[1]
Singh, A.; Holvoet, S.; Mercenier, A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin. Exp. Allergy, 2011, 41(10), 1346-1359.
[2]
Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 1998, 56(11), 317-333.
[3]
Park, E.J.; Pezzuto, J.M. The pharmacology of resveratrol in animals and humans. Biochim. Biophys. Acta, 2015, 1852(6), 1071-1113.
[4]
Takaoka, M. Resveratrol, a new phenolic compound, from Veratrum grandiflorum. J. Chem. Soc. Jpn., 1939, 60(1), 1090-1100.
[5]
Chun-Fu, WU.; Jing-Yu, Y.; Fang, W.; Xiao-Xiao, W. Resveratrol: Botanical origin, pharmacological activity and applications. Chin. J. Nat. Med., 2013, 11(1), 0001-0015.
[6]
Silva, M.V.; Loureiro, A.; Falcao, A. Effect of food on the pharmacokinetic profile of trans-resveratrol. Int. J. Clin. Pharmacol. Ther., 2008, 46(11), 564-570.
[7]
Chaitanya, M.; Babajan, B. Synthesis and evaluation of resveratrol derivatives as new chemical entities for cancer. J. Mol. Graph. Model., 2013, 41, 43-54.
[8]
Sadat, A.N.; Tsatsakis, A.M. Resveratrol as MDR reversion molecule in breast cancer: An overview. Food Chem. Toxicol., 2017, 103, 223-232.
[9]
Ganesh, G.; Ramar, M. A focus on resveratrol and ocular problems, especially cataract: From chemistry to medical uses and clinical relevance. Biomed. Pharmacother., 2017, 86, 232-241.
[10]
Giovinazzo, G.; Ingrosso, I.; Paradiso, A.; Gara, L.D.; Santino, A. Resveratrol biosynthesis: Plant metabolic engineering for nutritional improvement of food. Plant Foods Hum. Nutr., 2012, 67(3), 191-199.
[11]
Jeandet, P.; Delaunois, B.; Aziz, A.; Donnez, D.; Vasserot, Y.; Cordelier, S.; Courot, E. Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, resveratrol. J. Biomed. Biotechnol., 2012, 2012, 579-589.
[12]
Adrian, M.; Jeandet, P.; Douillet-Breuil, A.; Tesson, L.; Bessis, R. Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J. Agric. Food Chem., 2000, 48, 6103-6105.
[13]
Wang, Y.; Catana, F.; Yang, Y.; Roderick, R.; Van Breemen, R.B. An LC–MS method for analyzing total resveratrol in grape juice cranberry juice, and in wine. J. Agric. Food Chem., 2002, 50, 431-435.
[14]
Ector, B.; Magee, J.; Hegwood, C.; Coign, M. Resveratrol concentration in muscadine berries juice, pomace, purees, seeds, and wines. Am. J. Enol. Vitic., 1996, 47, 57-62.
[15]
Kuo, S.M. Dietary flavonoid and cancer prevention: Evidence and potential mechanism. Crit. Rev. Oncog., 1997, 8, 47-69.
[16]
Surh, Y. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat. Res., 1999, 428, 305-327.
[17]
Cesidio, G.; Manuela, I. Resveratrol has anti-thyroid effects both in vitro and in vivo. Food Chem. Toxicol., 2017, 107, 237-247.
[18]
Saori, U.; Emiko, S.S. A facile and rapid access to resveratrol derivatives and their radioprotective activity. Bioorg. Med. Chem. Lett., 2016, 26, 3886-3891.
[19]
Ying-Chao, D.; Guan, Yuan-Yuan G. Discovery of resveratrol derivatives as novel LSD1 inhibitors: Design, synthesis and their biological evaluation. Eur. J. Med. Chem., 2017, 126, 246-258.
[20]
Paulo, L.; Oleastro, M. Anti-Helicobacter pylori and urease inhibitory activities of resveratrol and red wine. Food Res. Int., 2011, 44, 964-969.
[21]
Antonio, D.L.; Guanaes, J.F. Synthesis, antiplatelet and antithrombotic activities of resveratrol derivatives with NO-donor properties. Bioorg. Med. Chem. Lett., 2017, 27, 2450-2453.
[22]
Adrian, M.; Jeandet, P.; Douillet-Breuil, A.; Tesson, L.; Bessis, R. Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J. Agric. Food Chem., 2000, 48, 6103-6105.
[23]
Wang, Y.; Catana, F.; Yang, Y.; Roderick, R.; Breemen, R.B. An LC–MS method for analyzing total resveratrol in grape juice cranberry juice, and in wine. J. Agric. Food Chem., 2002, 50, 431-435.
[24]
Zhang, Z.; Zhu, X.; Xie, Z.; Zhao, Z.; Dubé, C.; Roussel, D.; Charles, M.T.; Khanizadeh, S. Yield fruit quality, antioxidant capacity and phenolic composition of advanced raspberry lines from Quebec. J. Food Agric. Environ., 2013, 11, 278-284.
[25]
Shrikanta, A.; Kumar, A.; Govindaswamy, V. Resveratrol content and antioxidant properties of underutilized fruits. J. Food Sci. Technol., 2015, 52, 383-390.
[26]
Siemann, E.; Creasy, L. Concentration of the phytoalexin resveratrol in wine. Am. J. Enol. Vitic., 1992, 43, 49-52.
[27]
Dourtoglou, V.G.; Makris, D.P.; Bois-Dounas, F.; Zonas, C. Trans-resveratrol concentration in wines produced in Greece. J. Food Compos. Anal., 1999, 12, 227-233.
[28]
Careri, M.; Corradini, C.; Elviri, L.; Nicoletti, I.; Zagnoni, I. Direct HPLC analysis of quercetin and trans-resveratrol in red wine, grape, and winemaking byproducts. J. Agric. Food Chem., 2003, 51, 5226-5231.
[29]
Ingham, J.L. 3 5, 4′ -Trihydroxystilbene as a phytoalexin from groundnuts (Arachis hypogaea). Phytochemistry, 1976, 15, 1791-1793.
[30]
Sobolev, V.S.; Cole, R.J. Trans-Resveratrol content in commercial peanuts and peanut products. J. Agric. Food Chem., 1999, 47, 1435-1439.
[31]
Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem., 2002, 50, 3337-3340.
[32]
Abbott, J.A.; Medina-Bolivar, F.; Martin, E.M.; Engelberth, A.S.; Villagarcia, H.; Clausen, E.C.; Carrier, D.J. Purification of resveratrol, arachidin-1, and arachidin-3 from hairy root cultures of peanut (Arachis hypogaea) and determination of their antioxidant activity and cytotoxicity. Biotechnol. Prog., 2010, 26, 1344-1351.
[33]
Counet, C.; Callemien, D.; Collin, S. Chocolate and cocoa: New sources of transresveratrol and trans-piceid. Food Chem., 2006, 98, 649-657.
[34]
Britton, R.G.; Kovoor, C.; Brown, K. Direct molecular targets of resveratrol: identifying key interactions to unlock complex mechanisms. Ann. N. Y. Acad. Sci., 2015, 1348, 124-133.
[35]
Diaz-Gerevini, G.T.; Repossi, G.; Dain, A.; Tarres, M.C.; Das, U.N.; Eynard, A.R. Beneficial actions of resveratrol: How and why. Nutrition, 2016, 32, 174-178.
[36]
Han, G.; Xia, J.; Gao, J.; Inagaki, Y.; Tang, W.; Kokudo, N. Anti-tumor effects and cellular mechanisms of resveratrol. Drug Discov. Ther., 2015, 9, 1-12.
[37]
Park, E.J.; Pezzuto, J.M. The pharmacology of resveratrol in animals and humans. Biochim. Biophys. Acta, 2015, 1852, 1071-1113.
[38]
Poulsen, M.M.; Fjeldborg, K.; Ornstrup, M.J.; Kjaer, T.N.; Nohr, M.K.; Pedersen, S.B. Resveratrol and inflammation: Challenges in translating pre-clinical findings to improved patient outcomes. Biochim. Biophys. Acta, 2015, 1852, 1124-1136.
[40]
Ono, K.; Yoshiike, Y.; Takashima, A.; Hasegawa, K.; Naiki, H.; Yamada, M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer’s disease. J. Neurochem., 2003, 87, 172-181.
[41]
Quideau, S.; Deffieux, D.; Pouysegu, L. Resveratrol still has something to say about aging. Angew. Chem. Int. Ed., 2012, 51, 6824-6826.
[42]
Feng, Ruan B.; Lu, X. Synthesis, biological evaluation, and molecular docking studies of resveratrol derivatives possessing chalcone moiety as potential antitubulin agents. Bioorg. Med. Chem., 2011, 19, 2688-2695.
[43]
Musiani, F.; Arnofi, E.; Casadio, R.; Ciurli, S. Structure-based computational study of the catalytic and inhibition mechanisms of urease. J. Biol. Inorg. Chem., 2001, 6(3), 300-314.
[44]
Lippard, S.J. At last--the crystal structure of urease. Science, 1995, 268(5213), 996-997.
[45]
Kosikowska, P.; Berlicki, Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: A patent review. Expert Opin. Ther. Pat., 2011, 21(6), 945-957.
[46]
Matongo, F.; Nwodo, U.U. In vitro assessment of Helicobacter pylori ureases inhibition by honey fractions. Arch. Med. Res., 2014, 45(7), 540-546.
[47]
Dowd, P.; Zheng, Z.B. On the mechanism of the anticlotting action of vitamin E quinone. Proc. Natl. Acad. Sci., 1995, 92(18), 8171-8175.
[48]
Sherif, T.S. Hassan; Milan, Z. Plant-derived urease inhibitors as alternative chemotherapeutic agents. Arch. Pharm. Chem. Life Sci., 2016, 349, 507-522.
[49]
Huang, X.F.; Ruan, B.F.; Wang, X.T.; Xu, C.; Ge, H.M.; Zhu, H.L.; Tan, R.X. Synthesis and cytotoxic evaluation of a series of resveratrol derivatives modified in C2 position. Eur. J. Med. Chem., 2007, 42(2), 263-267.
[50]
Huang, X.F.; Shi, L.; Li, H.Q.; Zhu, H.L. Synthesis and crystal structure of 4, 6-dihydroxy-2-[2-(4-hydroxy-phenyl)-vinyl]-benzene-1, 3-dicarbaldehyde. J. Chem. Crystallogr., 2007, 37(11), 739-742.
[51]
Khan, K.M. Biscoumarin: New class of urease inhibitors; economical synthesis and activity. Bioorg. Med. Chem., 2004, 12, 1963-1968.
[52]
Maestro, version 10.2; Schrödinger, LLC: New York, NY, 2015.
[53]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47, 1739-1749.
[54]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring Enrichment factors in database screening. J. Med. Chem., 2004, 47, 1750-1759.
[55]
Glide, version 6.6; Schrödinger, LLC: New York, NY, 2015.
[56]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49, 6177-6196.
[57]
Cecchelli, R.; Berezowski, V.; Lundquist, S.; Culot, M.; Renftel, M.; Dehouck, M.P.; Fenart, L. Modelling of the blood-brain barrier in drug discovery and development. . Nat. Rev. Drug Discov., 2007, 6, 650-661.
[58]
Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem., 1967, 39(8), 971-974.
[59]
Hanif, M.; Shoaib, K.; Saleem, M.; Hasan Rama, N.; Zaib, S.; Iqbal, J. Synthesis, urease inhibition, antioxidant, antibacterial, and molecular docking studies of 1, 3, 4-oxadiazole derivatives. ISRN Pharmacol., 2012, 2012928901
[60]
Choudhary, M.I.; Begum, A.; Abbaskhan, A.; Musharraf, S.G.; Ejaz, A. Two new antioxidant phenylpropanoids from Lindelofia stylosa. Chem. Biodivers., 2008, 5, 2676-2683.
[61]
Lee, S.K.; Mbwambo, Z.H.; Chung, H.; Luyengi, L.; Gamez, E.J.; Mehta, R.G.; Kinghorn, A.D.; Pezzuto, J.M. Evaluation of the antioxidant potential of natural products. Comb. Chem. High Throughput Screen., 1998, 1, 35-46.
[62]
Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. J. Sci. Technol., 2004, 26(2), 211-219.
[63]
Hanif, M.; Saleem, M.; Hussain, M.T.; Rama, N.H.; Zaib, S.; Aslam, M.A.; Jones, P.G.; Iqbal, J. Synthesis, urease inhibition, antioxidant and antibacterial studies of some 4-amino-5-aryl-3H-1, 2, 4-triazole-3-thiones and their 3, 6-disubstituted 1, 2, 4-triazolo [3, 4-b] 1, 3, 4-thiadiazole derivatives. J. Braz. Chem. Soc., 2012, 23(5), 854-860.