K.L.; Hotchkiss, A.K.; Thayer, K.A.; Vandenbergh, J.G.; vom Saal, F.S. Exposure to bisphenol A advances puberty. Nature, 1999, 401(6755), 763-764.
[http://dx.doi.org/10.1038/44517] [PMID: 10548101]
[31]
Cabaton, N.J.; Wadia, P.R.; Rubin, B.S.; Zalko, D.; Schaeberle, C.M.; Askenase, M.H.; Gadbois, J.L.; Tharp, A.P.; Whitt, G.S.; Sonnenschein, C.; Soto, A.M. Perinatal exposure to environmentally relevant levels of bisphenol A decreases fertility and fecundity in CD-1 mice. Environ. Health Perspect., 2011, 119(4), 547-552.
[http://dx.doi.org/10.1289/ehp.1002559] [PMID: 21126938]
[32]
Salian, S.; Doshi, T.; Vanage, G. Neonatal exposure of male rats to Bisphenol A impairs fertility and expression of sertoli cell junctional proteins in the testis. Toxicology, 2009, 265(1-2), 56-67.
[http://dx.doi.org/10.1016/j.tox.2009.09.012] [PMID: 19782717]
[33]
Vitku, J.; Heracek, J.; Sosvorova, L.; Hampl, R.; Chlupacova, T.; Hill, M.; Sobotka, V.; Bicikova, M.; Starka, L. Associations of bisphenol A and polychlorinated biphenyls with spermatogenesis and steroidogenesis in two biological fluids from men attending an infertility clinic. Environ. Int., 2016, 89-90, 166-173.
[http://dx.doi.org/10.1016/j.envint.2016.01.021] [PMID: 26863184]
[34]
Manikkam, M.; Tracey, R.; Guerrero-Bosagna, C.; Skinner, M.K. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One, 2013, 8(1)e55387
[http://dx.doi.org/10.1371/journal.pone.0055387] [PMID: 23359474]
[35]
Ahmed, S.; Atlas, E. Bisphenol S- and bisphenol A-induced adipogenesis of murine preadipocytes occurs through direct peroxisome proliferator-activated receptor gamma activation. Int. J. Obes., 2016, 40(10), 1566-1573.
[http://dx.doi.org/10.1038/ijo.2016.95] [PMID: 27273607]
[36]
Grün, F.; Blumberg, B. Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Rev. Endocr. Metab. Disord., 2007, 8(2), 161-171.
[http://dx.doi.org/10.1007/s11154-007-9049-x] [PMID: 17657605]
[37]
Ohlstein, J.F.; Strong, A.L.; McLachlan, J.A.; Gimble, J.M.; Burow, M.E.; Bunnell, B.A. Bisphenol A enhances adipogenic differentiation of human adipose stromal/stem cells. J. Mol. Endocrinol., 2014, 53(3), 345-353.
[http://dx.doi.org/10.1530/JME-14-0052] [PMID: 25143472]
[38]
vom Saal, F.S.; Myers, J.P. Bisphenol A and risk of metabolic disorders. JAMA, 2008, 300(11), 1353-1355.
[http://dx.doi.org/10.1001/jama.300.11.1353] [PMID: 18799451]
[39]
Doherty, L.F.; Bromer, J.G.; Zhou, Y.; Aldad, T.S.; Taylor, H.S. In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: An epigenetic mechanism linking endocrine disruptors to breast cancer. Horm. Cancer, 2010, 1(3), 146-155.
[http://dx.doi.org/10.1007/s12672-010-0015-9] [PMID: 21761357]
[40]
Prins, G.S.; Birch, L.; Tang, W.Y.; Ho, S.M. Developmental estrogen exposures predispose to prostate carcinogenesis with aging. Reprod. Toxicol., 2007, 23(3), 374-382.
[http://dx.doi.org/10.1016/j.reprotox.2006.10.001] [PMID: 17123779]
[41]
Cuomo, D.; Porreca, I.; Cobellis, G.; Tarallo, R.; Nassa, G.; Falco, G.; Nardone, A.; Rizzo, F.; Mallardo, M.; Ambrosino, C. Carcinogenic risk and Bisphenol A exposure: A focus on molecular aspects in endoderm derived glands. Mol. Cell. Endocrinol., 2017, 457, 20-34.
[http://dx.doi.org/10.1016/j.mce.2017.01.027] [PMID: 28111205]
[42]
Gomez, A.L.; Delconte, M.B.; Altamirano, G.A.; Vigezzi, L.; Bosquiazzo, V.L.; Barbisan, L.F.; Ramos, J.G.; Luque, E.H.; Muñoz-de-Toro, M.; Kass, L. Perinatal exposure to bisphenol A or diethylstilbestrol increases the susceptibility to develop mammary gland lesions after estrogen replacement therapy in middle-aged rats. Horm. Cancer, 2017, 8(2), 78-89.
[http://dx.doi.org/10.1007/s12672-016-0282-1] [PMID: 28078498]
[43]
Krishnan, A.V.; Stathis, P.; Permuth, S.F.; Tokes, L.; Feldman, D. Bisphenol-A: An estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology, 1993, 132(6), 2279-2286.
[http://dx.doi.org/10.1210/endo.132.6.8504731] [PMID: 8504731]
[44]
Welshons, W.V.; Nagel, S.C.; vom Saal, F.S. Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology, 2006, 147(Suppl. 6), S56-S69.
[http://dx.doi.org/10.1210/en.2005-1159] [PMID: 16690810]
[45]
vom Saal, F.S.; Welshons, W.V. Large effects from small exposures. II. The importance of positive controls in low-dose research on bisphenol A. Environ. Res., 2006, 100(1), 50-76.
[http://dx.doi.org/10.1016/j.envres.2005.09.001] [PMID: 16256977]
[46]
Okuda, K.; Takiguchi, M.; Yoshihara, S. In vivo estrogenic potential of 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene, an active metabolite of bisphenol A, in uterus of ovariectomized rat. Toxicol. Lett., 2010, 197(1), 7-11.
[http://dx.doi.org/10.1016/j.toxlet.2010.04.017] [PMID: 20435109]
[47]
Baker, M.E.; Chandsawangbhuwana, C. 3D models of MBP, a biologically active metabolite of bisphenol A, in human estrogen receptor α and estrogen receptor β. PLoS One, 2012, 7(10)e46078
[http://dx.doi.org/10.1371/journal.pone.0046078] [PMID: 23056236]
[48]
Jemal, A.; Tiwari, R.C.; Murray, T.; Ghafoor, A.; Samuels, A.; Ward, E.; Feuer, E.J.; Thun, M.J. American Cancer Society. Cancer statistics, 2004. CA Cancer J. Clin., 2004, 54(1), 8-29.
[http://dx.doi.org/10.3322/canjclin.54.1.8] [PMID: 14974761]
[49]
Derouiche, S.; Warnier, M.; Mariot, P.; Gosset, P.; Mauroy, B.; Bonnal, J.L.; Slomianny, C.; Delcourt, P.; Prevarskaya, N.; Roudbaraki, M. Bisphenol A stimulates human prostate cancer cell migration via remodelling of calcium signalling. Springerplus, 2013, 2(1), 54.
[http://dx.doi.org/10.1186/2193-1801-2-54] [PMID: 23450760]
[50]
Ho, S.M.; Rao, R.; To, S.; Schoch, E.; Tarapore, P. Bisphenol A and its analogues disrupt centrosome cycle and microtubule dynamics in prostate cancer. Endocr. Relat. Cancer, 2017, 24(2), 83-96.
[http://dx.doi.org/10.1530/ERC-16-0175] [PMID: 27998958]
[51]
Tarapore, P.; Ying, J.; Ouyang, B.; Burke, B.; Bracken, B.; Ho, S.M. Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PLoS One, 2014, 9(3)e90332
[http://dx.doi.org/10.1371/journal.pone.0090332] [PMID: 24594937]
[52]
Ho, S-M.; Tang, W.Y.; Belmonte de Frausto, J.; Prins, G.S. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res., 2006, 66(11), 5624-5632.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0516] [PMID: 16740699]
[53]
Prins, G.S.; Tang, W.Y.; Belmonte, J.; Ho, S.M. Developmental exposure to bisphenol A increases prostate cancer susceptibility in adult rats: Epigenetic mode of action is implicated. Fertil. Steril., 2008, 89(Suppl. 2)e41
[http://dx.doi.org/10.1016/j.fertnstert.2007.12.023] [PMID: 18308059]
[54]
Burton, K.; Shaw, L.; Morey, L.M. Differential effect of estradiol and bisphenol A on Set8 and Sirt1 expression in prostate cancer. Toxicol. Rep., 2015, 2, 817-823.
[http://dx.doi.org/10.1016/j.toxrep.2015.01.016] [PMID: 28962417]
[55]
Cheong, A.; Zhang, X.; Cheung, Y.Y.; Tang, W.Y.; Chen, J.; Ye, S.H.; Medvedovic, M.; Leung, Y.K.; Prins, G.S.; Ho, S.M. DNA methylome changes by estradiol benzoate and bisphenol A links early-life environmental exposures to prostate cancer risk. Epigenetics, 2016, 11(9), 674-689.
[http://dx.doi.org/10.1080/15592294.2016.1208891] [PMID: 27415467]
[56]
Kuhl, H. Pharmacology of estrogens and progestogens: Influence of different routes of administration. Climacteric, 2005, 8(Suppl. 1), 3-63.
[http://dx.doi.org/10.1080/13697130500148875] [PMID: 16112947]
[57]
Schug, T.T.; Johnson, A.F.; Birnbaum, L.S.; Colborn, T.; Guillette, L.J., Jr; Crews, D.P.; Collins, T.; Soto, A.M.; Vom Saal, F.S.; McLachlan, J.A.; Sonnenschein, C.; Heindel, J.J. Minireview: Endocrine disruptors: Past lessons and future directions. Mol. Endocrinol., 2016, 30(8), 833-847.
[http://dx.doi.org/10.1210/me.2016-1096] [PMID: 27477640]
[58]
Schroeder, A.; Mueller, O.; Stocker, S.; Salowsky, R.; Leiber, M.; Gassmann, M.; Lightfoot, S.; Menzel, W.; Granzow, M.; Ragg, T. The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol., 2006, 7(1), 3.
[http://dx.doi.org/10.1186/1471-2199-7-3] [PMID: 16448564]
[59]
Bratslavsky, G.; Sanford, T.; Srinivasan, R.; Aprelikova, O.; Liu, J.; Quezado, M.; Merino, M.; Linehan, W.M. Differential genetic expression in large versus small clear cell renal cell carcinoma: Results from microarray analysis. J. Cancer, 2011, 2, 271-279.
[http://dx.doi.org/10.7150/jca.2.271] [PMID: 21611108]
[60]
Kozak, I.; Sasik, R.; Freeman, W.R.; Sprague, L.J.; Gomez, M.L.; Cheng, L.; El-Emam, S.; Mojana, F.; Bartsch, D.U.; Bosten, J.; Ayyagari, R.; Hardiman, G. A degenerative retinal process in HIV-associated non-infectious retinopathy. PLoS One, 2013, 8(9)e74712
[http://dx.doi.org/10.1371/journal.pone.0074712] [PMID: 24069333]
[62]
Nash, T.; Huff, M.; Glen, W.B., Jr; Hardiman, G. Pipeline for Integrated Microarray Expression Normalization Tool Kit (PIMENTo) for tumor microarray profiling experiments. Methods Mol. Biol., 2019, 1908, 153-168.
[http://dx.doi.org/10.1007/978-1-4939-9004-7_11] [PMID: 30649727]
[63]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7)e47
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[64]
Smyth, G. Limma: Linear models for microarray data. Bioinformatics and Computational Biology Solutions Using R and Bioconductor; Springer: New York, 2005, pp. 397-420.
[http://dx.doi.org/10.1007/0-387-29362-0_23]
[65]
Draghici, S.; Khatri, P.; Tarca, A.L.; Amin, K.; Done, A.; Voichita, C.; Georgescu, C.; Romero, R. A systems biology approach for pathway level analysis. Genome Res., 2007, 17(10), 1537-1545.
[http://dx.doi.org/10.1101/gr.6202607] [PMID: 17785539]
[66]
Oliveros, J.C. VENNY. An interactive tool for comparing lists with Venn Diagrams., 2007.Available from:. http://bioinfogp.cnb.csic.es/tools/venny
[67]
Keri, R.A.; Ho, S.M.; Hunt, P.A.; Knudsen, K.E.; Soto, A.M.; Prins, G.S. An evaluation of evidence for the carcinogenic activity of bisphenol A. Reprod. Toxicol., 2007, 24(2), 240-252.
[http://dx.doi.org/10.1016/j.reprotox.2007.06.008] [PMID: 17706921]
[68]
Prins, G.S. Endocrine disruptors and prostate cancer risk. Endocr. Relat. Cancer, 2008, 15(3), 649-656.
[http://dx.doi.org/10.1677/ERC-08-0043] [PMID: 18524946]
[69]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[70]
Durando, M.; Kass, L.; Perdomo, V.; Bosquiazzo, V.L.; Luque, E.H.; Muñoz-de-Toro, M. Prenatal exposure to bisphenol A promotes angiogenesis and alters steroid-mediated responses in the mammary glands of cycling rats. J. Steroid Biochem. Mol. Biol., 2011, 127(1-2), 35-43.
[http://dx.doi.org/10.1016/j.jsbmb.2011.04.001] [PMID: 21513798]
[71]
Prins, G.S.; Tang, W.Y.; Belmonte, J.; Ho, S.M. Perinatal exposure to oestradiol and bisphenol A alters the prostate epigenome and increases susceptibility to carcinogenesis. Basic Clin. Pharmacol. Toxicol., 2008, 102(2), 134-138.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00166.x] [PMID: 18226066]
[72]
Angle, B.M.; Do, R.P.; Ponzi, D.; Stahlhut, R.W.; Drury, B.E.; Nagel, S.C.; Welshons, W.V.; Besch-Williford, C.L.; Palanza, P.; Parmigiani, S.; vom Saal, F.S.; Taylor, J.A. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): Evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod. Toxicol., 2013, 42, 256-268.
[http://dx.doi.org/10.1016/j.reprotox.2013.07.017] [PMID: 23892310]
[73]
Straub, R.H. The complex role of estrogens in inflammation. Endocr. Rev., 2007, 28(5), 521-574.
[http://dx.doi.org/10.1210/er.2007-0001] [PMID: 17640948]
[74]
Valentino, R.; D’Esposito, V.; Passaretti, F.; Liotti, A.; Cabaro, S.; Longo, M.; Perruolo, G.; Oriente, F.; Beguinot, F.; Formisano, P. Bisphenol-A impairs insulin action and up-regulates inflammatory pathways in human subcutaneous adipocytes and 3T3-L1 cells. PLoS One, 2013, 8(12)e82099
[http://dx.doi.org/10.1371/journal.pone.0082099] [PMID: 24349194]
[75]
Eyries, M.; Siegfried, G.; Ciumas, M.; Montagne, K.; Agrapart, M.; Lebrin, F.; Soubrier, F. Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ. Res., 2008, 103(4), 432-440.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.179333] [PMID: 18617693]
[76]
Bertrand, C.; Valet, P.; Castan-Laurell, I. Apelin and energy metabolism. Front. Physiol., 2015, 6, 115.
[http://dx.doi.org/10.3389/fphys.2015.00115] [PMID: 25914650]
[77]
Wan, Y.; Zeng, Z.C.; Xi, M.; Wan, S.; Hua, W.; Liu, Y.L.; Zhou, Y.L.; Luo, H.W.; Jiang, F.N.; Zhong, W.D. Dysregulated microRNA-224/apelin axis associated with aggressive progression and poor prognosis in patients with prostate cancer. Hum. Pathol., 2015, 46(2), 295-303.
[http://dx.doi.org/10.1016/j.humpath.2014.10.027] [PMID: 25532941]
[78]
Kleinz, M.J.; Davenport, A.P. Emerging roles of apelin in biology and medicine. Pharmacol. Ther., 2005, 107(2), 198-211.
[http://dx.doi.org/10.1016/j.pharmthera.2005.04.001] [PMID: 15907343]
[79]
Chow, L.; Rezmann, L.; Catt, K.J.; Louis, W.J.; Frauman, A.G.; Nahmias, C.; Louis, S.N. Role of the renin-angiotensin system in prostate cancer. Mol. Cell. Endocrinol., 2009, 302(2), 219-229.
[http://dx.doi.org/10.1016/j.mce.2008.08.032] [PMID: 18824067]
[80]
Hoffmann, M.; Fiedor, E.; Ptak, A. Bisphenol A and its derivatives tetrabromobisphenol A and tetrachlorobisphenol A induce apelin expression and secretion in ovarian cancer cells through a peroxisome proliferator-activated receptor gamma-dependent mechanism. Toxicol. Lett., 2017, 269, 15-22.
[http://dx.doi.org/10.1016/j.toxlet.2017.01.006] [PMID: 28111160]
[81]
Nwankwo, J.O.; Robbins, M.E. Peroxisome proliferator-activated receptor- γ expression in human malignant and normal brain, breast and prostate-derived cells. Prostaglandins Leukot. Essent. Fatty Acids, 2001, 64(4-5), 241-245.
[http://dx.doi.org/10.1054/plef.2001.0266] [PMID: 11418018]
[82]
Li, L.; Wang, Q.; Zhang, Y.; Niu, Y.; Yao, X.; Liu, H. The molecular mechanism of bisphenol A (BPA) as an endocrine disruptor by interacting with nuclear receptors: Insights from molecular dynamics (MD) simulations. PLoS One, 2015, 10(3)e0120330
[http://dx.doi.org/10.1371/journal.pone.0120330] [PMID: 25799048]
[83]
Wadia, P.R.; Cabaton, N.J.; Borrero, M.D.; Rubin, B.S.; Sonnenschein, C.; Shioda, T.; Soto, A.M. Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland. PLoS One, 2013, 8(5)e63902
[http://dx.doi.org/10.1371/journal.pone.0063902] [PMID: 23704952]
[84]
Gilmore, A.P.; Romer, L.H. Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol. Biol. Cell, 1996, 7(8), 1209-1224.
[http://dx.doi.org/10.1091/mbc.7.8.1209] [PMID: 8856665]
[85]
Waters, A.M. Inhibition of Focal Adhesion Kinase (FAK) Leads to Decreased Cell Survival in Rhabdomyosarcoma Cells in Vitro and in Vivo. 2015 AAP National Conference and Exhibition,, 2015.
[86]
Castillo Sanchez, R.; Gomez, R.; Perez Salazar, E. Bisphenol a induces migration through a GPER-, FAK-, Src-, and ERK2-dependent pathway in MDA-MB-231 breast cancer cells. Chem. Res. Toxicol., 2016, 29(3), 285-295.
[http://dx.doi.org/10.1021/acs.chemrestox.5b00457] [PMID: 26914403]
[87]
Tong, X.; Han, X.; Yu, B.; Yu, M.; Jiang, G.; Ji, J.; Dong, S. Role of gap junction intercellular communication in testicular leydig cell apoptosis induced by oxaliplatin via the mitochondrial pathway. Oncol. Rep., 2015, 33(1), 207-214.
[http://dx.doi.org/10.3892/or.2014.3571] [PMID: 25355463]
[88]
Mayan, M.D.; Gago-Fuentes, R.; Carpintero-Fernandez, P.; Fernandez-Puente, P.; Filgueira-Fernandez, P.; Goyanes, N.; Valiunas, V.; Brink, P.R.; Goldberg, G.S.; Blanco, F.J. Articular chondrocyte network mediated by gap junctions: Role in metabolic cartilage homeostasis. Ann. Rheum. Dis., 2015, 74(1), 275-284.
[http://dx.doi.org/10.1136/annrheumdis-2013-204244] [PMID: 24225059]
[89]
Mehta, P.P. Gap-junctional communication in normal and neoplastic prostate epithelial cells and its regulation by cAMPP, Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center,. 1996, 15(1), 18-32.
[http://dx.doi.org/10.1002/(SICI)1098-2744(199601)15:1<18::AID-MC4>3.0.CO;2-O]
[90]
Habermann, H.; Ray, V.; Habermann, W.; Prins, G.S. Alterations in gap junction protein expression in human benign prostatic hyperplasia and prostate cancer. J. Urol., 2002, 167(2 Pt 1), 655-660.
[http://dx.doi.org/10.1016/S0022-5347(01)69118-3] [PMID: 11792947]
[91]
Sun, H.; Xu, L.C.; Chen, J.F.; Song, L.; Wang, X.R. Effect of bisphenol A, tetrachlorobisphenol A and pentachlorophenol on the transcriptional activities of androgen receptor-mediated reporter gene. Food Chem. Toxicol., 2006, 44(11), 1916-1921.
[http://dx.doi.org/10.1016/j.fct.2006.06.013] [PMID: 16893599]
[92]
Tan, M.H.; Li, J.; Xu, H.E.; Melcher, K.; Yong, E.L. Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin., 2015, 36(1), 3-23.
[http://dx.doi.org/10.1038/aps.2014.18] [PMID: 24909511]
[93]
Wetherill, Y.B.; Petre, C.E.; Monk, K.R.; Puga, A.; Knudsen, K.E. The xenoestrogen bisphenol A induces inappropriate androgen receptor activation and mitogenesis in prostatic adenocarcinoma cells. Mol. Cancer Ther., 2002, 1(7), 515-524.
[PMID: 12479269]
[94]
Okada, H.; Tokunaga, T.; Liu, X.; Takayanagi, S.; Matsushima, A.; Shimohigashi, Y. Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-γ. Environ. Health Perspect., 2008, 116(1), 32-38.
[http://dx.doi.org/10.1289/ehp.10587] [PMID: 18197296]
[95]
Takayanagi, S.; Tokunaga, T.; Liu, X.; Okada, H.; Matsushima, A.; Shimohigashi, Y. Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor γ (ERRgamma) with high constitutive activity. Toxicol. Lett., 2006, 167(2), 95-105.
[http://dx.doi.org/10.1016/j.toxlet.2006.08.012] [PMID: 17049190]
[96]
Yu, S.; Wang, X.; Ng, C.F.; Chen, S.; Chan, F.L. ERRgamma suppresses cell proliferation and tumor growth of androgen-sensitive and androgen-insensitive prostate cancer cells and its implication as a therapeutic target for prostate cancer. Cancer Res., 2007, 67(10), 4904-4914.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3855] [PMID: 17510420]
[97]
Misra, J.; Kim, D-K.; Choi, H-S. ERRγ: A junior orphan with a senior role in metabolism. Trends Endocrinol. Metab., 2017, 28(4), 261-272.
[http://dx.doi.org/10.1016/j.tem.2016.12.005] [PMID: 28209382]
[98]
McKenna, N.J.; Lanz, R.B.; O’Malley, B.W. Nuclear receptor coregulators: Cellular and molecular biology. Endocr. Rev., 1999, 20(3), 321-344.
[PMID: 10368774]
[99]
Giguère, V. To ERR in the estrogen pathway. Trends Endocrinol. Metab., 2002, 13(5), 220-225.
[http://dx.doi.org/10.1016/S1043-2760(02)00592-1] [PMID: 12185669]
[100]
Pei, L.; Mu, Y.; Leblanc, M.; Alaynick, W.; Barish, G.D.; Pankratz, M.; Tseng, T.W.; Kaufman, S.; Liddle, C.; Yu, R.T.; Downes, M.; Pfaff, S.L.; Auwerx, J.; Gage, F.H.; Evans, R.M. Dependence of hippocampal function on ERRγ-regulated mitochondrial metabolism. Cell Metab., 2015, 21(4), 628-636.
[http://dx.doi.org/10.1016/j.cmet.2015.03.004] [PMID: 25863252]
[101]
Fan, W.; He, N.; Lin, C.S.; Wei, Z.; Hah, N.; Waizenegger, W.; He, M.X.; Liddle, C.; Yu, R.T.; Atkins, A.R.; Downes, M.; Evans, R.M. ERRγ promotes angiogenesis, mitochondrial biogenesis, and oxidative remodeling in PGC1α/β-deficient muscle. Cell Rep., 2018, 22(10), 2521-2529.
[http://dx.doi.org/10.1016/j.celrep.2018.02.047] [PMID: 29514081]
[102]
Dolinoy, D.C.; Huang, D.; Jirtle, R.L. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl. Acad. Sci. USA, 2007, 104(32), 13056-13061.
[http://dx.doi.org/10.1073/pnas.0703739104] [PMID: 17670942]
[103]
Viré, E.; Brenner, C.; Deplus, R.; Blanchon, L.; Fraga, M.; Didelot, C.; Morey, L.; Van Eynde, A.; Bernard, D.; Vanderwinden, J.M.; Bollen, M.; Esteller, M.; Di Croce, L.; de Launoit, Y.; Fuks, F. The Polycomb group protein EZH2 directly controls DNA methylation. Nature, 2006, 439(7078), 871-874.
[http://dx.doi.org/10.1038/nature04431] [PMID: 16357870]
[104]
Zhu, Z.; Edwards, R.J.; Boobis, A.R. Increased expression of histone proteins during estrogen-mediated cell proliferation. Environ. Health Perspect., 2009, 117(6), 928-934.
[http://dx.doi.org/10.1289/ehp.0800109] [PMID: 19590685]
[105]
Doshi, T.; Mehta, S.S.; Dighe, V.; Balasinor, N.; Vanage, G. Hypermethylation of estrogen receptor promoter region in adult testis of rats exposed neonatally to bisphenol A. Toxicology, 2011, 289(2-3), 74-82.
[http://dx.doi.org/10.1016/j.tox.2011.07.011] [PMID: 21827818]
[106]
Santangeli, S.; Maradonna, F.; Gioacchini, G.; Cobellis, G.; Piccinetti, C.C.; Dalla Valle, L.; Carnevali, O. BPA-induced deregulation of epigenetic patterns: Effects on female zebrafish reproduction. Sci. Rep., 2016, 6, 21982.
[http://dx.doi.org/10.1038/srep21982] [PMID: 26911650]
[107]
Hopfner, R.; Mousli, M.; Jeltsch, J.M.; Voulgaris, A.; Lutz, Y.; Marin, C.; Bellocq, J.P.; Oudet, P.; Bronner, C. ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase IIalpha expression. Cancer Res., 2000, 60(1), 121-128.
[PMID: 10646863]
[108]
Unoki, M.; Brunet, J.; Mousli, M. Drug discovery targeting epigenetic codes: the great potential of UHRF1, which links DNA methylation and histone modifications, as a drug target in cancers and toxoplasmosis. Biochem. Pharmacol., 2009, 78(10), 1279-1288.
[http://dx.doi.org/10.1016/j.bcp.2009.05.035] [PMID: 19501055]
[109]
Bronner, C.; Krifa, M.; Mousli, M. Increasing role of UHRF1 in the reading and inheritance of the epigenetic code as well as in tumorogenesis. Biochem. Pharmacol., 2013, 86(12), 1643-1649.
[http://dx.doi.org/10.1016/j.bcp.2013.10.002] [PMID: 24134914]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy