[1]
Menis, J.; Besse, B.; Lacombe, D. Methodology of clinical trials in lung cancer. Linchuang Zhongliuxue Zazhi, 2015, 4(4), 44.
[2]
Hudson, A.M.; Wirth, C.; Stephenson, N.L.; Fawdar, S.; Brognard, J.; Miller, C.J. Using large-scale genomics data to identify driver mutations in lung cancer: Methods and challenges. Pharmacogenomics, 2015, 16(10), 1149-1160.
[3]
Burotto, M.; Thomas, A.; Subramaniam, D.; Giaccone, G.; Rajan, A. Biomarkers in early-stage non-small-cell lung cancer: Current concepts and future directions. J. Thorac. Oncol., 2014, 9(11), 1609-1617.
[4]
Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J., 2014, 13, 8-17.
[5]
Cheadle, C.; Vawter, M.P.; Freed, W.J.; Becker, K.G. Analysis of microarray data using Z score transformation. J. Mol. Diagn., 2003, 5(2), 73-81.
[6]
Diboun, I.; Wernisch, L.; Orengo, C.A.; Koltzenburg, M. Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics, 2006, 7, 252.
[7]
Gu, J.; Pitz, M.; Breitner, S.; Birmili, W.; von Klot, S.; Schneider, A.; Soentgen, J.; Reller, A.; Peters, A.; Cyrys, J. Selection of key ambient particulate variables for epidemiological studies - applying cluster and heatmap analyses as tools for data reduction. Sci. Total Environ., 2012, 435-436, 541-550.
[8]
Bishara, A.J.; Hittner, J.B. Testing the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approaches. Psychol. Methods, 2012, 17(3), 399-417.
[9]
Homenauth, E.; Kajeguka, D.; Kulkarni, M.A. Principal component analysis of socioeconomic factors and their association with malaria and arbovirus risk in Tanzania: a sensitivity analysis. J. Epidemiol. Community Health, 2017, 71(11), 1046-1051.
[10]
Scrucca, L.; Fop, M.; Murphy, T.B.; Raftery, A.E. mclust 5: Clustering, classification and density estimation using gaussian finite mixture models. R J., 2016, 8(1), 289-317.
[11]
Shi, M.; Shen, W.; Wang, H.Q.; Chong, Y. Adaptive modelling of gene regulatory network using Bayesian information criterion-guided sparse regression approach. IET Syst. Biol., 2016, 10(6), 252-259.
[12]
Huang, D.W. DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res., 2007, 35(Web Server issue), W169-W175.
[13]
Manikandan, P.; Ramyachitra, D. Bacterial foraging optimization -genetic algorithm for multiple sequence alignment with multi-objectives. Sci. Rep., 2017, 7(1), 8833.
[14]
Korbar, B.; Olofson, A.M.; Miraflor, A.P.; Nicka, C.M.; Suriawinata, M.A.; Torresani, L.; Suriawinata, A.A.; Hassanpour, S. Deep Learning for classification of colorectal polyps on whole-slide images. J. Pathol. Inform., 2017, 8, 30.
[15]
Kong, X.; Sun, Y.; Su, R.; Shi, X. Real-time eutrophication status evaluation of coastal waters using support vector machine with grid search algorithm. Mar. Pollut. Bull., 2017, 119(1), 307-319.