Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Contribution of Resveratrol in the Development of Novel Urease Inhibitors: Synthesis, Biological Evaluation and Molecular Docking Studies

Author(s): Ritu Kataria and Anurag Khatkar*

Volume 22, Issue 4, 2019

Page: [245 - 255] Pages: 11

DOI: 10.2174/1386207322666190410150216

Price: $65

Abstract

Aims and Objective: A new library of resveratrol derivatives was designed and synthesized in excellent yield via two-step reaction utilizing Vilsmeier reaction as the first step and subsequent addition of substituted aromatic amine in the second step.

Methods: Synthesized compounds were investigated for their antioxidant as well as for in vitro inhibition activity against jack bean urease enzyme. Compounds R3b and R4 with IC50 value 18.85±0.15 and 21.60±0.19µM against urease enzyme and 6.01±0.07 and 7.52±0.14µM in vitro- DPPH free radical scavenging activity have emerged as most active molecules from the selected library. Molecular simulation studies were also carried out for determining the interaction detail of newly synthesized compounds within a protein pocket.

Results and Conclusion: Newly synthesized compounds were found to possess better docking score (-5.941 to -6.894) and binding energy (-46.854 to -56.455) as compared to the parent resveratrol (-5.45 and -20.155) which revealed that the newly synthesized compounds bind in a better way as compared to the parent molecule.

Keywords: Resveratrol, urease inhibition, natural phenolic compounds, vilsmeier reaction, Helicobacler pylori, molecular docking.

[1]
Singh, A.; Holvoet, S.; Mercenier, A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin. Exp. Allergy, 2011, 41(10), 1346-1359.
[2]
Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 1998, 56(11), 317-333.
[3]
Park, E.J.; Pezzuto, J.M. The pharmacology of resveratrol in animals and humans. Biochim. Biophys. Acta, 2015, 1852(6), 1071-1113.
[4]
Takaoka, M. Resveratrol, a new phenolic compound, from Veratrum grandiflorum. J. Chem. Soc. Jpn., 1939, 60(1), 1090-1100.
[5]
Chun-Fu, WU.; Jing-Yu, Y.; Fang, W.; Xiao-Xiao, W. Resveratrol: Botanical origin, pharmacological activity and applications. Chin. J. Nat. Med., 2013, 11(1), 0001-0015.
[6]
Silva, M.V.; Loureiro, A.; Falcao, A. Effect of food on the pharmacokinetic profile of trans-resveratrol. Int. J. Clin. Pharmacol. Ther., 2008, 46(11), 564-570.
[7]
Chaitanya, M.; Babajan, B. Synthesis and evaluation of resveratrol derivatives as new chemical entities for cancer. J. Mol. Graph. Model., 2013, 41, 43-54.
[8]
Sadat, A.N.; Tsatsakis, A.M. Resveratrol as MDR reversion molecule in breast cancer: An overview. Food Chem. Toxicol., 2017, 103, 223-232.
[9]
Ganesh, G.; Ramar, M. A focus on resveratrol and ocular problems, especially cataract: From chemistry to medical uses and clinical relevance. Biomed. Pharmacother., 2017, 86, 232-241.
[10]
Giovinazzo, G.; Ingrosso, I.; Paradiso, A.; Gara, L.D.; Santino, A. Resveratrol biosynthesis: Plant metabolic engineering for nutritional improvement of food. Plant Foods Hum. Nutr., 2012, 67(3), 191-199.
[11]
Jeandet, P.; Delaunois, B.; Aziz, A.; Donnez, D.; Vasserot, Y.; Cordelier, S.; Courot, E. Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, resveratrol. J. Biomed. Biotechnol., 2012, 2012, 579-589.
[12]
Adrian, M.; Jeandet, P.; Douillet-Breuil, A.; Tesson, L.; Bessis, R. Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J. Agric. Food Chem., 2000, 48, 6103-6105.
[13]
Wang, Y.; Catana, F.; Yang, Y.; Roderick, R.; Van Breemen, R.B. An LC–MS method for analyzing total resveratrol in grape juice cranberry juice, and in wine. J. Agric. Food Chem., 2002, 50, 431-435.
[14]
Ector, B.; Magee, J.; Hegwood, C.; Coign, M. Resveratrol concentration in muscadine berries juice, pomace, purees, seeds, and wines. Am. J. Enol. Vitic., 1996, 47, 57-62.
[15]
Kuo, S.M. Dietary flavonoid and cancer prevention: Evidence and potential mechanism. Crit. Rev. Oncog., 1997, 8, 47-69.
[16]
Surh, Y. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat. Res., 1999, 428, 305-327.
[17]
Cesidio, G.; Manuela, I. Resveratrol has anti-thyroid effects both in vitro and in vivo. Food Chem. Toxicol., 2017, 107, 237-247.
[18]
Saori, U.; Emiko, S.S. A facile and rapid access to resveratrol derivatives and their radioprotective activity. Bioorg. Med. Chem. Lett., 2016, 26, 3886-3891.
[19]
Ying-Chao, D.; Guan, Yuan-Yuan G. Discovery of resveratrol derivatives as novel LSD1 inhibitors: Design, synthesis and their biological evaluation. Eur. J. Med. Chem., 2017, 126, 246-258.
[20]
Paulo, L.; Oleastro, M. Anti-Helicobacter pylori and urease inhibitory activities of resveratrol and red wine. Food Res. Int., 2011, 44, 964-969.
[21]
Antonio, D.L.; Guanaes, J.F. Synthesis, antiplatelet and antithrombotic activities of resveratrol derivatives with NO-donor properties. Bioorg. Med. Chem. Lett., 2017, 27, 2450-2453.
[22]
Adrian, M.; Jeandet, P.; Douillet-Breuil, A.; Tesson, L.; Bessis, R. Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J. Agric. Food Chem., 2000, 48, 6103-6105.
[23]
Wang, Y.; Catana, F.; Yang, Y.; Roderick, R.; Breemen, R.B. An LC–MS method for analyzing total resveratrol in grape juice cranberry juice, and in wine. J. Agric. Food Chem., 2002, 50, 431-435.
[24]
Zhang, Z.; Zhu, X.; Xie, Z.; Zhao, Z.; Dubé, C.; Roussel, D.; Charles, M.T.; Khanizadeh, S. Yield fruit quality, antioxidant capacity and phenolic composition of advanced raspberry lines from Quebec. J. Food Agric. Environ., 2013, 11, 278-284.
[25]
Shrikanta, A.; Kumar, A.; Govindaswamy, V. Resveratrol content and antioxidant properties of underutilized fruits. J. Food Sci. Technol., 2015, 52, 383-390.
[26]
Siemann, E.; Creasy, L. Concentration of the phytoalexin resveratrol in wine. Am. J. Enol. Vitic., 1992, 43, 49-52.
[27]
Dourtoglou, V.G.; Makris, D.P.; Bois-Dounas, F.; Zonas, C. Trans-resveratrol concentration in wines produced in Greece. J. Food Compos. Anal., 1999, 12, 227-233.
[28]
Careri, M.; Corradini, C.; Elviri, L.; Nicoletti, I.; Zagnoni, I. Direct HPLC analysis of quercetin and trans-resveratrol in red wine, grape, and winemaking byproducts. J. Agric. Food Chem., 2003, 51, 5226-5231.
[29]
Ingham, J.L. 3 5, 4′ -Trihydroxystilbene as a phytoalexin from groundnuts (Arachis hypogaea). Phytochemistry, 1976, 15, 1791-1793.
[30]
Sobolev, V.S.; Cole, R.J. Trans-Resveratrol content in commercial peanuts and peanut products. J. Agric. Food Chem., 1999, 47, 1435-1439.
[31]
Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem., 2002, 50, 3337-3340.
[32]
Abbott, J.A.; Medina-Bolivar, F.; Martin, E.M.; Engelberth, A.S.; Villagarcia, H.; Clausen, E.C.; Carrier, D.J. Purification of resveratrol, arachidin-1, and arachidin-3 from hairy root cultures of peanut (Arachis hypogaea) and determination of their antioxidant activity and cytotoxicity. Biotechnol. Prog., 2010, 26, 1344-1351.
[33]
Counet, C.; Callemien, D.; Collin, S. Chocolate and cocoa: New sources of transresveratrol and trans-piceid. Food Chem., 2006, 98, 649-657.
[34]
Britton, R.G.; Kovoor, C.; Brown, K. Direct molecular targets of resveratrol: identifying key interactions to unlock complex mechanisms. Ann. N. Y. Acad. Sci., 2015, 1348, 124-133.
[35]
Diaz-Gerevini, G.T.; Repossi, G.; Dain, A.; Tarres, M.C.; Das, U.N.; Eynard, A.R. Beneficial actions of resveratrol: How and why. Nutrition, 2016, 32, 174-178.
[36]
Han, G.; Xia, J.; Gao, J.; Inagaki, Y.; Tang, W.; Kokudo, N. Anti-tumor effects and cellular mechanisms of resveratrol. Drug Discov. Ther., 2015, 9, 1-12.
[37]
Park, E.J.; Pezzuto, J.M. The pharmacology of resveratrol in animals and humans. Biochim. Biophys. Acta, 2015, 1852, 1071-1113.
[38]
Poulsen, M.M.; Fjeldborg, K.; Ornstrup, M.J.; Kjaer, T.N.; Nohr, M.K.; Pedersen, S.B. Resveratrol and inflammation: Challenges in translating pre-clinical findings to improved patient outcomes. Biochim. Biophys. Acta, 2015, 1852, 1124-1136.
[39]
Bonnefont-Rousselot, D. Resveratrol and cardiovascular diseases. Nutrients, 2016, 8
[http://dx.doi.org/10.3390/nu8050250]
[40]
Ono, K.; Yoshiike, Y.; Takashima, A.; Hasegawa, K.; Naiki, H.; Yamada, M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer’s disease. J. Neurochem., 2003, 87, 172-181.
[41]
Quideau, S.; Deffieux, D.; Pouysegu, L. Resveratrol still has something to say about aging. Angew. Chem. Int. Ed., 2012, 51, 6824-6826.
[42]
Feng, Ruan B.; Lu, X. Synthesis, biological evaluation, and molecular docking studies of resveratrol derivatives possessing chalcone moiety as potential antitubulin agents. Bioorg. Med. Chem., 2011, 19, 2688-2695.
[43]
Musiani, F.; Arnofi, E.; Casadio, R.; Ciurli, S. Structure-based computational study of the catalytic and inhibition mechanisms of urease. J. Biol. Inorg. Chem., 2001, 6(3), 300-314.
[44]
Lippard, S.J. At last--the crystal structure of urease. Science, 1995, 268(5213), 996-997.
[45]
Kosikowska, P.; Berlicki, Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: A patent review. Expert Opin. Ther. Pat., 2011, 21(6), 945-957.
[46]
Matongo, F.; Nwodo, U.U. In vitro assessment of Helicobacter pylori ureases inhibition by honey fractions. Arch. Med. Res., 2014, 45(7), 540-546.
[47]
Dowd, P.; Zheng, Z.B. On the mechanism of the anticlotting action of vitamin E quinone. Proc. Natl. Acad. Sci., 1995, 92(18), 8171-8175.
[48]
Sherif, T.S. Hassan; Milan, Z. Plant-derived urease inhibitors as alternative chemotherapeutic agents. Arch. Pharm. Chem. Life Sci., 2016, 349, 507-522.
[49]
Huang, X.F.; Ruan, B.F.; Wang, X.T.; Xu, C.; Ge, H.M.; Zhu, H.L.; Tan, R.X. Synthesis and cytotoxic evaluation of a series of resveratrol derivatives modified in C2 position. Eur. J. Med. Chem., 2007, 42(2), 263-267.
[50]
Huang, X.F.; Shi, L.; Li, H.Q.; Zhu, H.L. Synthesis and crystal structure of 4, 6-dihydroxy-2-[2-(4-hydroxy-phenyl)-vinyl]-benzene-1, 3-dicarbaldehyde. J. Chem. Crystallogr., 2007, 37(11), 739-742.
[51]
Khan, K.M. Biscoumarin: New class of urease inhibitors; economical synthesis and activity. Bioorg. Med. Chem., 2004, 12, 1963-1968.
[52]
Maestro, version 10.2; Schrödinger, LLC: New York, NY, 2015.
[53]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47, 1739-1749.
[54]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring Enrichment factors in database screening. J. Med. Chem., 2004, 47, 1750-1759.
[55]
Glide, version 6.6; Schrödinger, LLC: New York, NY, 2015.
[56]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49, 6177-6196.
[57]
Cecchelli, R.; Berezowski, V.; Lundquist, S.; Culot, M.; Renftel, M.; Dehouck, M.P.; Fenart, L. Modelling of the blood-brain barrier in drug discovery and development. . Nat. Rev. Drug Discov., 2007, 6, 650-661.
[58]
Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem., 1967, 39(8), 971-974.
[59]
Hanif, M.; Shoaib, K.; Saleem, M.; Hasan Rama, N.; Zaib, S.; Iqbal, J. Synthesis, urease inhibition, antioxidant, antibacterial, and molecular docking studies of 1, 3, 4-oxadiazole derivatives. ISRN Pharmacol., 2012, 2012928901
[60]
Choudhary, M.I.; Begum, A.; Abbaskhan, A.; Musharraf, S.G.; Ejaz, A. Two new antioxidant phenylpropanoids from Lindelofia stylosa. Chem. Biodivers., 2008, 5, 2676-2683.
[61]
Lee, S.K.; Mbwambo, Z.H.; Chung, H.; Luyengi, L.; Gamez, E.J.; Mehta, R.G.; Kinghorn, A.D.; Pezzuto, J.M. Evaluation of the antioxidant potential of natural products. Comb. Chem. High Throughput Screen., 1998, 1, 35-46.
[62]
Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. J. Sci. Technol., 2004, 26(2), 211-219.
[63]
Hanif, M.; Saleem, M.; Hussain, M.T.; Rama, N.H.; Zaib, S.; Aslam, M.A.; Jones, P.G.; Iqbal, J. Synthesis, urease inhibition, antioxidant and antibacterial studies of some 4-amino-5-aryl-3H-1, 2, 4-triazole-3-thiones and their 3, 6-disubstituted 1, 2, 4-triazolo [3, 4-b] 1, 3, 4-thiadiazole derivatives. J. Braz. Chem. Soc., 2012, 23(5), 854-860.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy